Abstract

The photonic band structures of superlattices composed of spatially-dispersive metal and polaritonic dielectric are theoretically investigated. The nonlocal relation between the electric current density and the electric field inside the metal layers is defined within the formalism of the Boltzmann kinetic equation, whereas the frequency dependent permittivity of the polar layers is modeled by a Lorentz-oscillator. Due to the large dielectric contrast between metal and polar components, the photonic band structure exhibits flat pass bands associated with Fabry-Perot resonances in the dielectric layers. There is also a wide stop band because of the existence of the polaritonic gap. We have compared our results with the predictions of the Drude-Lorentz model for the frequency-dependent metal permittivity. It is found that the nonlocal effect on the Fabry-Perot resonance bands is strong if their corresponding frequencies are within the interval where the difference between the impedances at both metal surfaces, predicted by the nonlocal and local formalisms, is maximal.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlocal effect on optic spectrum of a periodic dielectric-metal stack

Alejandro Paredes-Juárez, Denis A. Iakushev, Benito Flores-Desirena, Nykolay M. Makarov, and Felipe Pérez-Rodríguez
Opt. Express 22(7) 7581-7586 (2014)

Plasma-phonon polaritons in superlattices of semimetal bismuth and polaritonic material

Roberto Márquez-Islas, Benito Zenteno-Mateo, Benito Flores-Desirena, Alejandro Reyes-Coronado, and Felipe Pérez-Rodríguez
Opt. Mater. Express 5(12) 2820-2834 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. M. Walser, “Electromagnetic metamaterials,” Proc. SPIE 4467, 1–15 (2001).
    [Crossref]
  2. F. Capolino, Theory and phenomena of metamaterials (CRC Press, 2009).
    [Crossref]
  3. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photononics 1, 41–48 (2007).
    [Crossref]
  4. C. M. Soukoulis and M. Wegener M, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
  5. J. A. Reyes-Avendao, U. Algredo-Badillo, P. Halevi, and F. Pérez-Rodríguez, “From photonic crystals to metamaterials: the bianisotropic response,” New J. Phys. 13, 073041 (2011).
    [Crossref]
  6. Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15, 023001 (2013).
    [Crossref]
  7. A.V. Goncharenko, V.U. Nazarov, and K.R. Chen, “Nanostructured metamaterials with broadband optical properties,” Opt. Mater. Express 3, 143–156 (2013).
    [Crossref]
  8. J. A. Reyes-Avendaño, M. P. Sampedro, E. Juárez-Ruiz, and F. Pérez-Rodríguez, “Bianisotropic metamaterials based on twisted asymmetric crosses,” J. Opt. 16, 065102 (2014).
    [Crossref]
  9. A. V. Goncharenko, E. F. Venger, Y. C. Chang, and A. O. Pinchuk, “Arrays of core-shell nanospheres as 3D isotropic broadband ENZ and highly absorbing metamaterials,” Opt. Mater. Express 4, 2310–2322 (2014).
    [Crossref]
  10. D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
  11. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [Crossref] [PubMed]
  12. J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
    [Crossref]
  13. V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005).
    [Crossref]
  14. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
    [Crossref]
  15. A. L. Rakhmanov, V. A. Yampolskii, J. A. Fan, F. Capasso, and F. Nori, “Layered superconductors as negative-refractive-index metamaterials,” Phys. Rev. B 81, 075101 (2010).
    [Crossref]
  16. V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55, 7427–7444 (1997).
    [Crossref]
  17. D. Soto-Puebla, M. Xiao, and F. Ramos-Mendieta, “Optical properties of a dielectric-metallic superlattice: the complex photonic bands,” Phys. Lett. A 326, 273–280 (2004).
    [Crossref]
  18. X. Xu, Y. Xi, D. Han, X. Liu, J. Zi, and Z. Zhu, “Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals,” Appl. Phys. Lett. 86, 091112 (2005).
    [Crossref]
  19. J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
    [Crossref]
  20. P. Markoš and C. M. Soukoulis, Wave Propagation. From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, NJ, 2008).
    [Crossref]
  21. B. Zenteno-Mateo, V. Cerdán-Ramírez, B. Flores-Desirena, M. P. Sampedro, E. Juárez-Ruiz, and F. Pérez-Rodríguez, “Effective permittivity tensor for a metal-dielectric superlattice,” Progress in Electromagnetics Research Letters 22, 165–174 (2011).
  22. A. Orlov, I. Iorsh, P. Belov, and Y. Kivshar, “Complex band structure of nanostructured metal-dielectric metamaterials,” Opt. Express 21, 1593–1598 (2013).
    [Crossref] [PubMed]
  23. A. A. Abrikosov, Fundamentals of the Theory of Metals (Elsevier, 1988).
  24. K. A. Kaner, A. A. Krokhin, and N. M. Makarov, “Spatial dispersion and surface electromagnetic absorption in metals,” in the book Spatial Dispersion in Solids and Plasmas1, edited by P. Halevi, ed. (Elsevier, 1992).
  25. A. Paredes-Juárez, F. Díaz-Monge, N. M. Makarov, and F. Pérez-Rodríguez, “Nonlocal effects in the electrodynamics of metallic slabs,” JETP Letters 90, 623–627 (2009).
    [Crossref]
  26. A. Paredes-Juárez, D. A. Iakushev, B. Flores-Desirena, N. M. Makarov, and F. Pérez-Rodríguez, “Nonlocal Effect on Optic Spectrum of a Periodic Dielectric-Metal Stack,” Opt. Express 22, 7581–7586 (2014).
    [Crossref] [PubMed]
  27. M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, “Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).
    [Crossref]
  28. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Cho, “Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,” Phys. Rev. B 49, 11080–11087 (1994).
    [Crossref]
  29. W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, “Photonic band structures of a two-dimensional ionic dielectric medium,” Phys. Rev. B 54, 10280–10283 (1996).
    [Crossref]
  30. W. Zhang, A. Hu, and N. Ming, “The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media,” J. Phys.: Condens. Matter 9, 541–549 (1997).
  31. V. Kuzmiak, A. A. Maradudin, and A. R. McGurn, “Photonic band structures of two-dimensional systems fabricated from rods of a cubic polar crystal,” Phys. Rev. B 55, 4298–4311 (1997).
    [Crossref]
  32. W. Zhang, Z. Wang, A. Hu, and N. Ming, “The photonic band structures of body-centred-tetragonal crystals composed of ionic or metal spheres,” J. Phys.: Condens. Matter 12, 5307–5316 (2000).
  33. A. Y. Sivachenko, M. E. Raikh, and Z. V. Vardeny, “Excitations in photonic crystals infiltrated with polarizable media,” Phys. Rev. A 64, 013809 (2001).
    [Crossref]
  34. K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Field expulsion and reconfiguration in polaritonic photonic crystals,” Phys. Rev. Lett. 90, 196402 (2003).
    [Crossref] [PubMed]
  35. K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B 68, 075209 (2003).
    [Crossref]
  36. T. Ovidiu and J. Sajeev, “Photonic band gap enhancement in frequency-dependent dielectrics,” Phys. Rev. E 70, 046605 (2004).
    [Crossref]
  37. G. Gantzounis and N. Stefanou, “Propagation of electromagnetic waves through microstructured polar materials,” Phys. Rev. B 75, 193102 (2007).
    [Crossref]
  38. A. H. BaradaranGhasemi, S. Mandegarian, H. Kebriti, and H. Latifi, “Bandgap generation and enhancement in polaritonic cylinder square-lattice photonic crystals,” J. Opt. 14, 055103 (2012).
    [Crossref]
  39. G. Alagappan and A. Deinega, “Optical modes of a dispersive periodic nanostructure,” Progress In Electromagnetics Research B 52, 1–18 (2013).
    [Crossref]
  40. S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
    [Crossref]
  41. A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. García de Abajo, E. N. Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” Opt. Express 20, 14663–14682 (2012).
    [Crossref] [PubMed]
  42. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).
  43. T. Ruf, J. Serrano, M. Cardona, P. Pavone, M. Pabst, M. Krisch, M. D’Astuto, T. Suski, I. Grzegory, and M. Leszczynski, “Phonon Dispersion Curves in Wurtzite-Structure GaN Determined by Inelastic X-Ray Scattering,” Phys. Rev. Lett. 86, 906–909 (2001).

