Abstract

Alumina green bodies were shaped by slip casting under a strong magnetic field. Alumina ceramics were obtained by hot isostatic pressing (HIP) at 1275°C and pressureless sintering at above 1700°C, respectively. HIP-sintered alumina, with in-line transmittance of 52% at 600nm and 82% at 2μm, showed a sub-micrometer grain microstructure and a slight grain orientation. However, XRD results demonstrated the grains of pressureless sintered alumina sintered at >1700°C oriented along c-axis, and texture microstructure was observed by SEM. It indicated that magnetic field assisted slip casting produced “seeds” of grain orientation, and orientation degree that could achieve depended on the sintering temperature.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Post-sintering treatment of neodymium-doped yttrium aluminum garnet (Nd:YAG) transparent ceramics

Lucie Chrétien, Rémy Boulesteix, Alexandre Maître, Christian Sallé, and Yves Reignoux
Opt. Mater. Express 4(10) 2166-2173 (2014)

Two-step sintering of Gd0.3Lu1.6Eu0.1O3 transparent ceramic scintillator

Zachary Seeley, Nerine Cherepy, and Stephen Payne
Opt. Mater. Express 3(7) 908-912 (2013)

Orientation control of micro-domains in anisotropic laser ceramics

Yoichi Sato, Jun Akiyama, and Takunori Taira
Opt. Mater. Express 3(6) 829-841 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Krell, J. Klimke, and T. Hutzler, “Transparent compact ceramics: inherent physical issues,” Opt. Mater. 31(8), 1144–1150 (2009).
    [Crossref]
  2. A. Krell, P. Blank, H. Ma, T. Hutzler, M. P. Bruggen, and R. Apetz, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc. 86(1), 12–18 (2003).
    [Crossref]
  3. A. Krell, J. Klimke, and T. Hutzler, “Advanced spinel and sub-μm Al2O3 for transparent armour applications,” J. Eur. Ceram. Soc. 29(2), 275–281 (2009).
    [Crossref]
  4. B.-N. Kim, K. Hiraga, K. Morita, and H. Yoshida, “Spark plasma sintering of transparent alumina,” Scr. Mater. 57(7), 607–610 (2007).
    [Crossref]
  5. K. Hayashi, O. Kobayashi, S. Toyoda, and K. Morinaga, “Transmission optical properties of polycrystalline alumina with submicron grains,” Mater. Trans., JIM 32(11), 1024–1029 (1991).
    [Crossref]
  6. A. Krell, G. M. Baur, and C. Dahne, “Transparent sintered sub-μm Al2O3 with infrared transmissivity equal to sapphire,” Proc. SPIE 5078, 199–207 (2003).
    [Crossref]
  7. J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett. 35(21), 3598–3600 (2010).
    [Crossref] [PubMed]
  8. Y. Sato, J. Akiyama, and T. Taira, “Orientation control of micro-domains in anisotropic laser ceramics,” Opt. Mater. Express 3(6), 829–841 (2013).
    [Crossref]
  9. T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics [invited],” Opt. Mater. Express 1(5), 1040–1050 (2011).
    [Crossref]
  10. J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express 4(2), 022703 (2011).
    [Crossref]
  11. T. S. Suzuki, Y. Sakka, and K. Kitazawa, “Orientation amplification of alumina by colloidal filtration in a strong magnetic field and sintering,” Adv. Eng. Mater. 3(7), 490–492 (2001).
    [Crossref]
  12. N. Terada, H. Suzuki, T. Suzuki, H. Kitazawa, Y. Sakka, K. Kaneko, and N. Metoki, “In situ neutron diffraction study of aligning of crystal orientation in diamagnetic ceramics under magnetic fields,” Appl. Phys. Lett. 92(11), 112507 (2008).
    [Crossref]
  13. A. Makiya, D. Shouji, S. Tanaka, N. Uchida, T. Kimura, and K. Uematsu, “Grain oriented microstructure made in high magnetic field,” Key Eng. Mater. 206, 445–448 (2001).
  14. X. Mao, S. Wang, S. Shimai, and J. Guo, “Transparent polycrystalline alumina ceramics with orientated optical axes,” J. Am. Ceram. Soc. 91(10), 3431–3433 (2008).
    [Crossref]
  15. F. Lotgering, “Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I,” J. Inorg. Nucl. Chem. 9(2), 113–123 (1959).
    [Crossref]
  16. E. Guilmeau, C. Henrist, T. Suzuki, Y. Sakka, D. Chateigner, D. Grossin, and B. Ouladdiaf, “Texture of Alumina by neutron diffraction and SEM-EBSD,” Mater. Sci. Forum 495–497, 1395–1400 (2005).
    [Crossref]
  17. A. Makiya, S. Tanaka, D. Shoji, T. Ishikawa, N. Uchida, and K. Uematsu, “A quantitative evaluation method for particle orientation structure in alumina powder compacts,” J. Eur. Ceram. Soc. 27(12), 3399–3406 (2007).
    [Crossref]
  18. L. Zhang, J. Vleugels, and O. Van der Biest, “Slip casting of alumina suspensions in a strong magnetic field,” J. Am. Ceram. Soc. 93(10), 3148–3152 (2010).
    [Crossref]
  19. H. Yi, X. Mao, G. Zhou, S. Chen, X. Zou, S. Wang, and S. Shimai, “Crystal plane evolution of grain oriented alumina ceramics with high transparency,” Ceram. Int. 38(7), 5557–5561 (2012).
    [Crossref]
  20. A. Krell, T. Hutzler, and J. Klimke, “Physics and Technology of Transparent Ceramic Armor: Sintered Al2O3 vs Cubic Materials,” Proc. Specialists Meeting on “Nanomaterials Technology for Military Vehicle Structural Applications” (Granada, Spain, 2005), pp. 14–11 - 10.

