Abstract

Ytterbium doped lithium-alumino-silicate glasses suitable for diode-pumped laser applications were investigated concerning the hydroxyl quenching of the Yb3+ fluorescence. Glasses of the nominal composition 18 mol% Li2O, 22 mol% Al2O3 and 60 mol% SiO2 with variable OH concentrations NOH (between 0.04 and 6.01 ∙ 1019 cm−3) and Yb3+ concentrations NYb (between 0.1 and 9 ∙ 1020 cm−3) were produced and a direct correlation between spontaneous emission decay rate and the product NYbNOH was observed. The radiative spontaneous emission rate in the glass host is around 1,000 s−1 (radiative lifetime 1.0 ms) and the microparameter for Yb-Yb energy migration, CYb-Yb, was found to be 1.358∙10−38 cm6 s−1. It was calculated that on average 17% of the OH groups in the glass contribute to the quenching of the Yb3+ fluorescence. By analysis of the UV edge of the glass it was concluded that melting under inert conditions leads to reduction of iron impurities to Fe2+, which can act as quenching sites for the Yb3+ ions and therefore may additionally reduce the energy storage capability of the laser material.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of B2O3 and fluoride additions on the Yb3+ luminescence of an alumosilicate glass in the system Li2O/MgO/Al2O3/SiO2

Juliane Krey, Andreas Herrmann, Joachim Hein, Jörg Körner, Malte C. Kaluza, and Christian Rüssel
Opt. Mater. Express 6(8) 2662-2670 (2016)

Effect of Yb3+ concentration on the broadband emission intensity and peak wavelength shift in Yb/Bi ions co-doped silica-based glasses

Nengli Dai, Bing Xu, Zuowen Jiang, Jingang Peng, Haiqing Li, Huaixun Luan, Luyun Yang, and Jinyan Li
Opt. Express 18(18) 18642-18648 (2010)

Spectroscopic properties and quenching mechanism of 2 μm emission in Ho3+ doped germanate glasses and fibers

Xiaokang Fan, Peiwen Kuan, Kefeng Li, Lei Zhang, Dahai Li, and Lili Hu
Opt. Mater. Express 5(6) 1356-1365 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Hein, M. C. Kaluza, R. Bödefeld, M. Siebold, S. Podleska, and R. Sauerbrey, “POLARIS: An All Diode-Pumped Ultrahigh Peak Power Laser for High Repetition Rates,” Lect. Notes Phys. 694, 47–66 (2006).
  2. J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79(4), 419–422 (2004).
    [Crossref]
  3. M. Hornung, S. Keppler, R. Bödefeld, A. Kessler, H. Liebetrau, J. Körner, M. Hellwing, F. Schorcht, O. Jäckel, A. Sävert, J. Polz, A. K. Arunachalam, J. Hein, and M. C. Kaluza, “High-intensity, high-contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS,” Opt. Lett. 38(5), 718–720 (2013).
    [Crossref] [PubMed]
  4. M. Siebold, J. Hein, M. Hornung, S. Podleska, M. C. Kaluza, S. Bock, and R. Sauerbrey, “Diode-pumped lasers for ultra-high peak power,” Appl. Phys. B 90(3-4), 431–437 (2008).
    [Crossref]
  5. M. Siebold, M. Hornung, S. Bock, J. Hein, M. C. Kaluza, J. Wemans, and R. Uecker, “Broad-band regenerative laser amplification in ytterbium-doped calcium fluoride (Yb:CaF2),” Appl. Phys. B 89(4), 543–547 (2007).
    [Crossref]
  6. M. Siebold, M. Hornung, R. Boedefeld, S. Podleska, S. Klingebiel, C. Wandt, F. Krausz, S. Karsch, R. Uecker, A. Jochmann, J. Hein, and M. C. Kaluza, “Terawatt diode-pumped Yb:CaF2 laser,” Opt. Lett. 33(23), 2770–2772 (2008).
    [Crossref] [PubMed]
  7. M. Siebold, F. Roeser, M. Loeser, D. Albach, U. Schramm, J. Hein, G. Korn, and L. O. Silva, “PEnELOPE: a high peak-power diode-pumped laser system for laser-plasma experiments,” Proc. SPIE 8780, 878005 (2013).
    [Crossref]
  8. D. Ehrt, “Fluoroaluminate glasses for lasers and amplifiers,” Curr. Opin. Solid State Mater. Sci. 7(2), 135–141 (2003).
    [Crossref]
  9. J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B 29(9), 2493 (2012).
    [Crossref]
  10. D. Ehrt, “UV-absorption and radiation effects in different glasses doped with iron and tin in the ppm range,” C. R. Chim. 5(11), 679–692 (2002).
    [Crossref]
  11. D. Hasselman, “Figures-of-merit for the thermal stress resistance of high-temperature brittle materials: a review,” Ceramurgia Int. 4(4), 147–150 (1978).
    [Crossref]
  12. S. Kuhn, A. Herrmann, J. Hein, M. C. Kaluza, and C. Rüssel, “Sm3+-doped La2O3–Al2O3–SiO2-glasses: structure, fluorescence and thermal expansion,” J. Mater. Sci. 48(22), 8014–8022 (2013).
    [Crossref]
  13. M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031 (2013).
    [Crossref]
  14. A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. 21, 4328 (2014).
  15. M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+ -doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
    [Crossref]
  16. A. Gawronski and C. Rüssel, “High strength glass–ceramics in the system MgO/Y2O3/Al2O3/SiO2/ZrO2 without quartz as crystalline phase,” J. Mater. Sci. 48(9), 3461–3468 (2013).
    [Crossref]
  17. A. Gawronski, C. Patzig, T. Höche, and C. Rüssel, “High-strength glass-ceramics in the system MgO/Al2O3/SiO2/ZrO2/Y2O3 – microstructure and properties,” CrystEngComm 15(31), 6165 (2013).
    [Crossref]
  18. M. Loeser, F. Roeser, A. Reichelt, F. Kroll, M. Siebold, U. Schramm, S. Grimm, J. Kirchhof, and D. Litzkendorf, “Broadband, diode-pumped Yb:SiO2 multicomponent glass laser,” AMB16.
    [Crossref]
  19. M. Hehlen, N. Cockroft, T. Gosnell, and A. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56(15), 9302–9318 (1997).
    [Crossref]
  20. J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B (2013).
  21. D. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
    [Crossref]
  22. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
    [Crossref]
  23. H. Ohkawa, H. Hayashi, and Y. Kondo, “Influence of water on non-radiative decay of Yb3+–2F5/2 level in phosphate glass,” Opt. Mater. 33(2), 128–130 (2010).
    [Crossref]
  24. C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100(11), 113103 (2006).
    [Crossref]
  25. W. G. Quirino, M. Bell, S. L. Oliveira, and L. Nunes, “Effects of non-radiative processes on the infrared luminescence of Yb3+ doped glasses,” J. Non-Cryst. Solids 351(24-26), 2042–2046 (2005).
    [Crossref]
  26. L. Zhang and H. Hu, “The effect of OH− on IR emission of Nd3+, Yb3+ and Er3+ doped tetraphosphate glasses,” J. Phys. Chem. Solids 63(4), 575–579 (2002).
    [Crossref]
  27. H. Ebendorff-Heidepriem, W. Seeber, and D. Ehrt, “Dehydration of phosphate glasses,” J. Non-Cryst. Solids 163(1), 74–80 (1993).
    [Crossref]
  28. S. N. Houde-Walter, P. M. Peters, J. F. Stebbins, and Q. Zeng, “Hydroxyl-contents and hydroxyl-related concentration quenching in erbium-doped aluminophosphate, aluminosilicate and fluorosilicate glasses,” J. Non-Cryst. Solids 286(1-2), 118–131 (2001).
    [Crossref]
  29. H. Scholze, “Der Einbau des Wassers in Gläsern. I. Der Einfluß des im Glas gelösten Wassers auf das Ultrarot-Spektrum und die quantitative ultrarotspektroskopische Bestimmung des Wassers in Gläsern,” Glastech. Ber. 32, 81–88 (1959).
  30. E. Stolper, “Water in silicate glasses: An infrared spectroscopic study,” Contrib. Mineral. Petrol. 81(1), 1–17 (1982).
    [Crossref]
  31. J. M. Jewell and J. E. Shelby, “Effects of Water Content on the Properties of Sodium Aluminosilicate Glasses,” J. Am. Ceram. Soc. 75(4), 878–883 (1992).
    [Crossref]
  32. H. Scholze, “Der Einbau des Wassers in Gläsern. II. UR-Messungen an Silikatgläsern mit systematisch variierter Zusammensetzung und Deutung der OH-Banden in Silikatgläsern,” Glastech. Ber. 32, 142–152 (1959).
  33. J. Götz and E. Vosahlova, “Beitrag zur quantitativen Bestimmung des Wassergehaltes in Glas mit Hilfe der infraroten OH-Banden,” Glastech. Ber. 41, 47–55 (1968).
  34. T. Suzuki, J. Konishi, K. Yamamoto, S. Ogura, and K. Fukutani, “Practical IR extinction coefficients of water in soda lime aluminosilicate glasses determined by nuclear reaction analysis,” J. Non-Cryst. Solids 382, 66–69 (2013).
    [Crossref]
  35. H. Takebe, T. Murata, and K. Morinaga, “Compositional dependence of absorption and fluorescence of Yb3+ in oxide glasses,” J. Am. Ceram. Soc. 79(3), 681–687 (1996).
    [Crossref]
  36. T. Töpfer, J. Hein, W. Wintzer, D. Ehrt, and R. Sauerbrey, “Laser-glass, pump-laser-diodes, and amplifier for the POLARIS laser,” Glass Sci. Technol. 75, 223–234 (2002).
  37. D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836 (1953).
    [Crossref]
  38. S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
    [Crossref]
  39. M. Hehlen, R. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
    [Crossref]
  40. M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express 16(2), 1260–1268 (2008).
    [Crossref] [PubMed]
  41. Y. Guyot, A. Steimacher, M. P. Belançon, A. N. Medina, M. L. Baesso, S. M. Lima, L. H. C. Andrade, A. Brenier, A.-M. Jurdyc, and G. Boulon, “Spectroscopic properties, concentration quenching, and laser investigations of Yb3+-doped calcium aluminosilicate glasses,” J. Opt. Soc. Am. B 28(10), 2510 (2011).
    [Crossref]
  42. S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406 (2014).
    [Crossref]
  43. D. Ehrt and W. Seeber, “Glass for high performance optics and laser technology,” J. Non-Cryst. Solids 129(1-3), 19–30 (1991).
    [Crossref]
  44. L. E. Cook and K.-H. Mader, “Ultraviolet Transmission Characteristics of a Fluorophosphate Laser Glass,” J. Am. Ceram. Soc. 65(12), 597–601 (1982).
    [Crossref]
  45. E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996).
    [Crossref]
  46. R. Carl, S. Gerlach, and C. Rüssel, “The effect of composition on UV–vis–NIR spectra of iron doped glasses in the systems Na2O/MgO/SiO2 and Na2O/MgO/Al2O3/SiO2,” J. Non-Cryst. Solids 353(3), 244–249 (2007).
    [Crossref]
  47. P. R. Ehrmann and J. H. Campbell, “Nonradiative energy losses and radiation trapping in neodymium-doped phosphate laser glasses,” J. Am. Ceram. Soc. 85(5), 1061–1069 (2002).
    [Crossref]