2014 (3)

2013 (4)

A. Orlov, I. Iorsh, P. Belov, and Y. Kivshar, “Complex band structure of nanostructured metal-dielectric metamaterials,” Opt. Express 21, 1593–1598 (2013).
[Crossref] [PubMed]

G. Alagappan and A. Deinega, “Optical modes of a dispersive periodic nanostructure,” Progress In Electromagnetics Research B 52, 1–18 (2013).
[Crossref]

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15, 023001 (2013).
[Crossref]

A.V. Goncharenko, V.U. Nazarov, and K.R. Chen, “Nanostructured metamaterials with broadband optical properties,” Opt. Mater. Express 3, 143–156 (2013).
[Crossref]

2012 (2)

2011 (3)

C. M. Soukoulis and M. Wegener M, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

J. A. Reyes-Avendao, U. Algredo-Badillo, P. Halevi, and F. Pérez-Rodríguez, “From photonic crystals to metamaterials: the bianisotropic response,” New J. Phys. 13, 073041 (2011).
[Crossref]

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[Crossref]

2010 (1)

A. L. Rakhmanov, V. A. Yampolskii, J. A. Fan, F. Capasso, and F. Nori, “Layered superconductors as negative-refractive-index metamaterials,” Phys. Rev. B 81, 075101 (2010).
[Crossref]

2009 (1)

A. Paredes-Juárez, F. Díaz-Monge, N. M. Makarov, and F. Pérez-Rodríguez, “Nonlocal effects in the electrodynamics of metallic slabs,” JETP Letters 90, 623–627 (2009).
[Crossref]

2007 (3)

G. Gantzounis and N. Stefanou, “Propagation of electromagnetic waves through microstructured polar materials,” Phys. Rev. B 75, 193102 (2007).
[Crossref]

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photononics 1, 41–48 (2007).
[Crossref]

2006 (2)

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[Crossref]

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[Crossref]

2005 (3)

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005).
[Crossref]

X. Xu, Y. Xi, D. Han, X. Liu, J. Zi, and Z. Zhu, “Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals,” Appl. Phys. Lett. 86, 091112 (2005).
[Crossref]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).

2004 (2)

D. Soto-Puebla, M. Xiao, and F. Ramos-Mendieta, “Optical properties of a dielectric-metallic superlattice: the complex photonic bands,” Phys. Lett. A 326, 273–280 (2004).
[Crossref]

T. Ovidiu and J. Sajeev, “Photonic band gap enhancement in frequency-dependent dielectrics,” Phys. Rev. E 70, 046605 (2004).
[Crossref]

2003 (2)

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Field expulsion and reconfiguration in polaritonic photonic crystals,” Phys. Rev. Lett. 90, 196402 (2003).
[Crossref] [PubMed]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B 68, 075209 (2003).
[Crossref]

2001 (4)

A. Y. Sivachenko, M. E. Raikh, and Z. V. Vardeny, “Excitations in photonic crystals infiltrated with polarizable media,” Phys. Rev. A 64, 013809 (2001).
[Crossref]

R. M. Walser, “Electromagnetic metamaterials,” Proc. SPIE 4467, 1–15 (2001).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

T. Ruf, J. Serrano, M. Cardona, P. Pavone, M. Pabst, M. Krisch, M. D’Astuto, T. Suski, I. Grzegory, and M. Leszczynski, “Phonon Dispersion Curves in Wurtzite-Structure GaN Determined by Inelastic X-Ray Scattering,” Phys. Rev. Lett. 86, 906–909 (2001).

2000 (1)

W. Zhang, Z. Wang, A. Hu, and N. Ming, “The photonic band structures of body-centred-tetragonal crystals composed of ionic or metal spheres,” J. Phys.: Condens. Matter 12, 5307–5316 (2000).

1997 (3)

W. Zhang, A. Hu, and N. Ming, “The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media,” J. Phys.: Condens. Matter 9, 541–549 (1997).