2013 (1)

2012 (1)

H. Yi, X. Mao, G. Zhou, S. Chen, X. Zou, S. Wang, and S. Shimai, “Crystal plane evolution of grain oriented alumina ceramics with high transparency,” Ceram. Int. 38(7), 5557–5561 (2012).
[Crossref]

2011 (2)

J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express 4(2), 022703 (2011).
[Crossref]

T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics [invited],” Opt. Mater. Express 1(5), 1040–1050 (2011).
[Crossref]

2010 (2)

J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett. 35(21), 3598–3600 (2010).
[Crossref] [PubMed]

L. Zhang, J. Vleugels, and O. Van der Biest, “Slip casting of alumina suspensions in a strong magnetic field,” J. Am. Ceram. Soc. 93(10), 3148–3152 (2010).
[Crossref]

2009 (2)

A. Krell, J. Klimke, and T. Hutzler, “Transparent compact ceramics: inherent physical issues,” Opt. Mater. 31(8), 1144–1150 (2009).
[Crossref]

A. Krell, J. Klimke, and T. Hutzler, “Advanced spinel and sub-μm Al2O3 for transparent armour applications,” J. Eur. Ceram. Soc. 29(2), 275–281 (2009).
[Crossref]

2008 (2)

N. Terada, H. Suzuki, T. Suzuki, H. Kitazawa, Y. Sakka, K. Kaneko, and N. Metoki, “In situ neutron diffraction study of aligning of crystal orientation in diamagnetic ceramics under magnetic fields,” Appl. Phys. Lett. 92(11), 112507 (2008).
[Crossref]

X. Mao, S. Wang, S. Shimai, and J. Guo, “Transparent polycrystalline alumina ceramics with orientated optical axes,” J. Am. Ceram. Soc. 91(10), 3431–3433 (2008).
[Crossref]

2007 (2)

A. Makiya, S. Tanaka, D. Shoji, T. Ishikawa, N. Uchida, and K. Uematsu, “A quantitative evaluation method for particle orientation structure in alumina powder compacts,” J. Eur. Ceram. Soc. 27(12), 3399–3406 (2007).
[Crossref]

B.-N. Kim, K. Hiraga, K. Morita, and H. Yoshida, “Spark plasma sintering of transparent alumina,” Scr. Mater. 57(7), 607–610 (2007).
[Crossref]

2005 (1)