2014 (3)

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. 21, 4328 (2014).

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+ -doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406 (2014).
[Crossref]

2013 (7)

T. Suzuki, J. Konishi, K. Yamamoto, S. Ogura, and K. Fukutani, “Practical IR extinction coefficients of water in soda lime aluminosilicate glasses determined by nuclear reaction analysis,” J. Non-Cryst. Solids 382, 66–69 (2013).
[Crossref]

A. Gawronski and C. Rüssel, “High strength glass–ceramics in the system MgO/Y2O3/Al2O3/SiO2/ZrO2 without quartz as crystalline phase,” J. Mater. Sci. 48(9), 3461–3468 (2013).
[Crossref]

A. Gawronski, C. Patzig, T. Höche, and C. Rüssel, “High-strength glass-ceramics in the system MgO/Al2O3/SiO2/ZrO2/Y2O3 – microstructure and properties,” CrystEngComm 15(31), 6165 (2013).
[Crossref]

S. Kuhn, A. Herrmann, J. Hein, M. C. Kaluza, and C. Rüssel, “Sm3+-doped La2O3–Al2O3–SiO2-glasses: structure, fluorescence and thermal expansion,” J. Mater. Sci. 48(22), 8014–8022 (2013).
[Crossref]

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031 (2013).
[Crossref]

M. Siebold, F. Roeser, M. Loeser, D. Albach, U. Schramm, J. Hein, G. Korn, and L. O. Silva, “PEnELOPE: a high peak-power diode-pumped laser system for laser-plasma experiments,” Proc. SPIE 8780, 878005 (2013).
[Crossref]

M. Hornung, S. Keppler, R. Bödefeld, A. Kessler, H. Liebetrau, J. Körner, M. Hellwing, F. Schorcht, O. Jäckel, A. Sävert, J. Polz, A. K. Arunachalam, J. Hein, and M. C. Kaluza, “High-intensity, high-contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS,” Opt. Lett. 38(5), 718–720 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

2010 (1)

H. Ohkawa, H. Hayashi, and Y. Kondo, “Influence of water on non-radiative decay of Yb3+–2F5/2 level in phosphate glass,” Opt. Mater. 33(2), 128–130 (2010).
[Crossref]

2008 (3)

2007 (3)

M. Siebold, M. Hornung, S. Bock, J. Hein, M. C. Kaluza, J. Wemans, and R. Uecker, “Broad-band regenerative laser amplification in ytterbium-doped calcium fluoride (Yb:CaF2),” Appl. Phys. B 89(4), 543–547 (2007).
[Crossref]

M. Hehlen, R. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

R. Carl, S. Gerlach, and C. Rüssel, “The effect of composition on UV–vis–NIR spectra of iron doped glasses in the systems Na2O/MgO/SiO2 and Na2O/MgO/Al2O3/SiO2,” J. Non-Cryst. Solids 353(3), 244–249 (2007).
[Crossref]

2006 (2)

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[Crossref]

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100(11), 113103 (2006).
[Crossref]

2005 (1)

W. G. Quirino, M. Bell, S. L. Oliveira, and L. Nunes, “Effects of non-radiative processes on the infrared luminescence of Yb3+ doped glasses,” J. Non-Cryst. Solids 351(24-26), 2042–2046 (2005).
[Crossref]

2004 (1)

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79(4), 419–422 (2004).
[Crossref]

2003 (1)

D. Ehrt, “Fluoroaluminate glasses for lasers and amplifiers,” Curr. Opin. Solid State Mater. Sci. 7(2), 135–141 (2003).
[Crossref]

2002 (4)

P. R. Ehrmann and J. H. Campbell, “Nonradiative energy losses and radiation trapping in neodymium-doped phosphate laser glasses,” J. Am. Ceram. Soc. 85(5), 1061–1069 (2002).
[Crossref]

T. Töpfer, J. Hein, W. Wintzer, D. Ehrt, and R. Sauerbrey, “Laser-glass, pump-laser-diodes, and amplifier for the POLARIS laser,” Glass Sci. Technol. 75, 223–234 (2002).