V. Kuzmiak, A. A. Maradudin, and A. R. McGurn, “Photonic band structures of two-dimensional systems fabricated from rods of a cubic polar crystal,” Phys. Rev. B 55, 4298–4311 (1997).
[Crossref]

V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55, 7427–7444 (1997).
[Crossref]

1996 (1)

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, “Photonic band structures of a two-dimensional ionic dielectric medium,” Phys. Rev. B 54, 10280–10283 (1996).
[Crossref]

1994 (1)

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Cho, “Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,” Phys. Rev. B 49, 11080–11087 (1994).
[Crossref]

1993 (1)

M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, “Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).
[Crossref]

Abrikosov, A. A.

A. A. Abrikosov, Fundamentals of the Theory of Metals (Elsevier, 1988).

Acosta, M. F.

Alagappan, G.

G. Alagappan and A. Deinega, “Optical modes of a dispersive periodic nanostructure,” Progress In Electromagnetics Research B 52, 1–18 (2013).
[Crossref]

Algredo-Badillo, U.

J. A. Reyes-Avendao, U. Algredo-Badillo, P. Halevi, and F. Pérez-Rodríguez, “From photonic crystals to metamaterials: the bianisotropic response,” New J. Phys. 13, 073041 (2011).
[Crossref]

Avrutsky, I.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[Crossref]

BaradaranGhasemi, A. H.

A. H. BaradaranGhasemi, S. Mandegarian, H. Kebriti, and H. Latifi, “Bandgap generation and enhancement in polaritonic cylinder square-lattice photonic crystals,” J. Opt. 14, 055103 (2012).
[Crossref]

Belov, P.

Bienstman, P.

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Field expulsion and reconfiguration in polaritonic photonic crystals,” Phys. Rev. Lett. 90, 196402 (2003).
[Crossref] [PubMed]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B 68, 075209 (2003).
[Crossref]

Capasso, F.

A. L. Rakhmanov, V. A. Yampolskii, J. A. Fan, F. Capasso, and F. Nori, “Layered superconductors as negative-refractive-index metamaterials,” Phys. Rev. B 81, 075101 (2010).
[Crossref]

Capolino, F.

F. Capolino, Theory and phenomena of metamaterials (CRC Press, 2009).
[Crossref]

Cardona, M.

T. Ruf, J. Serrano, M. Cardona, P. Pavone, M. Pabst, M. Krisch, M. D’Astuto, T. Suski, I. Grzegory, and M. Leszczynski, “Phonon Dispersion Curves in Wurtzite-Structure GaN Determined by Inelastic X-Ray Scattering,” Phys. Rev. Lett. 86, 906–909 (2001).

Cerdán-Ramírez, V.

B. Zenteno-Mateo, V. Cerdán-Ramírez, B. Flores-Desirena, M. P. Sampedro, E. Juárez-Ruiz, and F. Pérez-Rodríguez, “Effective permittivity tensor for a metal-dielectric superlattice,” Progress in Electromagnetics Research Letters 22, 165–174 (2011).

Chan, C. T.

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Cho, “Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,” Phys. Rev. B 49, 11080–11087 (1994).
[Crossref]

M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, “Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).
[Crossref]

Chang, Y. C.

Chen, K.R.

Cho, K. M.

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Cho, “Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,” Phys. Rev. B 49, 11080–11087 (1994).
[Crossref]

D’Astuto, M.

T. Ruf, J. Serrano, M. Cardona, P. Pavone, M. Pabst, M. Krisch, M. D’Astuto, T. Suski, I. Grzegory, and M. Leszczynski, “Phonon Dispersion Curves in Wurtzite-Structure GaN Determined by Inelastic X-Ray Scattering,” Phys. Rev. Lett. 86, 906–909 (2001).

Deinega, A.

G. Alagappan and A. Deinega, “Optical modes of a dispersive periodic nanostructure,” Progress In Electromagnetics Research B 52, 1–18 (2013).
[Crossref]

Díaz-Monge, F.

A. Paredes-Juárez, F. Díaz-Monge, N. M. Makarov, and F. Pérez-Rodríguez, “Nonlocal effects in the electrodynamics of metallic slabs,” JETP Letters 90, 623–627 (2009).
[Crossref]

Economou, E. N.

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. García de Abajo, E. N. Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” Opt. Express 20, 14663–14682 (2012).
[Crossref] [PubMed]

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[Crossref]

M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, “Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).
[Crossref]

Elser, J.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[Crossref]

Fan, J. A.

A. L. Rakhmanov, V. A. Yampolskii, J. A. Fan, F. Capasso, and F. Nori, “Layered superconductors as negative-refractive-index metamaterials,” Phys. Rev. B 81, 075101 (2010).
[Crossref]

Fan, S.

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Field expulsion and reconfiguration in polaritonic photonic crystals,” Phys. Rev. Lett. 90, 196402 (2003).
[Crossref] [PubMed]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B 68, 075209 (2003).
[Crossref]

Flores-Desirena, B.

A. Paredes-Juárez, D. A. Iakushev, B. Flores-Desirena, N. M. Makarov, and F. Pérez-Rodríguez, “Nonlocal Effect on Optic Spectrum of a Periodic Dielectric-Metal Stack,” Opt. Express 22, 7581–7586 (2014).
[Crossref] [PubMed]

B. Zenteno-Mateo, V. Cerdán-Ramírez, B. Flores-Desirena, M. P. Sampedro, E. Juárez-Ruiz, and F. Pérez-Rodríguez, “Effective permittivity tensor for a metal-dielectric superlattice,” Progress in Electromagnetics Research Letters 22, 165–174 (2011).

Foteinopoulou, S.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[Crossref]

Gantzounis, G.

G. Gantzounis and N. Stefanou, “Propagation of electromagnetic waves through microstructured polar materials,” Phys. Rev. B 75, 193102 (2007).
[Crossref]

García de Abajo, J.

Goncharenko, A. V.

Goncharenko, A.V.

Grzegory, I.

T. Ruf, J. Serrano, M. Cardona, P. Pavone, M. Pabst, M. Krisch, M. D’Astuto, T. Suski, I. Grzegory, and M. Leszczynski, “Phonon Dispersion Curves in Wurtzite-Structure GaN Determined by Inelastic X-Ray Scattering,” Phys. Rev. Lett. 86, 906–909 (2001).