E. Guilmeau, C. Henrist, T. Suzuki, Y. Sakka, D. Chateigner, D. Grossin, and B. Ouladdiaf, “Texture of Alumina by neutron diffraction and SEM-EBSD,” Mater. Sci. Forum 495–497, 1395–1400 (2005).
[Crossref]

2003 (2)

A. Krell, G. M. Baur, and C. Dahne, “Transparent sintered sub-μm Al2O3 with infrared transmissivity equal to sapphire,” Proc. SPIE 5078, 199–207 (2003).
[Crossref]

A. Krell, P. Blank, H. Ma, T. Hutzler, M. P. Bruggen, and R. Apetz, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc. 86(1), 12–18 (2003).
[Crossref]

2001 (2)

A. Makiya, D. Shouji, S. Tanaka, N. Uchida, T. Kimura, and K. Uematsu, “Grain oriented microstructure made in high magnetic field,” Key Eng. Mater. 206, 445–448 (2001).

T. S. Suzuki, Y. Sakka, and K. Kitazawa, “Orientation amplification of alumina by colloidal filtration in a strong magnetic field and sintering,” Adv. Eng. Mater. 3(7), 490–492 (2001).
[Crossref]

1991 (1)

K. Hayashi, O. Kobayashi, S. Toyoda, and K. Morinaga, “Transmission optical properties of polycrystalline alumina with submicron grains,” Mater. Trans., JIM 32(11), 1024–1029 (1991).
[Crossref]

1959 (1)

F. Lotgering, “Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I,” J. Inorg. Nucl. Chem. 9(2), 113–123 (1959).
[Crossref]

Akiyama, J.

Apetz, R.

A. Krell, P. Blank, H. Ma, T. Hutzler, M. P. Bruggen, and R. Apetz, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc. 86(1), 12–18 (2003).
[Crossref]

Baur, G. M.

A. Krell, G. M. Baur, and C. Dahne, “Transparent sintered sub-μm Al2O3 with infrared transmissivity equal to sapphire,” Proc. SPIE 5078, 199–207 (2003).
[Crossref]

Blank, P.

A. Krell, P. Blank, H. Ma, T. Hutzler, M. P. Bruggen, and R. Apetz, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc. 86(1), 12–18 (2003).
[Crossref]

Bruggen, M. P.

A. Krell, P. Blank, H. Ma, T. Hutzler, M. P. Bruggen, and R. Apetz, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc. 86(1), 12–18 (2003).
[Crossref]

Chateigner, D.

E. Guilmeau, C. Henrist, T. Suzuki, Y. Sakka, D. Chateigner, D. Grossin, and B. Ouladdiaf, “Texture of Alumina by neutron diffraction and SEM-EBSD,” Mater. Sci. Forum 495–497, 1395–1400 (2005).
[Crossref]

Chen, S.

H. Yi, X. Mao, G. Zhou, S. Chen, X. Zou, S. Wang, and S. Shimai, “Crystal plane evolution of grain oriented alumina ceramics with high transparency,” Ceram. Int. 38(7), 5557–5561 (2012).
[Crossref]

Dahne, C.

A. Krell, G. M. Baur, and C. Dahne, “Transparent sintered sub-μm Al2O3 with infrared transmissivity equal to sapphire,” Proc. SPIE 5078, 199–207 (2003).
[Crossref]

Grossin, D.

E. Guilmeau, C. Henrist, T. Suzuki, Y. Sakka, D. Chateigner, D. Grossin, and B. Ouladdiaf, “Texture of Alumina by neutron diffraction and SEM-EBSD,” Mater. Sci. Forum 495–497, 1395–1400 (2005).
[Crossref]

Guilmeau, E.

E. Guilmeau, C. Henrist, T. Suzuki, Y. Sakka, D. Chateigner, D. Grossin, and B. Ouladdiaf, “Texture of Alumina by neutron diffraction and SEM-EBSD,” Mater. Sci. Forum 495–497, 1395–1400 (2005).
[Crossref]

Guo, J.

X. Mao, S. Wang, S. Shimai, and J. Guo, “Transparent polycrystalline alumina ceramics with orientated optical axes,” J. Am. Ceram. Soc. 91(10), 3431–3433 (2008).
[Crossref]

Hayashi, K.