L. Zhang and H. Hu, “The effect of OH− on IR emission of Nd3+, Yb3+ and Er3+ doped tetraphosphate glasses,” J. Phys. Chem. Solids 63(4), 575–579 (2002).
[Crossref]

D. Ehrt, “UV-absorption and radiation effects in different glasses doped with iron and tin in the ppm range,” C. R. Chim. 5(11), 679–692 (2002).
[Crossref]

2001 (1)

S. N. Houde-Walter, P. M. Peters, J. F. Stebbins, and Q. Zeng, “Hydroxyl-contents and hydroxyl-related concentration quenching in erbium-doped aluminophosphate, aluminosilicate and fluorosilicate glasses,” J. Non-Cryst. Solids 286(1-2), 118–131 (2001).
[Crossref]

1997 (1)

M. Hehlen, N. Cockroft, T. Gosnell, and A. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56(15), 9302–9318 (1997).
[Crossref]

1996 (2)

H. Takebe, T. Murata, and K. Morinaga, “Compositional dependence of absorption and fluorescence of Yb3+ in oxide glasses,” J. Am. Ceram. Soc. 79(3), 681–687 (1996).
[Crossref]

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996).
[Crossref]

1993 (1)

H. Ebendorff-Heidepriem, W. Seeber, and D. Ehrt, “Dehydration of phosphate glasses,” J. Non-Cryst. Solids 163(1), 74–80 (1993).
[Crossref]

1992 (2)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

J. M. Jewell and J. E. Shelby, “Effects of Water Content on the Properties of Sodium Aluminosilicate Glasses,” J. Am. Ceram. Soc. 75(4), 878–883 (1992).
[Crossref]

1991 (1)

D. Ehrt and W. Seeber, “Glass for high performance optics and laser technology,” J. Non-Cryst. Solids 129(1-3), 19–30 (1991).
[Crossref]

1982 (2)

L. E. Cook and K.-H. Mader, “Ultraviolet Transmission Characteristics of a Fluorophosphate Laser Glass,” J. Am. Ceram. Soc. 65(12), 597–601 (1982).
[Crossref]

E. Stolper, “Water in silicate glasses: An infrared spectroscopic study,” Contrib. Mineral. Petrol. 81(1), 1–17 (1982).
[Crossref]

1978 (1)

D. Hasselman, “Figures-of-merit for the thermal stress resistance of high-temperature brittle materials: a review,” Ceramurgia Int. 4(4), 147–150 (1978).
[Crossref]

1968 (1)

J. Götz and E. Vosahlova, “Beitrag zur quantitativen Bestimmung des Wassergehaltes in Glas mit Hilfe der infraroten OH-Banden,” Glastech. Ber. 41, 47–55 (1968).

1964 (1)

D. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

1959 (2)

H. Scholze, “Der Einbau des Wassers in Gläsern. I. Der Einfluß des im Glas gelösten Wassers auf das Ultrarot-Spektrum und die quantitative ultrarotspektroskopische Bestimmung des Wassers in Gläsern,” Glastech. Ber. 32, 81–88 (1959).

H. Scholze, “Der Einbau des Wassers in Gläsern. II. UR-Messungen an Silikatgläsern mit systematisch variierter Zusammensetzung und Deutung der OH-Banden in Silikatgläsern,” Glastech. Ber. 32, 142–152 (1959).

1953 (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836 (1953).
[Crossref]

Albach, D.

M. Siebold, F. Roeser, M. Loeser, D. Albach, U. Schramm, J. Hein, G. Korn, and L. O. Silva, “PEnELOPE: a high peak-power diode-pumped laser system for laser-plasma experiments,” Proc. SPIE 8780, 878005 (2013).
[Crossref]

Andrade, L. H. C.

Arunachalam, A. K.

Baesso, M. L.

Belançon, M. P.

Bell, M.

W. G. Quirino, M. Bell, S. L. Oliveira, and L. Nunes, “Effects of non-radiative processes on the infrared luminescence of Yb3+ doped glasses,” J. Non-Cryst. Solids 351(24-26), 2042–2046 (2005).
[Crossref]

Bell, M. J. V.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100(11), 113103 (2006).
[Crossref]

Bock, S.

M. Siebold, J. Hein, M. Hornung, S. Podleska, M. C. Kaluza, S. Bock, and R. Sauerbrey, “Diode-pumped lasers for ultra-high peak power,” Appl. Phys. B 90(3-4), 431–437 (2008).
[Crossref]

M. Siebold, M. Hornung, S. Bock, J. Hein, M. C. Kaluza, J. Wemans, and R. Uecker, “Broad-band regenerative laser amplification in ytterbium-doped calcium fluoride (Yb:CaF2),” Appl. Phys. B 89(4), 543–547 (2007).
[Crossref]

Bödefeld, R.

Boedefeld, R.

Boulon, G.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406 (2014).
[Crossref]

Y. Guyot, A. Steimacher, M. P. Belançon, A. N. Medina, M. L. Baesso, S. M. Lima, L. H. C. Andrade, A. Brenier, A.-M. Jurdyc, and G. Boulon, “Spectroscopic properties, concentration quenching, and laser investigations of Yb3+-doped calcium aluminosilicate glasses,” J. Opt. Soc. Am. B 28(10), 2510 (2011).
[Crossref]

Brenier, A.

Bruce, A.

M. Hehlen, N. Cockroft, T. Gosnell, and A. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56(15), 9302–9318 (1997).
[Crossref]

Campbell, J. H.

P. R. Ehrmann and J. H. Campbell, “Nonradiative energy losses and radiation trapping in neodymium-doped phosphate laser glasses,” J. Am. Ceram. Soc. 85(5), 1061–1069 (2002).
[Crossref]

Carl, R.

R. Carl, S. Gerlach, and C. Rüssel, “The effect of composition on UV–vis–NIR spectra of iron doped glasses in the systems Na2O/MgO/SiO2 and Na2O/MgO/Al2O3/SiO2,” J. Non-Cryst. Solids 353(3), 244–249 (2007).
[Crossref]

Catunda, T.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100(11), 113103 (2006).
[Crossref]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Chen, D.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406 (2014).
[Crossref]

Chen, W.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406 (2014).
[Crossref]

Cockroft, N.

M. Hehlen, N. Cockroft, T. Gosnell, and A. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56(15), 9302–9318 (1997).
[Crossref]

Cook, L. E.

L. E. Cook and K.-H. Mader, “Ultraviolet Transmission Characteristics of a Fluorophosphate Laser Glass,” J. Am. Ceram. Soc. 65(12), 597–601 (1982).
[Crossref]

Dai, S.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[Crossref]

Dexter, D. L.

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836 (1953).
[Crossref]

Ebendorff-Heidepriem, H.

H. Ebendorff-Heidepriem, W. Seeber, and D. Ehrt, “Dehydration of phosphate glasses,” J. Non-Cryst. Solids 163(1), 74–80 (1993).
[Crossref]

Ehrmann, P. R.

P. R. Ehrmann and J. H. Campbell, “Nonradiative energy losses and radiation trapping in neodymium-doped phosphate laser glasses,” J. Am. Ceram. Soc. 85(5), 1061–1069 (2002).
[Crossref]

Ehrt, D.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79(4), 419–422 (2004).
[Crossref]

D. Ehrt, “Fluoroaluminate glasses for lasers and amplifiers,” Curr. Opin. Solid State Mater. Sci. 7(2), 135–141 (2003).
[Crossref]

T. Töpfer, J. Hein, W. Wintzer, D. Ehrt, and R. Sauerbrey, “Laser-glass, pump-laser-diodes, and amplifier for the POLARIS laser,” Glass Sci. Technol. 75, 223–234 (2002).