Halevi, P.

J. A. Reyes-Avendao, U. Algredo-Badillo, P. Halevi, and F. Pérez-Rodríguez, “From photonic crystals to metamaterials: the bianisotropic response,” New J. Phys. 13, 073041 (2011).
[Crossref]

Han, D.

X. Xu, Y. Xi, D. Han, X. Liu, J. Zi, and Z. Zhu, “Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals,” Appl. Phys. Lett. 86, 091112 (2005).
[Crossref]

Ho, K. M.

M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, “Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).
[Crossref]

Hu, A.

W. Zhang, Z. Wang, A. Hu, and N. Ming, “The photonic band structures of body-centred-tetragonal crystals composed of ionic or metal spheres,” J. Phys.: Condens. Matter 12, 5307–5316 (2000).

W. Zhang, A. Hu, and N. Ming, “The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media,” J. Phys.: Condens. Matter 9, 541–549 (1997).

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, “Photonic band structures of a two-dimensional ionic dielectric medium,” Phys. Rev. B 54, 10280–10283 (1996).
[Crossref]

Huang, K. C.

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B 68, 075209 (2003).
[Crossref]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Field expulsion and reconfiguration in polaritonic photonic crystals,” Phys. Rev. Lett. 90, 196402 (2003).
[Crossref] [PubMed]

Iakushev, D. A.

Iorsh, I.

Joannopoulos, J. D.

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B 68, 075209 (2003).
[Crossref]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Field expulsion and reconfiguration in polaritonic photonic crystals,” Phys. Rev. Lett. 90, 196402 (2003).
[Crossref] [PubMed]

Juárez-Ruiz, E.

J. A. Reyes-Avendaño, M. P. Sampedro, E. Juárez-Ruiz, and F. Pérez-Rodríguez, “Bianisotropic metamaterials based on twisted asymmetric crosses,” J. Opt. 16, 065102 (2014).
[Crossref]

B. Zenteno-Mateo, V. Cerdán-Ramírez, B. Flores-Desirena, M. P. Sampedro, E. Juárez-Ruiz, and F. Pérez-Rodríguez, “Effective permittivity tensor for a metal-dielectric superlattice,” Progress in Electromagnetics Research Letters 22, 165–174 (2011).

Kafesaki, M.

Kaner, K. A.

K. A. Kaner, A. A. Krokhin, and N. M. Makarov, “Spatial dispersion and surface electromagnetic absorption in metals,” in the book Spatial Dispersion in Solids and Plasmas1, edited by P. Halevi, ed. (Elsevier, 1992).

Katsarakis, N.

Kebriti, H.

A. H. BaradaranGhasemi, S. Mandegarian, H. Kebriti, and H. Latifi, “Bandgap generation and enhancement in polaritonic cylinder square-lattice photonic crystals,” J. Opt. 14, 055103 (2012).
[Crossref]

Kenanakis, G.

Kivshar, Y.

Koschny, T.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[Crossref]

Krisch, M.

T. Ruf, J. Serrano, M. Cardona, P. Pavone, M. Pabst, M. Krisch, M. D’Astuto, T. Suski, I. Grzegory, and M. Leszczynski, “Phonon Dispersion Curves in Wurtzite-Structure GaN Determined by Inelastic X-Ray Scattering,” Phys. Rev. Lett. 86, 906–909 (2001).

Krokhin, A. A.

K. A. Kaner, A. A. Krokhin, and N. M. Makarov, “Spatial dispersion and surface electromagnetic absorption in metals,” in the book Spatial Dispersion in Solids and Plasmas1, edited by P. Halevi, ed. (Elsevier, 1992).

Kuzmiak, V.

V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55, 7427–7444 (1997).
[Crossref]

V. Kuzmiak, A. A. Maradudin, and A. R. McGurn, “Photonic band structures of two-dimensional systems fabricated from rods of a cubic polar crystal,” Phys. Rev. B 55, 4298–4311 (1997).
[Crossref]

Latifi, H.

A. H. BaradaranGhasemi, S. Mandegarian, H. Kebriti, and H. Latifi, “Bandgap generation and enhancement in polaritonic cylinder square-lattice photonic crystals,” J. Opt. 14, 055103 (2012).
[Crossref]

Lei, X.

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, “Photonic band structures of a two-dimensional ionic dielectric medium,” Phys. Rev. B 54, 10280–10283 (1996).
[Crossref]

Leszczynski, M.

T. Ruf, J. Serrano, M. Cardona, P. Pavone, M. Pabst, M. Krisch, M. D’Astuto, T. Suski, I. Grzegory, and M. Leszczynski, “Phonon Dispersion Curves in Wurtzite-Structure GaN Determined by Inelastic X-Ray Scattering,” Phys. Rev. Lett. 86, 906–909 (2001).

Li, Z.

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15, 023001 (2013).
[Crossref]

Liu, X.

X. Xu, Y. Xi, D. Han, X. Liu, J. Zi, and Z. Zhu, “Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals,” Appl. Phys. Lett. 86, 091112 (2005).
[Crossref]

Makarov, N. M.

A. Paredes-Juárez, D. A. Iakushev, B. Flores-Desirena, N. M. Makarov, and F. Pérez-Rodríguez, “Nonlocal Effect on Optic Spectrum of a Periodic Dielectric-Metal Stack,” Opt. Express 22, 7581–7586 (2014).
[Crossref] [PubMed]

A. Paredes-Juárez, F. Díaz-Monge, N. M. Makarov, and F. Pérez-Rodríguez, “Nonlocal effects in the electrodynamics of metallic slabs,” JETP Letters 90, 623–627 (2009).
[Crossref]

K. A. Kaner, A. A. Krokhin, and N. M. Makarov, “Spatial dispersion and surface electromagnetic absorption in metals,” in the book Spatial Dispersion in Solids and Plasmas1, edited by P. Halevi, ed. (Elsevier, 1992).

Mandegarian, S.