K. Hayashi, O. Kobayashi, S. Toyoda, and K. Morinaga, “Transmission optical properties of polycrystalline alumina with submicron grains,” Mater. Trans., JIM 32(11), 1024–1029 (1991).
[Crossref]

Henrist, C.

E. Guilmeau, C. Henrist, T. Suzuki, Y. Sakka, D. Chateigner, D. Grossin, and B. Ouladdiaf, “Texture of Alumina by neutron diffraction and SEM-EBSD,” Mater. Sci. Forum 495–497, 1395–1400 (2005).
[Crossref]

Hiraga, K.

B.-N. Kim, K. Hiraga, K. Morita, and H. Yoshida, “Spark plasma sintering of transparent alumina,” Scr. Mater. 57(7), 607–610 (2007).
[Crossref]

Hutzler, T.

A. Krell, J. Klimke, and T. Hutzler, “Advanced spinel and sub-μm Al2O3 for transparent armour applications,” J. Eur. Ceram. Soc. 29(2), 275–281 (2009).
[Crossref]

A. Krell, J. Klimke, and T. Hutzler, “Transparent compact ceramics: inherent physical issues,” Opt. Mater. 31(8), 1144–1150 (2009).
[Crossref]

A. Krell, P. Blank, H. Ma, T. Hutzler, M. P. Bruggen, and R. Apetz, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc. 86(1), 12–18 (2003).
[Crossref]

Ishikawa, T.

A. Makiya, S. Tanaka, D. Shoji, T. Ishikawa, N. Uchida, and K. Uematsu, “A quantitative evaluation method for particle orientation structure in alumina powder compacts,” J. Eur. Ceram. Soc. 27(12), 3399–3406 (2007).
[Crossref]

Kaneko, K.

N. Terada, H. Suzuki, T. Suzuki, H. Kitazawa, Y. Sakka, K. Kaneko, and N. Metoki, “In situ neutron diffraction study of aligning of crystal orientation in diamagnetic ceramics under magnetic fields,” Appl. Phys. Lett. 92(11), 112507 (2008).
[Crossref]

Kim, B.-N.

B.-N. Kim, K. Hiraga, K. Morita, and H. Yoshida, “Spark plasma sintering of transparent alumina,” Scr. Mater. 57(7), 607–610 (2007).
[Crossref]

Kimura, T.

A. Makiya, D. Shouji, S. Tanaka, N. Uchida, T. Kimura, and K. Uematsu, “Grain oriented microstructure made in high magnetic field,” Key Eng. Mater. 206, 445–448 (2001).

Kitazawa, H.

N. Terada, H. Suzuki, T. Suzuki, H. Kitazawa, Y. Sakka, K. Kaneko, and N. Metoki, “In situ neutron diffraction study of aligning of crystal orientation in diamagnetic ceramics under magnetic fields,” Appl. Phys. Lett. 92(11), 112507 (2008).
[Crossref]

Kitazawa, K.

T. S. Suzuki, Y. Sakka, and K. Kitazawa, “Orientation amplification of alumina by colloidal filtration in a strong magnetic field and sintering,” Adv. Eng. Mater. 3(7), 490–492 (2001).
[Crossref]

Klimke, J.

A. Krell, J. Klimke, and T. Hutzler, “Advanced spinel and sub-μm Al2O3 for transparent armour applications,” J. Eur. Ceram. Soc. 29(2), 275–281 (2009).
[Crossref]

A. Krell, J. Klimke, and T. Hutzler, “Transparent compact ceramics: inherent physical issues,” Opt. Mater. 31(8), 1144–1150 (2009).
[Crossref]

Kobayashi, O.

K. Hayashi, O. Kobayashi, S. Toyoda, and K. Morinaga, “Transmission optical properties of polycrystalline alumina with submicron grains,” Mater. Trans., JIM 32(11), 1024–1029 (1991).
[Crossref]

Krell, A.