D. Ehrt, “UV-absorption and radiation effects in different glasses doped with iron and tin in the ppm range,” C. R. Chim. 5(11), 679–692 (2002).
[Crossref]

H. Ebendorff-Heidepriem, W. Seeber, and D. Ehrt, “Dehydration of phosphate glasses,” J. Non-Cryst. Solids 163(1), 74–80 (1993).
[Crossref]

D. Ehrt and W. Seeber, “Glass for high performance optics and laser technology,” J. Non-Cryst. Solids 129(1-3), 19–30 (1991).
[Crossref]

Engholm, M.

Epstein, R.

M. Hehlen, R. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

Feng, S.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406 (2014).
[Crossref]

Fukutani, K.

T. Suzuki, J. Konishi, K. Yamamoto, S. Ogura, and K. Fukutani, “Practical IR extinction coefficients of water in soda lime aluminosilicate glasses determined by nuclear reaction analysis,” J. Non-Cryst. Solids 382, 66–69 (2013).
[Crossref]

Gawronski, A.

A. Gawronski and C. Rüssel, “High strength glass–ceramics in the system MgO/Y2O3/Al2O3/SiO2/ZrO2 without quartz as crystalline phase,” J. Mater. Sci. 48(9), 3461–3468 (2013).
[Crossref]

A. Gawronski, C. Patzig, T. Höche, and C. Rüssel, “High-strength glass-ceramics in the system MgO/Al2O3/SiO2/ZrO2/Y2O3 – microstructure and properties,” CrystEngComm 15(31), 6165 (2013).
[Crossref]

Gerlach, S.

R. Carl, S. Gerlach, and C. Rüssel, “The effect of composition on UV–vis–NIR spectra of iron doped glasses in the systems Na2O/MgO/SiO2 and Na2O/MgO/Al2O3/SiO2,” J. Non-Cryst. Solids 353(3), 244–249 (2007).
[Crossref]

Gosnell, T.

M. Hehlen, N. Cockroft, T. Gosnell, and A. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56(15), 9302–9318 (1997).
[Crossref]

Götz, J.

J. Götz and E. Vosahlova, “Beitrag zur quantitativen Bestimmung des Wassergehaltes in Glas mit Hilfe der infraroten OH-Banden,” Glastech. Ber. 41, 47–55 (1968).

Grimm, S.

M. Loeser, F. Roeser, A. Reichelt, F. Kroll, M. Siebold, U. Schramm, S. Grimm, J. Kirchhof, and D. Litzkendorf, “Broadband, diode-pumped Yb:SiO2 multicomponent glass laser,” AMB16.
[Crossref]

Guyot, Y.

Guzik, M.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406 (2014).
[Crossref]

Hasselman, D.

D. Hasselman, “Figures-of-merit for the thermal stress resistance of high-temperature brittle materials: a review,” Ceramurgia Int. 4(4), 147–150 (1978).
[Crossref]

Hayashi, H.

H. Ohkawa, H. Hayashi, and Y. Kondo, “Influence of water on non-radiative decay of Yb3+–2F5/2 level in phosphate glass,” Opt. Mater. 33(2), 128–130 (2010).
[Crossref]

Hehlen, M.

M. Hehlen, R. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

M. Hehlen, N. Cockroft, T. Gosnell, and A. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56(15), 9302–9318 (1997).
[Crossref]

Hein, J.

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+ -doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. 21, 4328 (2014).

S. Kuhn, A. Herrmann, J. Hein, M. C. Kaluza, and C. Rüssel, “Sm3+-doped La2O3–Al2O3–SiO2-glasses: structure, fluorescence and thermal expansion,” J. Mater. Sci. 48(22), 8014–8022 (2013).
[Crossref]

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031 (2013).
[Crossref]

M. Siebold, F. Roeser, M. Loeser, D. Albach, U. Schramm, J. Hein, G. Korn, and L. O. Silva, “PEnELOPE: a high peak-power diode-pumped laser system for laser-plasma experiments,” Proc. SPIE 8780, 878005 (2013).
[Crossref]

M. Hornung, S. Keppler, R. Bödefeld, A. Kessler, H. Liebetrau, J. Körner, M. Hellwing, F. Schorcht, O. Jäckel, A. Sävert, J. Polz, A. K. Arunachalam, J. Hein, and M. C. Kaluza, “High-intensity, high-contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS,” Opt. Lett. 38(5), 718–720 (2013).
[Crossref] [PubMed]

J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B 29(9), 2493 (2012).
[Crossref]

M. Siebold, M. Hornung, R. Boedefeld, S. Podleska, S. Klingebiel, C. Wandt, F. Krausz, S. Karsch, R. Uecker, A. Jochmann, J. Hein, and M. C. Kaluza, “Terawatt diode-pumped Yb:CaF2 laser,” Opt. Lett. 33(23), 2770–2772 (2008).
[Crossref] [PubMed]

M. Siebold, J. Hein, M. Hornung, S. Podleska, M. C. Kaluza, S. Bock, and R. Sauerbrey, “Diode-pumped lasers for ultra-high peak power,” Appl. Phys. B 90(3-4), 431–437 (2008).
[Crossref]

M. Siebold, M. Hornung, S. Bock, J. Hein, M. C. Kaluza, J. Wemans, and R. Uecker, “Broad-band regenerative laser amplification in ytterbium-doped calcium fluoride (Yb:CaF2),” Appl. Phys. B 89(4), 543–547 (2007).
[Crossref]

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79(4), 419–422 (2004).
[Crossref]

T. Töpfer, J. Hein, W. Wintzer, D. Ehrt, and R. Sauerbrey, “Laser-glass, pump-laser-diodes, and amplifier for the POLARIS laser,” Glass Sci. Technol. 75, 223–234 (2002).

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B (2013).

Hellwing, M.

Herrmann, A.

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. 21, 4328 (2014).

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+ -doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

S. Kuhn, A. Herrmann, J. Hein, M. C. Kaluza, and C. Rüssel, “Sm3+-doped La2O3–Al2O3–SiO2-glasses: structure, fluorescence and thermal expansion,” J. Mater. Sci. 48(22), 8014–8022 (2013).
[Crossref]

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031 (2013).
[Crossref]

Höche, T.

A. Gawronski, C. Patzig, T. Höche, and C. Rüssel, “High-strength glass-ceramics in the system MgO/Al2O3/SiO2/ZrO2/Y2O3 – microstructure and properties,” CrystEngComm 15(31), 6165 (2013).
[Crossref]

Hornung, M.

Houde-Walter, S. N.

S. N. Houde-Walter, P. M. Peters, J. F. Stebbins, and Q. Zeng, “Hydroxyl-contents and hydroxyl-related concentration quenching in erbium-doped aluminophosphate, aluminosilicate and fluorosilicate glasses,” J. Non-Cryst. Solids 286(1-2), 118–131 (2001).
[Crossref]

Hu, H.

L. Zhang and H. Hu, “The effect of OH− on IR emission of Nd3+, Yb3+ and Er3+ doped tetraphosphate glasses,” J. Phys. Chem. Solids 63(4), 575–579 (2002).
[Crossref]

Hu, L.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406 (2014).
[Crossref]

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[Crossref]

Inoue, H.

M. Hehlen, R. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

Jacinto, C.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100(11), 113103 (2006).
[Crossref]

Jäckel, O.

Jambunathan, V.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B (2013).

Jewell, J. M.

J. M. Jewell and J. E. Shelby, “Effects of Water Content on the Properties of Sodium Aluminosilicate Glasses,” J. Am. Ceram. Soc. 75(4), 878–883 (1992).
[Crossref]

Jochmann, A.