A. H. BaradaranGhasemi, S. Mandegarian, H. Kebriti, and H. Latifi, “Bandgap generation and enhancement in polaritonic cylinder square-lattice photonic crystals,” J. Opt. 14, 055103 (2012).
[Crossref]

Maradudin, A. A.

V. Kuzmiak, A. A. Maradudin, and A. R. McGurn, “Photonic band structures of two-dimensional systems fabricated from rods of a cubic polar crystal,” Phys. Rev. B 55, 4298–4311 (1997).
[Crossref]

V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55, 7427–7444 (1997).
[Crossref]

Markoš, P.

P. Markoš and C. M. Soukoulis, Wave Propagation. From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, NJ, 2008).
[Crossref]

Mavidis, Ch.

McGurn, A. R.

V. Kuzmiak, A. A. Maradudin, and A. R. McGurn, “Photonic band structures of two-dimensional systems fabricated from rods of a cubic polar crystal,” Phys. Rev. B 55, 4298–4311 (1997).
[Crossref]

Merino, R. I.

Ming, N.

W. Zhang, Z. Wang, A. Hu, and N. Ming, “The photonic band structures of body-centred-tetragonal crystals composed of ionic or metal spheres,” J. Phys.: Condens. Matter 12, 5307–5316 (2000).

W. Zhang, A. Hu, and N. Ming, “The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media,” J. Phys.: Condens. Matter 9, 541–549 (1997).

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, “Photonic band structures of a two-dimensional ionic dielectric medium,” Phys. Rev. B 54, 10280–10283 (1996).
[Crossref]

Moroz, A.

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).

Mutlu, M.

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15, 023001 (2013).
[Crossref]

Narimanov, E. E.

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005).
[Crossref]

Nazarov, V.U.

Nelson, K. A.

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Field expulsion and reconfiguration in polaritonic photonic crystals,” Phys. Rev. Lett. 90, 196402 (2003).
[Crossref] [PubMed]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B 68, 075209 (2003).
[Crossref]

Nemat-Nasser, S.

D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).

Nori, F.

A. L. Rakhmanov, V. A. Yampolskii, J. A. Fan, F. Capasso, and F. Nori, “Layered superconductors as negative-refractive-index metamaterials,” Phys. Rev. B 81, 075101 (2010).
[Crossref]

Orera, V. M.

Orlov, A.

Ovidiu, T.

T. Ovidiu and J. Sajeev, “Photonic band gap enhancement in frequency-dependent dielectrics,” Phys. Rev. E 70, 046605 (2004).
[Crossref]

Ozbay, E.

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15, 023001 (2013).
[Crossref]

Pabst, M.

T. Ruf, J. Serrano, M. Cardona, P. Pavone, M. Pabst, M. Krisch, M. D’Astuto, T. Suski, I. Grzegory, and M. Leszczynski, “Phonon Dispersion Curves in Wurtzite-Structure GaN Determined by Inelastic X-Ray Scattering,” Phys. Rev. Lett. 86, 906–909 (2001).

Padilla, W.

D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).

Paredes-Juárez, A.

A. Paredes-Juárez, D. A. Iakushev, B. Flores-Desirena, N. M. Makarov, and F. Pérez-Rodríguez, “Nonlocal Effect on Optic Spectrum of a Periodic Dielectric-Metal Stack,” Opt. Express 22, 7581–7586 (2014).
[Crossref] [PubMed]

A. Paredes-Juárez, F. Díaz-Monge, N. M. Makarov, and F. Pérez-Rodríguez, “Nonlocal effects in the electrodynamics of metallic slabs,” JETP Letters 90, 623–627 (2009).
[Crossref]

Pavone, P.

T. Ruf, J. Serrano, M. Cardona, P. Pavone, M. Pabst, M. Krisch, M. D’Astuto, T. Suski, I. Grzegory, and M. Leszczynski, “Phonon Dispersion Curves in Wurtzite-Structure GaN Determined by Inelastic X-Ray Scattering,” Phys. Rev. Lett. 86, 906–909 (2001).

Pendry, J. B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[Crossref]

Pérez-Rodríguez, F.

J. A. Reyes-Avendaño, M. P. Sampedro, E. Juárez-Ruiz, and F. Pérez-Rodríguez, “Bianisotropic metamaterials based on twisted asymmetric crosses,” J. Opt. 16, 065102 (2014).
[Crossref]

A. Paredes-Juárez, D. A. Iakushev, B. Flores-Desirena, N. M. Makarov, and F. Pérez-Rodríguez, “Nonlocal Effect on Optic Spectrum of a Periodic Dielectric-Metal Stack,” Opt. Express 22, 7581–7586 (2014).
[Crossref] [PubMed]

J. A. Reyes-Avendao, U. Algredo-Badillo, P. Halevi, and F. Pérez-Rodríguez, “From photonic crystals to metamaterials: the bianisotropic response,” New J. Phys. 13, 073041 (2011).
[Crossref]

A. Paredes-Juárez, F. Díaz-Monge, N. M. Makarov, and F. Pérez-Rodríguez, “Nonlocal effects in the electrodynamics of metallic slabs,” JETP Letters 90, 623–627 (2009).
[Crossref]

B. Zenteno-Mateo, V. Cerdán-Ramírez, B. Flores-Desirena, M. P. Sampedro, E. Juárez-Ruiz, and F. Pérez-Rodríguez, “Effective permittivity tensor for a metal-dielectric superlattice,” Progress in Electromagnetics Research Letters 22, 165–174 (2011).

Pinchuk, A. O.

Podolskiy, V. A.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[Crossref]

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005).
[Crossref]

Raikh, M. E.

A. Y. Sivachenko, M. E. Raikh, and Z. V. Vardeny, “Excitations in photonic crystals infiltrated with polarizable media,” Phys. Rev. A 64, 013809 (2001).
[Crossref]

Rakhmanov, A. L.

A. L. Rakhmanov, V. A. Yampolskii, J. A. Fan, F. Capasso, and F. Nori, “Layered superconductors as negative-refractive-index metamaterials,” Phys. Rev. B 81, 075101 (2010).
[Crossref]

Ramos-Mendieta, F.