A. Krell, J. Klimke, and T. Hutzler, “Advanced spinel and sub-μm Al2O3 for transparent armour applications,” J. Eur. Ceram. Soc. 29(2), 275–281 (2009).
[Crossref]

A. Krell, J. Klimke, and T. Hutzler, “Transparent compact ceramics: inherent physical issues,” Opt. Mater. 31(8), 1144–1150 (2009).
[Crossref]

A. Krell, P. Blank, H. Ma, T. Hutzler, M. P. Bruggen, and R. Apetz, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc. 86(1), 12–18 (2003).
[Crossref]

A. Krell, G. M. Baur, and C. Dahne, “Transparent sintered sub-μm Al2O3 with infrared transmissivity equal to sapphire,” Proc. SPIE 5078, 199–207 (2003).
[Crossref]

Lotgering, F.

F. Lotgering, “Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I,” J. Inorg. Nucl. Chem. 9(2), 113–123 (1959).
[Crossref]

Ma, H.

A. Krell, P. Blank, H. Ma, T. Hutzler, M. P. Bruggen, and R. Apetz, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc. 86(1), 12–18 (2003).
[Crossref]

Makiya, A.

A. Makiya, S. Tanaka, D. Shoji, T. Ishikawa, N. Uchida, and K. Uematsu, “A quantitative evaluation method for particle orientation structure in alumina powder compacts,” J. Eur. Ceram. Soc. 27(12), 3399–3406 (2007).
[Crossref]

A. Makiya, D. Shouji, S. Tanaka, N. Uchida, T. Kimura, and K. Uematsu, “Grain oriented microstructure made in high magnetic field,” Key Eng. Mater. 206, 445–448 (2001).

Mao, X.

H. Yi, X. Mao, G. Zhou, S. Chen, X. Zou, S. Wang, and S. Shimai, “Crystal plane evolution of grain oriented alumina ceramics with high transparency,” Ceram. Int. 38(7), 5557–5561 (2012).
[Crossref]

X. Mao, S. Wang, S. Shimai, and J. Guo, “Transparent polycrystalline alumina ceramics with orientated optical axes,” J. Am. Ceram. Soc. 91(10), 3431–3433 (2008).
[Crossref]

Metoki, N.

N. Terada, H. Suzuki, T. Suzuki, H. Kitazawa, Y. Sakka, K. Kaneko, and N. Metoki, “In situ neutron diffraction study of aligning of crystal orientation in diamagnetic ceramics under magnetic fields,” Appl. Phys. Lett. 92(11), 112507 (2008).
[Crossref]

Morinaga, K.

K. Hayashi, O. Kobayashi, S. Toyoda, and K. Morinaga, “Transmission optical properties of polycrystalline alumina with submicron grains,” Mater. Trans., JIM 32(11), 1024–1029 (1991).
[Crossref]

Morita, K.

B.-N. Kim, K. Hiraga, K. Morita, and H. Yoshida, “Spark plasma sintering of transparent alumina,” Scr. Mater. 57(7), 607–610 (2007).
[Crossref]

Ouladdiaf, B.

E. Guilmeau, C. Henrist, T. Suzuki, Y. Sakka, D. Chateigner, D. Grossin, and B. Ouladdiaf, “Texture of Alumina by neutron diffraction and SEM-EBSD,” Mater. Sci. Forum 495–497, 1395–1400 (2005).
[Crossref]

Sakka, Y.

N. Terada, H. Suzuki, T. Suzuki, H. Kitazawa, Y. Sakka, K. Kaneko, and N. Metoki, “In situ neutron diffraction study of aligning of crystal orientation in diamagnetic ceramics under magnetic fields,” Appl. Phys. Lett. 92(11), 112507 (2008).
[Crossref]

E. Guilmeau, C. Henrist, T. Suzuki, Y. Sakka, D. Chateigner, D. Grossin, and B. Ouladdiaf, “Texture of Alumina by neutron diffraction and SEM-EBSD,” Mater. Sci. Forum 495–497, 1395–1400 (2005).
[Crossref]

T. S. Suzuki, Y. Sakka, and K. Kitazawa, “Orientation amplification of alumina by colloidal filtration in a strong magnetic field and sintering,” Adv. Eng. Mater. 3(7), 490–492 (2001).
[Crossref]

Sato, Y.

Shimai, S.