Jurdyc, A.-M.

Kahle, M.

Kaluza, M. C.

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+ -doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. 21, 4328 (2014).

S. Kuhn, A. Herrmann, J. Hein, M. C. Kaluza, and C. Rüssel, “Sm3+-doped La2O3–Al2O3–SiO2-glasses: structure, fluorescence and thermal expansion,” J. Mater. Sci. 48(22), 8014–8022 (2013).
[Crossref]

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031 (2013).
[Crossref]

M. Hornung, S. Keppler, R. Bödefeld, A. Kessler, H. Liebetrau, J. Körner, M. Hellwing, F. Schorcht, O. Jäckel, A. Sävert, J. Polz, A. K. Arunachalam, J. Hein, and M. C. Kaluza, “High-intensity, high-contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS,” Opt. Lett. 38(5), 718–720 (2013).
[Crossref] [PubMed]

J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B 29(9), 2493 (2012).
[Crossref]

M. Siebold, M. Hornung, R. Boedefeld, S. Podleska, S. Klingebiel, C. Wandt, F. Krausz, S. Karsch, R. Uecker, A. Jochmann, J. Hein, and M. C. Kaluza, “Terawatt diode-pumped Yb:CaF2 laser,” Opt. Lett. 33(23), 2770–2772 (2008).
[Crossref] [PubMed]

M. Siebold, J. Hein, M. Hornung, S. Podleska, M. C. Kaluza, S. Bock, and R. Sauerbrey, “Diode-pumped lasers for ultra-high peak power,” Appl. Phys. B 90(3-4), 431–437 (2008).
[Crossref]

M. Siebold, M. Hornung, S. Bock, J. Hein, M. C. Kaluza, J. Wemans, and R. Uecker, “Broad-band regenerative laser amplification in ytterbium-doped calcium fluoride (Yb:CaF2),” Appl. Phys. B 89(4), 543–547 (2007).
[Crossref]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B (2013).

Karsch, S.

Keppler, S.

Kessler, A.

Kik, P. G.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996).
[Crossref]

Kirchhof, J.

M. Loeser, F. Roeser, A. Reichelt, F. Kroll, M. Siebold, U. Schramm, S. Grimm, J. Kirchhof, and D. Litzkendorf, “Broadband, diode-pumped Yb:SiO2 multicomponent glass laser,” AMB16.
[Crossref]

Klingebiel, S.

Kloepfel, D.

Klöpfel, D.

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. 21, 4328 (2014).

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+ -doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031 (2013).
[Crossref]

Koerner, J.

Kondo, Y.

H. Ohkawa, H. Hayashi, and Y. Kondo, “Influence of water on non-radiative decay of Yb3+–2F5/2 level in phosphate glass,” Opt. Mater. 33(2), 128–130 (2010).
[Crossref]

Konishi, J.

T. Suzuki, J. Konishi, K. Yamamoto, S. Ogura, and K. Fukutani, “Practical IR extinction coefficients of water in soda lime aluminosilicate glasses determined by nuclear reaction analysis,” J. Non-Cryst. Solids 382, 66–69 (2013).
[Crossref]

Korn, G.

M. Siebold, F. Roeser, M. Loeser, D. Albach, U. Schramm, J. Hein, G. Korn, and L. O. Silva, “PEnELOPE: a high peak-power diode-pumped laser system for laser-plasma experiments,” Proc. SPIE 8780, 878005 (2013).
[Crossref]

Körner, J.

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+ -doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. 21, 4328 (2014).

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031 (2013).
[Crossref]

M. Hornung, S. Keppler, R. Bödefeld, A. Kessler, H. Liebetrau, J. Körner, M. Hellwing, F. Schorcht, O. Jäckel, A. Sävert, J. Polz, A. K. Arunachalam, J. Hein, and M. C. Kaluza, “High-intensity, high-contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS,” Opt. Lett. 38(5), 718–720 (2013).
[Crossref] [PubMed]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B (2013).

Krausz, F.

Kroll, F.

M. Loeser, F. Roeser, A. Reichelt, F. Kroll, M. Siebold, U. Schramm, S. Grimm, J. Kirchhof, and D. Litzkendorf, “Broadband, diode-pumped Yb:SiO2 multicomponent glass laser,” AMB16.
[Crossref]

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Kuhn, S.

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. 21, 4328 (2014).

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+ -doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

S. Kuhn, A. Herrmann, J. Hein, M. C. Kaluza, and C. Rüssel, “Sm3+-doped La2O3–Al2O3–SiO2-glasses: structure, fluorescence and thermal expansion,” J. Mater. Sci. 48(22), 8014–8022 (2013).
[Crossref]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Liebetrau, H.

Lima, S. M.

Litzkendorf, D.

M. Loeser, F. Roeser, A. Reichelt, F. Kroll, M. Siebold, U. Schramm, S. Grimm, J. Kirchhof, and D. Litzkendorf, “Broadband, diode-pumped Yb:SiO2 multicomponent glass laser,” AMB16.
[Crossref]

Loeser, M.

M. Siebold, F. Roeser, M. Loeser, D. Albach, U. Schramm, J. Hein, G. Korn, and L. O. Silva, “PEnELOPE: a high peak-power diode-pumped laser system for laser-plasma experiments,” Proc. SPIE 8780, 878005 (2013).
[Crossref]

M. Loeser, F. Roeser, A. Reichelt, F. Kroll, M. Siebold, U. Schramm, S. Grimm, J. Kirchhof, and D. Litzkendorf, “Broadband, diode-pumped Yb:SiO2 multicomponent glass laser,” AMB16.
[Crossref]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B (2013).

Lou, F.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406 (2014).
[Crossref]

Lucianetti, A.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B (2013).

Mader, K.-H.

L. E. Cook and K.-H. Mader, “Ultraviolet Transmission Characteristics of a Fluorophosphate Laser Glass,” J. Am. Ceram. Soc. 65(12), 597–601 (1982).
[Crossref]

McCumber, D.

D. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Medina, A. N.

Mocek, T.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B (2013).

Morinaga, K.

H. Takebe, T. Murata, and K. Morinaga, “Compositional dependence of absorption and fluorescence of Yb3+ in oxide glasses,” J. Am. Ceram. Soc. 79(3), 681–687 (1996).
[Crossref]

Murata, T.

H. Takebe, T. Murata, and K. Morinaga, “Compositional dependence of absorption and fluorescence of Yb3+ in oxide glasses,” J. Am. Ceram. Soc. 79(3), 681–687 (1996).
[Crossref]

Norin, L.

Nunes, L.

W. G. Quirino, M. Bell, S. L. Oliveira, and L. Nunes, “Effects of non-radiative processes on the infrared luminescence of Yb3+ doped glasses,” J. Non-Cryst. Solids 351(24-26), 2042–2046 (2005).
[Crossref]

Nunes, L. A. O.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100(11), 113103 (2006).
[Crossref]

Ogura, S.

T. Suzuki, J. Konishi, K. Yamamoto, S. Ogura, and K. Fukutani, “Practical IR extinction coefficients of water in soda lime aluminosilicate glasses determined by nuclear reaction analysis,” J. Non-Cryst. Solids 382, 66–69 (2013).
[Crossref]

Ohkawa, H.

H. Ohkawa, H. Hayashi, and Y. Kondo, “Influence of water on non-radiative decay of Yb3+–2F5/2 level in phosphate glass,” Opt. Mater. 33(2), 128–130 (2010).
[Crossref]

Oliveira, S. L.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100(11), 113103 (2006).
[Crossref]

W. G. Quirino, M. Bell, S. L. Oliveira, and L. Nunes, “Effects of non-radiative processes on the infrared luminescence of Yb3+ doped glasses,” J. Non-Cryst. Solids 351(24-26), 2042–2046 (2005).
[Crossref]

Patzig, C.