D. Soto-Puebla, M. Xiao, and F. Ramos-Mendieta, “Optical properties of a dielectric-metallic superlattice: the complex photonic bands,” Phys. Lett. A 326, 273–280 (2004).
[Crossref]

Reyes-Avendaño, J. A.

J. A. Reyes-Avendaño, M. P. Sampedro, E. Juárez-Ruiz, and F. Pérez-Rodríguez, “Bianisotropic metamaterials based on twisted asymmetric crosses,” J. Opt. 16, 065102 (2014).
[Crossref]

Reyes-Avendao, J. A.

J. A. Reyes-Avendao, U. Algredo-Badillo, P. Halevi, and F. Pérez-Rodríguez, “From photonic crystals to metamaterials: the bianisotropic response,” New J. Phys. 13, 073041 (2011).
[Crossref]

Reyes-Coronado, A.

Ruf, T.

T. Ruf, J. Serrano, M. Cardona, P. Pavone, M. Pabst, M. Krisch, M. D’Astuto, T. Suski, I. Grzegory, and M. Leszczynski, “Phonon Dispersion Curves in Wurtzite-Structure GaN Determined by Inelastic X-Ray Scattering,” Phys. Rev. Lett. 86, 906–909 (2001).

Sajeev, J.

T. Ovidiu and J. Sajeev, “Photonic band gap enhancement in frequency-dependent dielectrics,” Phys. Rev. E 70, 046605 (2004).
[Crossref]

Salakhutdinov, I.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[Crossref]

Sampedro, M. P.

J. A. Reyes-Avendaño, M. P. Sampedro, E. Juárez-Ruiz, and F. Pérez-Rodríguez, “Bianisotropic metamaterials based on twisted asymmetric crosses,” J. Opt. 16, 065102 (2014).
[Crossref]

B. Zenteno-Mateo, V. Cerdán-Ramírez, B. Flores-Desirena, M. P. Sampedro, E. Juárez-Ruiz, and F. Pérez-Rodríguez, “Effective permittivity tensor for a metal-dielectric superlattice,” Progress in Electromagnetics Research Letters 22, 165–174 (2011).

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).

Serrano, J.

T. Ruf, J. Serrano, M. Cardona, P. Pavone, M. Pabst, M. Krisch, M. D’Astuto, T. Suski, I. Grzegory, and M. Leszczynski, “Phonon Dispersion Curves in Wurtzite-Structure GaN Determined by Inelastic X-Ray Scattering,” Phys. Rev. Lett. 86, 906–909 (2001).

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photononics 1, 41–48 (2007).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Sigalas, M.

M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, “Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).
[Crossref]

Sigalas, M. M.

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Cho, “Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,” Phys. Rev. B 49, 11080–11087 (1994).
[Crossref]

Sivachenko, A. Y.

A. Y. Sivachenko, M. E. Raikh, and Z. V. Vardeny, “Excitations in photonic crystals infiltrated with polarizable media,” Phys. Rev. A 64, 013809 (2001).
[Crossref]

Smith, D.

D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Soto-Puebla, D.

D. Soto-Puebla, M. Xiao, and F. Ramos-Mendieta, “Optical properties of a dielectric-metallic superlattice: the complex photonic bands,” Phys. Lett. A 326, 273–280 (2004).
[Crossref]

Soukoulis, C. M.

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. García de Abajo, E. N. Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” Opt. Express 20, 14663–14682 (2012).
[Crossref] [PubMed]

C. M. Soukoulis and M. Wegener M, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[Crossref]

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[Crossref]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Cho, “Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,” Phys. Rev. B 49, 11080–11087 (1994).
[Crossref]

M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, “Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).
[Crossref]

P. Markoš and C. M. Soukoulis, Wave Propagation. From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, NJ, 2008).
[Crossref]

Stefanou, N.

G. Gantzounis and N. Stefanou, “Propagation of electromagnetic waves through microstructured polar materials,” Phys. Rev. B 75, 193102 (2007).
[Crossref]

Suski, T.

T. Ruf, J. Serrano, M. Cardona, P. Pavone, M. Pabst, M. Krisch, M. D’Astuto, T. Suski, I. Grzegory, and M. Leszczynski, “Phonon Dispersion Curves in Wurtzite-Structure GaN Determined by Inelastic X-Ray Scattering,” Phys. Rev. Lett. 86, 906–909 (2001).

Tsai, D. P.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[Crossref]

Tuttle, G.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[Crossref]

Vardeny, Z. V.

A. Y. Sivachenko, M. E. Raikh, and Z. V. Vardeny, “Excitations in photonic crystals infiltrated with polarizable media,” Phys. Rev. A 64, 013809 (2001).
[Crossref]

Venger, E. F.

Vier, D.

D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).

Walser, R. M.

R. M. Walser, “Electromagnetic metamaterials,” Proc. SPIE 4467, 1–15 (2001).
[Crossref]

Wang, Z.

W. Zhang, Z. Wang, A. Hu, and N. Ming, “The photonic band structures of body-centred-tetragonal crystals composed of ionic or metal spheres,” J. Phys.: Condens. Matter 12, 5307–5316 (2000).

Wegener M, M.

C. M. Soukoulis and M. Wegener M, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Wood, B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[Crossref]

Xi, Y.

X. Xu, Y. Xi, D. Han, X. Liu, J. Zi, and Z. Zhu, “Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals,” Appl. Phys. Lett. 86, 091112 (2005).
[Crossref]

Xiao, M.

D. Soto-Puebla, M. Xiao, and F. Ramos-Mendieta, “Optical properties of a dielectric-metallic superlattice: the complex photonic bands,” Phys. Lett. A 326, 273–280 (2004).
[Crossref]

Xu, N.

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, “Photonic band structures of a two-dimensional ionic dielectric medium,” Phys. Rev. B 54, 10280–10283 (1996).
[Crossref]

Xu, X.

X. Xu, Y. Xi, D. Han, X. Liu, J. Zi, and Z. Zhu, “Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals,” Appl. Phys. Lett. 86, 091112 (2005).
[Crossref]

Yampolskii, V. A.

A. L. Rakhmanov, V. A. Yampolskii, J. A. Fan, F. Capasso, and F. Nori, “Layered superconductors as negative-refractive-index metamaterials,” Phys. Rev. B 81, 075101 (2010).
[Crossref]

Yannopapas, V.