H. Yi, X. Mao, G. Zhou, S. Chen, X. Zou, S. Wang, and S. Shimai, “Crystal plane evolution of grain oriented alumina ceramics with high transparency,” Ceram. Int. 38(7), 5557–5561 (2012).
[Crossref]

X. Mao, S. Wang, S. Shimai, and J. Guo, “Transparent polycrystalline alumina ceramics with orientated optical axes,” J. Am. Ceram. Soc. 91(10), 3431–3433 (2008).
[Crossref]

Shoji, D.

A. Makiya, S. Tanaka, D. Shoji, T. Ishikawa, N. Uchida, and K. Uematsu, “A quantitative evaluation method for particle orientation structure in alumina powder compacts,” J. Eur. Ceram. Soc. 27(12), 3399–3406 (2007).
[Crossref]

Shouji, D.

A. Makiya, D. Shouji, S. Tanaka, N. Uchida, T. Kimura, and K. Uematsu, “Grain oriented microstructure made in high magnetic field,” Key Eng. Mater. 206, 445–448 (2001).

Suzuki, H.

N. Terada, H. Suzuki, T. Suzuki, H. Kitazawa, Y. Sakka, K. Kaneko, and N. Metoki, “In situ neutron diffraction study of aligning of crystal orientation in diamagnetic ceramics under magnetic fields,” Appl. Phys. Lett. 92(11), 112507 (2008).
[Crossref]

Suzuki, T.

N. Terada, H. Suzuki, T. Suzuki, H. Kitazawa, Y. Sakka, K. Kaneko, and N. Metoki, “In situ neutron diffraction study of aligning of crystal orientation in diamagnetic ceramics under magnetic fields,” Appl. Phys. Lett. 92(11), 112507 (2008).
[Crossref]

E. Guilmeau, C. Henrist, T. Suzuki, Y. Sakka, D. Chateigner, D. Grossin, and B. Ouladdiaf, “Texture of Alumina by neutron diffraction and SEM-EBSD,” Mater. Sci. Forum 495–497, 1395–1400 (2005).
[Crossref]

Suzuki, T. S.

T. S. Suzuki, Y. Sakka, and K. Kitazawa, “Orientation amplification of alumina by colloidal filtration in a strong magnetic field and sintering,” Adv. Eng. Mater. 3(7), 490–492 (2001).
[Crossref]

Taira, T.

Tanaka, S.

A. Makiya, S. Tanaka, D. Shoji, T. Ishikawa, N. Uchida, and K. Uematsu, “A quantitative evaluation method for particle orientation structure in alumina powder compacts,” J. Eur. Ceram. Soc. 27(12), 3399–3406 (2007).
[Crossref]

A. Makiya, D. Shouji, S. Tanaka, N. Uchida, T. Kimura, and K. Uematsu, “Grain oriented microstructure made in high magnetic field,” Key Eng. Mater. 206, 445–448 (2001).

Terada, N.

N. Terada, H. Suzuki, T. Suzuki, H. Kitazawa, Y. Sakka, K. Kaneko, and N. Metoki, “In situ neutron diffraction study of aligning of crystal orientation in diamagnetic ceramics under magnetic fields,” Appl. Phys. Lett. 92(11), 112507 (2008).
[Crossref]

Toyoda, S.

K. Hayashi, O. Kobayashi, S. Toyoda, and K. Morinaga, “Transmission optical properties of polycrystalline alumina with submicron grains,” Mater. Trans., JIM 32(11), 1024–1029 (1991).
[Crossref]

Uchida, N.

A. Makiya, S. Tanaka, D. Shoji, T. Ishikawa, N. Uchida, and K. Uematsu, “A quantitative evaluation method for particle orientation structure in alumina powder compacts,” J. Eur. Ceram. Soc. 27(12), 3399–3406 (2007).
[Crossref]

A. Makiya, D. Shouji, S. Tanaka, N. Uchida, T. Kimura, and K. Uematsu, “Grain oriented microstructure made in high magnetic field,” Key Eng. Mater. 206, 445–448 (2001).

Uematsu, K.