A. Gawronski, C. Patzig, T. Höche, and C. Rüssel, “High-strength glass-ceramics in the system MgO/Al2O3/SiO2/ZrO2/Y2O3 – microstructure and properties,” CrystEngComm 15(31), 6165 (2013).
[Crossref]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Peters, P. M.

S. N. Houde-Walter, P. M. Peters, J. F. Stebbins, and Q. Zeng, “Hydroxyl-contents and hydroxyl-related concentration quenching in erbium-doped aluminophosphate, aluminosilicate and fluorosilicate glasses,” J. Non-Cryst. Solids 286(1-2), 118–131 (2001).
[Crossref]

Podleska, S.

M. Siebold, J. Hein, M. Hornung, S. Podleska, M. C. Kaluza, S. Bock, and R. Sauerbrey, “Diode-pumped lasers for ultra-high peak power,” Appl. Phys. B 90(3-4), 431–437 (2008).
[Crossref]

M. Siebold, M. Hornung, R. Boedefeld, S. Podleska, S. Klingebiel, C. Wandt, F. Krausz, S. Karsch, R. Uecker, A. Jochmann, J. Hein, and M. C. Kaluza, “Terawatt diode-pumped Yb:CaF2 laser,” Opt. Lett. 33(23), 2770–2772 (2008).
[Crossref] [PubMed]

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79(4), 419–422 (2004).
[Crossref]

Polman, A.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996).
[Crossref]

Polz, J.

Quirino, W. G.

W. G. Quirino, M. Bell, S. L. Oliveira, and L. Nunes, “Effects of non-radiative processes on the infrared luminescence of Yb3+ doped glasses,” J. Non-Cryst. Solids 351(24-26), 2042–2046 (2005).
[Crossref]

Reichelt, A.

M. Loeser, F. Roeser, A. Reichelt, F. Kroll, M. Siebold, U. Schramm, S. Grimm, J. Kirchhof, and D. Litzkendorf, “Broadband, diode-pumped Yb:SiO2 multicomponent glass laser,” AMB16.
[Crossref]

Roeser, F.

M. Siebold, F. Roeser, M. Loeser, D. Albach, U. Schramm, J. Hein, G. Korn, and L. O. Silva, “PEnELOPE: a high peak-power diode-pumped laser system for laser-plasma experiments,” Proc. SPIE 8780, 878005 (2013).
[Crossref]

M. Loeser, F. Roeser, A. Reichelt, F. Kroll, M. Siebold, U. Schramm, S. Grimm, J. Kirchhof, and D. Litzkendorf, “Broadband, diode-pumped Yb:SiO2 multicomponent glass laser,” AMB16.
[Crossref]

Rüssel, C.

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+ -doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. 21, 4328 (2014).

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031 (2013).
[Crossref]

S. Kuhn, A. Herrmann, J. Hein, M. C. Kaluza, and C. Rüssel, “Sm3+-doped La2O3–Al2O3–SiO2-glasses: structure, fluorescence and thermal expansion,” J. Mater. Sci. 48(22), 8014–8022 (2013).
[Crossref]

A. Gawronski, C. Patzig, T. Höche, and C. Rüssel, “High-strength glass-ceramics in the system MgO/Al2O3/SiO2/ZrO2/Y2O3 – microstructure and properties,” CrystEngComm 15(31), 6165 (2013).
[Crossref]

A. Gawronski and C. Rüssel, “High strength glass–ceramics in the system MgO/Y2O3/Al2O3/SiO2/ZrO2 without quartz as crystalline phase,” J. Mater. Sci. 48(9), 3461–3468 (2013).
[Crossref]

R. Carl, S. Gerlach, and C. Rüssel, “The effect of composition on UV–vis–NIR spectra of iron doped glasses in the systems Na2O/MgO/SiO2 and Na2O/MgO/Al2O3/SiO2,” J. Non-Cryst. Solids 353(3), 244–249 (2007).
[Crossref]

Sauerbrey, R.

M. Siebold, J. Hein, M. Hornung, S. Podleska, M. C. Kaluza, S. Bock, and R. Sauerbrey, “Diode-pumped lasers for ultra-high peak power,” Appl. Phys. B 90(3-4), 431–437 (2008).
[Crossref]

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79(4), 419–422 (2004).
[Crossref]

T. Töpfer, J. Hein, W. Wintzer, D. Ehrt, and R. Sauerbrey, “Laser-glass, pump-laser-diodes, and amplifier for the POLARIS laser,” Glass Sci. Technol. 75, 223–234 (2002).

Sävert, A.

Scholze, H.

H. Scholze, “Der Einbau des Wassers in Gläsern. I. Der Einfluß des im Glas gelösten Wassers auf das Ultrarot-Spektrum und die quantitative ultrarotspektroskopische Bestimmung des Wassers in Gläsern,” Glastech. Ber. 32, 81–88 (1959).

H. Scholze, “Der Einbau des Wassers in Gläsern. II. UR-Messungen an Silikatgläsern mit systematisch variierter Zusammensetzung und Deutung der OH-Banden in Silikatgläsern,” Glastech. Ber. 32, 142–152 (1959).

Schorcht, F.

Schramm, U.

M. Siebold, F. Roeser, M. Loeser, D. Albach, U. Schramm, J. Hein, G. Korn, and L. O. Silva, “PEnELOPE: a high peak-power diode-pumped laser system for laser-plasma experiments,” Proc. SPIE 8780, 878005 (2013).
[Crossref]

M. Loeser, F. Roeser, A. Reichelt, F. Kroll, M. Siebold, U. Schramm, S. Grimm, J. Kirchhof, and D. Litzkendorf, “Broadband, diode-pumped Yb:SiO2 multicomponent glass laser,” AMB16.
[Crossref]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B (2013).

Seeber, W.

H. Ebendorff-Heidepriem, W. Seeber, and D. Ehrt, “Dehydration of phosphate glasses,” J. Non-Cryst. Solids 163(1), 74–80 (1993).
[Crossref]

D. Ehrt and W. Seeber, “Glass for high performance optics and laser technology,” J. Non-Cryst. Solids 129(1-3), 19–30 (1991).
[Crossref]

Seifert, R.

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+ -doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B 29(9), 2493 (2012).
[Crossref]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B (2013).

Shelby, J. E.

J. M. Jewell and J. E. Shelby, “Effects of Water Content on the Properties of Sodium Aluminosilicate Glasses,” J. Am. Ceram. Soc. 75(4), 878–883 (1992).
[Crossref]

Siebold, M.

M. Siebold, F. Roeser, M. Loeser, D. Albach, U. Schramm, J. Hein, G. Korn, and L. O. Silva, “PEnELOPE: a high peak-power diode-pumped laser system for laser-plasma experiments,” Proc. SPIE 8780, 878005 (2013).
[Crossref]

M. Siebold, M. Hornung, R. Boedefeld, S. Podleska, S. Klingebiel, C. Wandt, F. Krausz, S. Karsch, R. Uecker, A. Jochmann, J. Hein, and M. C. Kaluza, “Terawatt diode-pumped Yb:CaF2 laser,” Opt. Lett. 33(23), 2770–2772 (2008).
[Crossref] [PubMed]

M. Siebold, J. Hein, M. Hornung, S. Podleska, M. C. Kaluza, S. Bock, and R. Sauerbrey, “Diode-pumped lasers for ultra-high peak power,” Appl. Phys. B 90(3-4), 431–437 (2008).
[Crossref]

M. Siebold, M. Hornung, S. Bock, J. Hein, M. C. Kaluza, J. Wemans, and R. Uecker, “Broad-band regenerative laser amplification in ytterbium-doped calcium fluoride (Yb:CaF2),” Appl. Phys. B 89(4), 543–547 (2007).
[Crossref]

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79(4), 419–422 (2004).
[Crossref]

M. Loeser, F. Roeser, A. Reichelt, F. Kroll, M. Siebold, U. Schramm, S. Grimm, J. Kirchhof, and D. Litzkendorf, “Broadband, diode-pumped Yb:SiO2 multicomponent glass laser,” AMB16.
[Crossref]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B (2013).