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).

Zenteno-Mateo, B.

B. Zenteno-Mateo, V. Cerdán-Ramírez, B. Flores-Desirena, M. P. Sampedro, E. Juárez-Ruiz, and F. Pérez-Rodríguez, “Effective permittivity tensor for a metal-dielectric superlattice,” Progress in Electromagnetics Research Letters 22, 165–174 (2011).

Zhang, L.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[Crossref]

Zhang, W.

W. Zhang, Z. Wang, A. Hu, and N. Ming, “The photonic band structures of body-centred-tetragonal crystals composed of ionic or metal spheres,” J. Phys.: Condens. Matter 12, 5307–5316 (2000).

W. Zhang, A. Hu, and N. Ming, “The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media,” J. Phys.: Condens. Matter 9, 541–549 (1997).

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, “Photonic band structures of a two-dimensional ionic dielectric medium,” Phys. Rev. B 54, 10280–10283 (1996).
[Crossref]

Zhou, J.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[Crossref]

Zhu, Z.

X. Xu, Y. Xi, D. Han, X. Liu, J. Zi, and Z. Zhu, “Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals,” Appl. Phys. Lett. 86, 091112 (2005).
[Crossref]

Zi, J.

X. Xu, Y. Xi, D. Han, X. Liu, J. Zi, and Z. Zhu, “Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals,” Appl. Phys. Lett. 86, 091112 (2005).
[Crossref]

Appl. Phys. Lett. (2)

X. Xu, Y. Xi, D. Han, X. Liu, J. Zi, and Z. Zhu, “Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals,” Appl. Phys. Lett. 86, 091112 (2005).
[Crossref]

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[Crossref]

J. Opt. (3)

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15, 023001 (2013).
[Crossref]

A. H. BaradaranGhasemi, S. Mandegarian, H. Kebriti, and H. Latifi, “Bandgap generation and enhancement in polaritonic cylinder square-lattice photonic crystals,” J. Opt. 14, 055103 (2012).
[Crossref]

J. A. Reyes-Avendaño, M. P. Sampedro, E. Juárez-Ruiz, and F. Pérez-Rodríguez, “Bianisotropic metamaterials based on twisted asymmetric crosses,” J. Opt. 16, 065102 (2014).
[Crossref]

J. Phys.: Condens. Matter (3)

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).

W. Zhang, Z. Wang, A. Hu, and N. Ming, “The photonic band structures of body-centred-tetragonal crystals composed of ionic or metal spheres,” J. Phys.: Condens. Matter 12, 5307–5316 (2000).

W. Zhang, A. Hu, and N. Ming, “The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media,” J. Phys.: Condens. Matter 9, 541–549 (1997).

JETP Letters (1)

A. Paredes-Juárez, F. Díaz-Monge, N. M. Makarov, and F. Pérez-Rodríguez, “Nonlocal effects in the electrodynamics of metallic slabs,” JETP Letters 90, 623–627 (2009).
[Crossref]

Nat. Photonics (1)

C. M. Soukoulis and M. Wegener M, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Nat. Photononics (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photononics 1, 41–48 (2007).
[Crossref]

New J. Phys. (1)

J. A. Reyes-Avendao, U. Algredo-Badillo, P. Halevi, and F. Pérez-Rodríguez, “From photonic crystals to metamaterials: the bianisotropic response,” New J. Phys. 13, 073041 (2011).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (2)

Phys. Lett. A (1)

D. Soto-Puebla, M. Xiao, and F. Ramos-Mendieta, “Optical properties of a dielectric-metallic superlattice: the complex photonic bands,” Phys. Lett. A 326, 273–280 (2004).
[Crossref]

Phys. Rev. A (1)

A. Y. Sivachenko, M. E. Raikh, and Z. V. Vardeny, “Excitations in photonic crystals infiltrated with polarizable media,” Phys. Rev. A 64, 013809 (2001).
[Crossref]

Phys. Rev. B (12)

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B 68, 075209 (2003).
[Crossref]

G. Gantzounis and N. Stefanou, “Propagation of electromagnetic waves through microstructured polar materials,” Phys. Rev. B 75, 193102 (2007).
[Crossref]

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[Crossref]

M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, “Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).
[Crossref]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Cho, “Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,” Phys. Rev. B 49, 11080–11087 (1994).
[Crossref]

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, “Photonic band structures of a two-dimensional ionic dielectric medium,” Phys. Rev. B 54, 10280–10283 (1996).
[Crossref]

V. Kuzmiak, A. A. Maradudin, and A. R. McGurn, “Photonic band structures of two-dimensional systems fabricated from rods of a cubic polar crystal,” Phys. Rev. B 55, 4298–4311 (1997).
[Crossref]

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[Crossref]

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005).
[Crossref]

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[Crossref]

A. L. Rakhmanov, V. A. Yampolskii, J. A. Fan, F. Capasso, and F. Nori, “Layered superconductors as negative-refractive-index metamaterials,” Phys. Rev. B 81, 075101 (2010).
[Crossref]

V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55, 7427–7444 (1997).
[Crossref]

Phys. Rev. E (1)

T. Ovidiu and J. Sajeev, “Photonic band gap enhancement in frequency-dependent dielectrics,” Phys. Rev. E 70, 046605 (2004).
[Crossref]

Phys. Rev. Lett. (2)

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Field expulsion and reconfiguration in polaritonic photonic crystals,” Phys. Rev. Lett. 90, 196402 (2003).
[Crossref] [PubMed]

T. Ruf, J. Serrano, M. Cardona, P. Pavone, M. Pabst, M. Krisch, M. D’Astuto, T. Suski, I. Grzegory, and M. Leszczynski, “Phonon Dispersion Curves in Wurtzite-Structure GaN Determined by Inelastic X-Ray Scattering,” Phys. Rev. Lett. 86, 906–909 (2001).

Proc. SPIE (1)

R. M. Walser, “Electromagnetic metamaterials,” Proc. SPIE 4467, 1–15 (2001).
[Crossref]

Progress In Electromagnetics Research B (1)

G. Alagappan and A. Deinega, “Optical modes of a dispersive periodic nanostructure,” Progress In Electromagnetics Research B 52, 1–18 (2013).
[Crossref]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Other (6)

D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).