A. Makiya, S. Tanaka, D. Shoji, T. Ishikawa, N. Uchida, and K. Uematsu, “A quantitative evaluation method for particle orientation structure in alumina powder compacts,” J. Eur. Ceram. Soc. 27(12), 3399–3406 (2007).
[Crossref]

A. Makiya, D. Shouji, S. Tanaka, N. Uchida, T. Kimura, and K. Uematsu, “Grain oriented microstructure made in high magnetic field,” Key Eng. Mater. 206, 445–448 (2001).

Van der Biest, O.

L. Zhang, J. Vleugels, and O. Van der Biest, “Slip casting of alumina suspensions in a strong magnetic field,” J. Am. Ceram. Soc. 93(10), 3148–3152 (2010).
[Crossref]

Vleugels, J.

L. Zhang, J. Vleugels, and O. Van der Biest, “Slip casting of alumina suspensions in a strong magnetic field,” J. Am. Ceram. Soc. 93(10), 3148–3152 (2010).
[Crossref]

Wang, S.

H. Yi, X. Mao, G. Zhou, S. Chen, X. Zou, S. Wang, and S. Shimai, “Crystal plane evolution of grain oriented alumina ceramics with high transparency,” Ceram. Int. 38(7), 5557–5561 (2012).
[Crossref]

X. Mao, S. Wang, S. Shimai, and J. Guo, “Transparent polycrystalline alumina ceramics with orientated optical axes,” J. Am. Ceram. Soc. 91(10), 3431–3433 (2008).
[Crossref]

Yi, H.

H. Yi, X. Mao, G. Zhou, S. Chen, X. Zou, S. Wang, and S. Shimai, “Crystal plane evolution of grain oriented alumina ceramics with high transparency,” Ceram. Int. 38(7), 5557–5561 (2012).
[Crossref]

Yoshida, H.

B.-N. Kim, K. Hiraga, K. Morita, and H. Yoshida, “Spark plasma sintering of transparent alumina,” Scr. Mater. 57(7), 607–610 (2007).
[Crossref]

Zhang, L.

L. Zhang, J. Vleugels, and O. Van der Biest, “Slip casting of alumina suspensions in a strong magnetic field,” J. Am. Ceram. Soc. 93(10), 3148–3152 (2010).
[Crossref]

Zhou, G.

H. Yi, X. Mao, G. Zhou, S. Chen, X. Zou, S. Wang, and S. Shimai, “Crystal plane evolution of grain oriented alumina ceramics with high transparency,” Ceram. Int. 38(7), 5557–5561 (2012).
[Crossref]

Zou, X.

H. Yi, X. Mao, G. Zhou, S. Chen, X. Zou, S. Wang, and S. Shimai, “Crystal plane evolution of grain oriented alumina ceramics with high transparency,” Ceram. Int. 38(7), 5557–5561 (2012).
[Crossref]

Adv. Eng. Mater. (1)

T. S. Suzuki, Y. Sakka, and K. Kitazawa, “Orientation amplification of alumina by colloidal filtration in a strong magnetic field and sintering,” Adv. Eng. Mater. 3(7), 490–492 (2001).
[Crossref]

Appl. Phys. Express (1)

J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express 4(2), 022703 (2011).
[Crossref]

Appl. Phys. Lett. (1)

N. Terada, H. Suzuki, T. Suzuki, H. Kitazawa, Y. Sakka, K. Kaneko, and N. Metoki, “In situ neutron diffraction study of aligning of crystal orientation in diamagnetic ceramics under magnetic fields,” Appl. Phys. Lett. 92(11), 112507 (2008).
[Crossref]

Ceram. Int. (1)

H. Yi, X. Mao, G. Zhou, S. Chen, X. Zou, S. Wang, and S. Shimai, “Crystal plane evolution of grain oriented alumina ceramics with high transparency,” Ceram. Int. 38(7), 5557–5561 (2012).
[Crossref]

J. Am. Ceram. Soc. (3)

L. Zhang, J. Vleugels, and O. Van der Biest, “Slip casting of alumina suspensions in a strong magnetic field,” J. Am. Ceram. Soc. 93(10), 3148–3152 (2010).
[Crossref]