Sikocinski, P.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B (2013).

Silva, L. O.

M. Siebold, F. Roeser, M. Loeser, D. Albach, U. Schramm, J. Hein, G. Korn, and L. O. Silva, “PEnELOPE: a high peak-power diode-pumped laser system for laser-plasma experiments,” Proc. SPIE 8780, 878005 (2013).
[Crossref]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Snoeks, E.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996).
[Crossref]

Stebbins, J. F.

S. N. Houde-Walter, P. M. Peters, J. F. Stebbins, and Q. Zeng, “Hydroxyl-contents and hydroxyl-related concentration quenching in erbium-doped aluminophosphate, aluminosilicate and fluorosilicate glasses,” J. Non-Cryst. Solids 286(1-2), 118–131 (2001).
[Crossref]

Steimacher, A.

Stolper, E.

E. Stolper, “Water in silicate glasses: An infrared spectroscopic study,” Contrib. Mineral. Petrol. 81(1), 1–17 (1982).
[Crossref]

Suzuki, T.

T. Suzuki, J. Konishi, K. Yamamoto, S. Ogura, and K. Fukutani, “Practical IR extinction coefficients of water in soda lime aluminosilicate glasses determined by nuclear reaction analysis,” J. Non-Cryst. Solids 382, 66–69 (2013).
[Crossref]

Takebe, H.

H. Takebe, T. Murata, and K. Morinaga, “Compositional dependence of absorption and fluorescence of Yb3+ in oxide glasses,” J. Am. Ceram. Soc. 79(3), 681–687 (1996).
[Crossref]

Tiegel, M.

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+ -doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. 21, 4328 (2014).

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031 (2013).
[Crossref]

Töpfer, T.

T. Töpfer, J. Hein, W. Wintzer, D. Ehrt, and R. Sauerbrey, “Laser-glass, pump-laser-diodes, and amplifier for the POLARIS laser,” Glass Sci. Technol. 75, 223–234 (2002).

Uecker, R.

M. Siebold, M. Hornung, R. Boedefeld, S. Podleska, S. Klingebiel, C. Wandt, F. Krausz, S. Karsch, R. Uecker, A. Jochmann, J. Hein, and M. C. Kaluza, “Terawatt diode-pumped Yb:CaF2 laser,” Opt. Lett. 33(23), 2770–2772 (2008).
[Crossref] [PubMed]

M. Siebold, M. Hornung, S. Bock, J. Hein, M. C. Kaluza, J. Wemans, and R. Uecker, “Broad-band regenerative laser amplification in ytterbium-doped calcium fluoride (Yb:CaF2),” Appl. Phys. B 89(4), 543–547 (2007).
[Crossref]

Vorholt, C.

Vosahlova, E.

J. Götz and E. Vosahlova, “Beitrag zur quantitativen Bestimmung des Wassergehaltes in Glas mit Hilfe der infraroten OH-Banden,” Glastech. Ber. 41, 47–55 (1968).

Wandt, C.

Wang, G.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[Crossref]

Wang, M.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406 (2014).
[Crossref]

Wang, S.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406 (2014).
[Crossref]

Wemans, J.

M. Siebold, M. Hornung, S. Bock, J. Hein, M. C. Kaluza, J. Wemans, and R. Uecker, “Broad-band regenerative laser amplification in ytterbium-doped calcium fluoride (Yb:CaF2),” Appl. Phys. B 89(4), 543–547 (2007).
[Crossref]

Wintzer, W.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79(4), 419–422 (2004).
[Crossref]

T. Töpfer, J. Hein, W. Wintzer, D. Ehrt, and R. Sauerbrey, “Laser-glass, pump-laser-diodes, and amplifier for the POLARIS laser,” Glass Sci. Technol. 75, 223–234 (2002).

Yamamoto, K.

T. Suzuki, J. Konishi, K. Yamamoto, S. Ogura, and K. Fukutani, “Practical IR extinction coefficients of water in soda lime aluminosilicate glasses determined by nuclear reaction analysis,” J. Non-Cryst. Solids 382, 66–69 (2013).
[Crossref]

Yu, C.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406 (2014).
[Crossref]

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[Crossref]

Zeng, Q.

S. N. Houde-Walter, P. M. Peters, J. F. Stebbins, and Q. Zeng, “Hydroxyl-contents and hydroxyl-related concentration quenching in erbium-doped aluminophosphate, aluminosilicate and fluorosilicate glasses,” J. Non-Cryst. Solids 286(1-2), 118–131 (2001).
[Crossref]

Zhang, J.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[Crossref]

Zhang, L.

L. Zhang and H. Hu, “The effect of OH− on IR emission of Nd3+, Yb3+ and Er3+ doped tetraphosphate glasses,” J. Phys. Chem. Solids 63(4), 575–579 (2002).
[Crossref]

Zhou, G.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[Crossref]

Zhou, Q.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406 (2014).
[Crossref]

Appl. Phys. B (3)

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79(4), 419–422 (2004).
[Crossref]

M. Siebold, J. Hein, M. Hornung, S. Podleska, M. C. Kaluza, S. Bock, and R. Sauerbrey, “Diode-pumped lasers for ultra-high peak power,” Appl. Phys. B 90(3-4), 431–437 (2008).
[Crossref]

M. Siebold, M. Hornung, S. Bock, J. Hein, M. C. Kaluza, J. Wemans, and R. Uecker, “Broad-band regenerative laser amplification in ytterbium-doped calcium fluoride (Yb:CaF2),” Appl. Phys. B 89(4), 543–547 (2007).
[Crossref]

C. R. Chim. (1)

D. Ehrt, “UV-absorption and radiation effects in different glasses doped with iron and tin in the ppm range,” C. R. Chim. 5(11), 679–692 (2002).
[Crossref]

Ceramurgia Int. (1)

D. Hasselman, “Figures-of-merit for the thermal stress resistance of high-temperature brittle materials: a review,” Ceramurgia Int. 4(4), 147–150 (1978).
[Crossref]

Contrib. Mineral. Petrol. (1)

E. Stolper, “Water in silicate glasses: An infrared spectroscopic study,” Contrib. Mineral. Petrol. 81(1), 1–17 (1982).
[Crossref]

CrystEngComm (1)

A. Gawronski, C. Patzig, T. Höche, and C. Rüssel, “High-strength glass-ceramics in the system MgO/Al2O3/SiO2/ZrO2/Y2O3 – microstructure and properties,” CrystEngComm 15(31), 6165 (2013).
[Crossref]

Curr. Opin. Solid State Mater. Sci. (1)

D. Ehrt, “Fluoroaluminate glasses for lasers and amplifiers,” Curr. Opin. Solid State Mater. Sci. 7(2), 135–141 (2003).
[Crossref]

Glass Sci. Technol. (1)

T. Töpfer, J. Hein, W. Wintzer, D. Ehrt, and R. Sauerbrey, “Laser-glass, pump-laser-diodes, and amplifier for the POLARIS laser,” Glass Sci. Technol. 75, 223–234 (2002).