F. Capolino, Theory and phenomena of metamaterials (CRC Press, 2009).
[Crossref]

P. Markoš and C. M. Soukoulis, Wave Propagation. From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, NJ, 2008).
[Crossref]

B. Zenteno-Mateo, V. Cerdán-Ramírez, B. Flores-Desirena, M. P. Sampedro, E. Juárez-Ruiz, and F. Pérez-Rodríguez, “Effective permittivity tensor for a metal-dielectric superlattice,” Progress in Electromagnetics Research Letters 22, 165–174 (2011).

A. A. Abrikosov, Fundamentals of the Theory of Metals (Elsevier, 1988).

K. A. Kaner, A. A. Krokhin, and N. M. Makarov, “Spatial dispersion and surface electromagnetic absorption in metals,” in the book Spatial Dispersion in Solids and Plasmas1, edited by P. Halevi, ed. (Elsevier, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Scheme of the bi-layer stack
Fig. 2
Fig. 2 Polaritonic spectrum of the GaN a-layer.
Fig. 3
Fig. 3 Photonic band structure in the vicinities of the four lower Fabry-Perot resonances for a GaN-Al superlattice, predicted by the nonlocal (Boltzmann) and local (Drude-Lorentz) formalisms.
Fig. 4
Fig. 4 Photonic band structure in the vicinities of the first four Fabry-Perot resonances above ωLO for a GaN-Al superlattice as in Fig. 3.

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

E ( x , t ) = { 0 , E ( x ) , 0 } exp ( i ω t ) , H ( x , t ) = { 0 , 0 , H ( x ) } exp ( i ω t ) .
ε a = ε ( 1 ω L O 2 ω T O 2 ω 2 ω T O 2 + i ω v 0 ) ,
n a = ε a , Z a = n a 1 , k a = k n a , φ a = k a d a ,
E a ( x ) + k a 2 E a ( x ) = 0 ,
i k H a ( x ) = E a ( x ) .
E a n ( x ) = i Z a H a n ( x a n ) cos [ k a ( x b n x ) ] sin ( k a d a ) i Z a H a n ( x b n ) cos [ k a ( x x a n ) ] sin ( k a d a ) ,
H a n ( x ) = H a n ( x a n ) sin [ k a ( x b n x ) ] sin ( k a d a ) + H a n ( x b n ) sin [ k a ( x x a n ) ] sin ( k a d a )
x b n x a n = d a , x a n + 1 x b n = d b , x a n + 1 x a n = d .
E b ( x ) + 4 π i k 2 ω j b ( x ) = 0.
j b ( x ) = d x σ ( x x ) E b ( x ) ,
σ ( x ) = 3 σ DL 4 l ω 0 1 d n x 1 n x 2 n x exp ( | x | l ω n x ) ,
j b ( x ) = σ DL E b ( x ) , σ DL = ω p 2 4 π ( v i ω ) .
E b n ( x ) = E b n ( 2 x b n x ) , E b n ( x ) = E b n ( x ± 2 d b ) .
E b n ( x ) = i k H b n ( x b n ) d b s = cos [ k s ( x x b n ) ] k s 2 k 2 ε ( k s ) + i k H b n ( x a n + 1 ) d b s = cos [ k s ( x a n + 1 x ) ] k s 2 k 2 ε ( k s ) ,
H b n ( x ) = H b n ( x b n ) d b s = k s sin [ k s ( x x b n ) ] k s 2 k 2 ε ( k s ) + H b n ( x a n + 1 ) d b s = k s sin [ k s ( x a n + 1 x ) ] k s 2 k 2 ε ( k s ) ,
i k H b ( x ) = E b ( x ) .
ε ( k s ) = ω p 2 ω ( ω + i v ) K ( k s l ω ) ,
K ( k s l ω ) = 3 2 0 1 ( 1 n x 2 ) d n x 1 + ( k s l ω n x ) 2 = 3 2 { [ 1 k s l ω + 1 ( k s l ω ) 3 ] arctan ( k s l ω ) 1 ( k s l ω ) 2 } .
K ( k s l ω ) 1 ( k s l ω ) 2 / 5 , ( k s | l ω | ) 2 1 ;
K ( k s l ω ) 3 π / 4 | k s | l ω , | k s l ω | 1.
( E ( x a n + 1 ) H ( x a n + 1 ) ) = ( Q 11 Q 12 Q 21 Q 22 ) ( E ( x a n ) H ( x a n ) ) .
Q 11 = ζ 0 ζ d cos φ a i ζ 0 2 ζ d 2 Z a ζ d sin φ a ,
Q 12 = ζ 0 2 ζ d 2 ζ d cos φ a + i Z a ζ 0 ζ d sin φ a ,
Q 21 = 1 ζ d cos φ a + i ζ 0 Z a ζ d sin φ a ,
Q 22 = ζ 0 ζ d cos φ a i Z a ζ d sin φ a .
ζ 0 = i k d b s 1 k s 2 k 2 ε ( k s ) , ζ d = i k d b s = cos ( k s d b ) k s 2 k 2 ε ( k s ) .
ζ 0 ( D L ) = i Z b cos φ b sin φ b , ζ d ( D L ) = i Z b 1 sin φ b ,
( E ( x a n + 1 ) H ( x a n + 1 ) ) = ( exp ( i κ d ) 0 0 exp ( i κ d ) ) ( E ( x a n ) H ( x a n ) ) ,
2 cos ( κ d ) = Q 11 + Q 22 .
cos ( κ d ) = ζ 0 ζ d cos φ a i Z a 2 + ζ 0 2 ζ d 2 2 Z a ζ d sin φ a .
cos ( κ d ) = cos φ a cos φ b 1 2 ( Z a Z b + Z b Z a ) sin φ a sin φ b .
| Z a | max ( | ζ 0 | , | ζ d | ) ,
Re φ a Re k n a d a = j a π , j a = 1 , 2 , 3 . ,
ν < ω < π V F ω p / c
0 < ˜ ω < ˜ ω T O .
ω L O ω .

Metrics