X. Mao, S. Wang, S. Shimai, and J. Guo, “Transparent polycrystalline alumina ceramics with orientated optical axes,” J. Am. Ceram. Soc. 91(10), 3431–3433 (2008).
[Crossref]

A. Krell, P. Blank, H. Ma, T. Hutzler, M. P. Bruggen, and R. Apetz, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc. 86(1), 12–18 (2003).
[Crossref]

J. Eur. Ceram. Soc. (2)

A. Krell, J. Klimke, and T. Hutzler, “Advanced spinel and sub-μm Al2O3 for transparent armour applications,” J. Eur. Ceram. Soc. 29(2), 275–281 (2009).
[Crossref]

A. Makiya, S. Tanaka, D. Shoji, T. Ishikawa, N. Uchida, and K. Uematsu, “A quantitative evaluation method for particle orientation structure in alumina powder compacts,” J. Eur. Ceram. Soc. 27(12), 3399–3406 (2007).
[Crossref]

J. Inorg. Nucl. Chem. (1)

F. Lotgering, “Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I,” J. Inorg. Nucl. Chem. 9(2), 113–123 (1959).
[Crossref]

Key Eng. Mater. (1)

A. Makiya, D. Shouji, S. Tanaka, N. Uchida, T. Kimura, and K. Uematsu, “Grain oriented microstructure made in high magnetic field,” Key Eng. Mater. 206, 445–448 (2001).

Mater. Sci. Forum (1)

E. Guilmeau, C. Henrist, T. Suzuki, Y. Sakka, D. Chateigner, D. Grossin, and B. Ouladdiaf, “Texture of Alumina by neutron diffraction and SEM-EBSD,” Mater. Sci. Forum 495–497, 1395–1400 (2005).
[Crossref]

Mater. Trans., JIM (1)

K. Hayashi, O. Kobayashi, S. Toyoda, and K. Morinaga, “Transmission optical properties of polycrystalline alumina with submicron grains,” Mater. Trans., JIM 32(11), 1024–1029 (1991).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

A. Krell, J. Klimke, and T. Hutzler, “Transparent compact ceramics: inherent physical issues,” Opt. Mater. 31(8), 1144–1150 (2009).
[Crossref]

Opt. Mater. Express (2)

Proc. SPIE (1)

A. Krell, G. M. Baur, and C. Dahne, “Transparent sintered sub-μm Al2O3 with infrared transmissivity equal to sapphire,” Proc. SPIE 5078, 199–207 (2003).
[Crossref]

Scr. Mater. (1)

B.-N. Kim, K. Hiraga, K. Morita, and H. Yoshida, “Spark plasma sintering of transparent alumina,” Scr. Mater. 57(7), 607–610 (2007).
[Crossref]

Other (1)

A. Krell, T. Hutzler, and J. Klimke, “Physics and Technology of Transparent Ceramic Armor: Sintered Al2O3 vs Cubic Materials,” Proc. Specialists Meeting on “Nanomaterials Technology for Military Vehicle Structural Applications” (Granada, Spain, 2005), pp. 14–11 - 10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of slip casting under magnetic field.
Fig. 2
Fig. 2 Microstructures of alumina ceramics shaped under (a)12T and (b) 0T magnetic field, and HIP sintered at 1275°C/160MPa for 3h.
Fig. 3
Fig. 3 Photos of HIP sintered alumina shaped under (a) 12 T and (b) 0 T, respectively.
Fig. 4
Fig. 4 In-line transmittance of HIP sintered alumina shaped under 12T and 0T (a) UV-visible region and (b) infrared region.
Fig. 5
Fig. 5 XRD patterns of HIP sintered alumina at 1275°C/160MPa for 3h shaped under (a) 12T, and (b) 0T.
Fig. 6
Fig. 6 XRD tested on top of alumina shaped under 12T and pressureless sintered at 1700~1880°C for 3h.
Fig. 7
Fig. 7 Fracture surfaces (parallel to top) of alumina ceramics shaped under 12T and pressureless sintered at (a) 1700°C, (b) 1800°C, (c) 1850°C, and (d)1880°C for 3h, respectively.
Fig. 8
Fig. 8 Fracture of alumina shaped under 12T and pressureless sintered at 1800°C for 3h.

Metrics