Glastech. Ber. (3)

H. Scholze, “Der Einbau des Wassers in Gläsern. I. Der Einfluß des im Glas gelösten Wassers auf das Ultrarot-Spektrum und die quantitative ultrarotspektroskopische Bestimmung des Wassers in Gläsern,” Glastech. Ber. 32, 81–88 (1959).

H. Scholze, “Der Einbau des Wassers in Gläsern. II. UR-Messungen an Silikatgläsern mit systematisch variierter Zusammensetzung und Deutung der OH-Banden in Silikatgläsern,” Glastech. Ber. 32, 142–152 (1959).

J. Götz and E. Vosahlova, “Beitrag zur quantitativen Bestimmung des Wassergehaltes in Glas mit Hilfe der infraroten OH-Banden,” Glastech. Ber. 41, 47–55 (1968).

IEEE J. Quantum Electron. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

J. Am. Ceram. Soc. (4)

L. E. Cook and K.-H. Mader, “Ultraviolet Transmission Characteristics of a Fluorophosphate Laser Glass,” J. Am. Ceram. Soc. 65(12), 597–601 (1982).
[Crossref]

J. M. Jewell and J. E. Shelby, “Effects of Water Content on the Properties of Sodium Aluminosilicate Glasses,” J. Am. Ceram. Soc. 75(4), 878–883 (1992).
[Crossref]

H. Takebe, T. Murata, and K. Morinaga, “Compositional dependence of absorption and fluorescence of Yb3+ in oxide glasses,” J. Am. Ceram. Soc. 79(3), 681–687 (1996).
[Crossref]

P. R. Ehrmann and J. H. Campbell, “Nonradiative energy losses and radiation trapping in neodymium-doped phosphate laser glasses,” J. Am. Ceram. Soc. 85(5), 1061–1069 (2002).
[Crossref]

J. Appl. Phys. (1)

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100(11), 113103 (2006).
[Crossref]

J. Chem. Phys. (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836 (1953).
[Crossref]

J. Lumin. (1)

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[Crossref]

J. Mater. Chem. (1)

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. 21, 4328 (2014).

J. Mater. Chem. C (2)

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031 (2013).
[Crossref]

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406 (2014).
[Crossref]

J. Mater. Sci. (2)

A. Gawronski and C. Rüssel, “High strength glass–ceramics in the system MgO/Y2O3/Al2O3/SiO2/ZrO2 without quartz as crystalline phase,” J. Mater. Sci. 48(9), 3461–3468 (2013).
[Crossref]

S. Kuhn, A. Herrmann, J. Hein, M. C. Kaluza, and C. Rüssel, “Sm3+-doped La2O3–Al2O3–SiO2-glasses: structure, fluorescence and thermal expansion,” J. Mater. Sci. 48(22), 8014–8022 (2013).
[Crossref]

J. Non-Cryst. Solids (6)

W. G. Quirino, M. Bell, S. L. Oliveira, and L. Nunes, “Effects of non-radiative processes on the infrared luminescence of Yb3+ doped glasses,” J. Non-Cryst. Solids 351(24-26), 2042–2046 (2005).
[Crossref]

H. Ebendorff-Heidepriem, W. Seeber, and D. Ehrt, “Dehydration of phosphate glasses,” J. Non-Cryst. Solids 163(1), 74–80 (1993).
[Crossref]

S. N. Houde-Walter, P. M. Peters, J. F. Stebbins, and Q. Zeng, “Hydroxyl-contents and hydroxyl-related concentration quenching in erbium-doped aluminophosphate, aluminosilicate and fluorosilicate glasses,” J. Non-Cryst. Solids 286(1-2), 118–131 (2001).
[Crossref]

D. Ehrt and W. Seeber, “Glass for high performance optics and laser technology,” J. Non-Cryst. Solids 129(1-3), 19–30 (1991).
[Crossref]

T. Suzuki, J. Konishi, K. Yamamoto, S. Ogura, and K. Fukutani, “Practical IR extinction coefficients of water in soda lime aluminosilicate glasses determined by nuclear reaction analysis,” J. Non-Cryst. Solids 382, 66–69 (2013).
[Crossref]

R. Carl, S. Gerlach, and C. Rüssel, “The effect of composition on UV–vis–NIR spectra of iron doped glasses in the systems Na2O/MgO/SiO2 and Na2O/MgO/Al2O3/SiO2,” J. Non-Cryst. Solids 353(3), 244–249 (2007).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Solids (1)

L. Zhang and H. Hu, “The effect of OH− on IR emission of Nd3+, Yb3+ and Er3+ doped tetraphosphate glasses,” J. Phys. Chem. Solids 63(4), 575–579 (2002).
[Crossref]

Laser Phys. Lett. (1)

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+ -doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (2)

H. Ohkawa, H. Hayashi, and Y. Kondo, “Influence of water on non-radiative decay of Yb3+–2F5/2 level in phosphate glass,” Opt. Mater. 33(2), 128–130 (2010).
[Crossref]

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996).
[Crossref]

Phys. Rev. (1)

D. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Phys. Rev. B (2)

M. Hehlen, R. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

M. Hehlen, N. Cockroft, T. Gosnell, and A. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56(15), 9302–9318 (1997).
[Crossref]

Proc. SPIE (1)

M. Siebold, F. Roeser, M. Loeser, D. Albach, U. Schramm, J. Hein, G. Korn, and L. O. Silva, “PEnELOPE: a high peak-power diode-pumped laser system for laser-plasma experiments,” Proc. SPIE 8780, 878005 (2013).
[Crossref]

Other (3)

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B (2013).

M. Loeser, F. Roeser, A. Reichelt, F. Kroll, M. Siebold, U. Schramm, S. Grimm, J. Kirchhof, and D. Litzkendorf, “Broadband, diode-pumped Yb:SiO2 multicomponent glass laser,” AMB16.
[Crossref]

J. Hein, M. C. Kaluza, R. Bödefeld, M. Siebold, S. Podleska, and R. Sauerbrey, “POLARIS: An All Diode-Pumped Ultrahigh Peak Power Laser for High Repetition Rates,” Lect. Notes Phys. 694, 47–66 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 NIR absorption spectra of the investigated lithium-alumino-silicate glass using different preparation routes (see text and Table 1). The shown glasses contain 6∙1020 Yb3+ cm−3; (inset) magnified spectra of samples with relatively low OH concentrations.
Fig. 2
Fig. 2 Fluorescence decay curves for the glasses doped with 6∙1020 Yb3+ cm−3 for different preparation routes (see Table 1).
Fig. 3
Fig. 3 absorption and emission cross sections of the glass LiAS1822 (preparation route #2, doped with 6∙1020 Yb3+ cm−3).
Fig. 4
Fig. 4 left: UV edge of glasses doped with 1∙1020 Yb3+ cm−3 prepared under different conditions; right: difference spectrum of glasses melted under ambient and inert atmosphere.
Fig. 5
Fig. 5 Spontaneous emission rate as function of Yb3+ and OH concentrations; different preparation routes are marked; the inset shows rates at low OH concentration.

Tables (2)

Tables Icon

Table 1 Preparation of the glasses using different preparation routes; raw material for aluminum oxide (Al), doping raw material for ytterbium (Yb), applied atmosphere during melting (atmosphere), applied bubbling duration and gas (bubbling)

Tables Icon

Table 2 OH concentrations NOH (upper value) and measured spontaneous emission rates k (lower value; assumed error ± 5%) in dependence of Yb3+ concentration (increasing from left to right) and preparation route (see Table 1)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k= k r + k OH + k MPR + k RE + k TM
I( t )= I 0 exp( kt )
P YbYb = 3 h 4 c 4 64 π 5 n 4 R 6 Q a τ 0 f a ( E ) f e ( E ) E 4 dE = C YbYb R 6
k= k r +8π C YbYb N Yb N q

Metrics