Abstract

NaYF4: Er3+, Yb3+ nanoparticles (NPs) were synthesized by using a high temperature thermal decomposition approach. Under a 980 nm laser excitation, intense emission at 1.53 μm from NaYF4: Er3+,Yb3+ NPs was obtained. NaYF4: Er3+, Yb3+ NPs-PMMA covalent-linking nanocomposite was prepared by copolymerization of the oleic acid-modified NaYF4: Er3+, Yb3+ NPs and methylmethacrylate(MMA). In this case, the doping mass concentration of NPs in the polymer matrix could be up to 1%, which is 10 times larger than previously published results. We constructed optical waveguide amplifiers with a structure of embedded waveguide using the NPs-PMMA nanocomposite as the core material. For an input signal power of 0.14 mW and a pump power of 400 mW, a relative optical gain of 7.6 dB was obtained at 1540 nm in a 15 mm-long waveguide.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of 1.53 μm emission band in NaYF4:Er3+,Yb3+,Ce3+ nanocrystals for polymer-based optical waveguide amplifiers

Xuesong Zhai, Jie Li, Shusen Liu, Xinyang Liu, Dan Zhao, Fei Wang, Daming Zhang, Guanshi Qin, and Weiping Qin
Opt. Mater. Express 3(2) 270-277 (2013)

Efficient excitation of photoluminescence in a two-dimensional waveguide consisting of a quantum dot-polymer sandwich-type structure

I. Suárez, A. Larrue, P. J. Rodríguez-Cantó, G. Almuneau, R. Abargues, V. S. Chirvony, and J. P. Martínez-Pastor
Opt. Lett. 39(16) 4962-4965 (2014)

Performance analysis of nanocluster-Si sensitized Er-doped waveguide amplifier using top-pumped 470nm LED

Hansuek Lee, Jung H. Shin, and Namkyoo Park
Opt. Express 13(24) 9881-9889 (2005)

References

  • View by:
  • |
  • |
  • |

  1. D. Barbier, “Erbium-doped waveguide amplifiers promote optical-networking evolution,” Lightwave 11, 19–20 (2000).
  2. P. P. Iannone, K. C. Reichmann, M. Birk, N. J. Frigo, R. M. Derosier, D. Barbier, C. Cassagnettes, T. Garret, A. Verlucco, S. Perrier, and J. Philipsen, “A 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers,” OFC 3, 1–3 (2001).
  3. S. V. Frolov, T. M. Shen, and A. J. Bruce, “EDWA: Key enabler of optical integration on PLC,” Proc. SPIE 4990, 47–54 (2003).
    [Crossref]
  4. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
    [Crossref]
  5. A. A. Reddy, S. S. Babu, K. Pradeesh, C. J. Otton, and G. V. Prakash, “Optical properties of highly Er3+-doped sodium–aluminium–phosphate glasses for broadband 1.5 μm emission,” J. Alloy. Comp. 509(9), 4047–4052 (2011).
    [Crossref]
  6. T. T. Fernandez, S. M. Eaton, G. Della Valle, R. M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, and P. Laporta, “Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass,” Opt. Express 18(19), 20289–20297 (2010).
    [Crossref] [PubMed]
  7. C. H. Huang and L. McCaughan, “980nm-pumped Er- doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2(2), 367–372 (1996).
    [Crossref]
  8. C. H. Huang and L. McCaughan, “Photorefractive-damage-resistant Er-indiffused MgO: LiNbO3 ZnO-waveguide amplifiers and lasers,” Electron. Lett. 33(19), 1639–1640 (1997).
    [Crossref]
  9. L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer processes in Al2O3: Er3+ waveguide amplifiers,” in Conference on Lasers and Electro-Optics/Science and Innovations, (Optical Society of America, 2012), paper CF3A. 3.
    [Crossref]
  10. A. Z. Subramanian, G. S. Murugan, M. N. Zervas, and J. S. Wilkinson, “Spectroscopy, Modeling, and Performance of Erbium-Doped Ta2O5 waveguide amplifiers,” J. Lightwave Technol. 30(10), 1455–1462 (2012).
    [Crossref]
  11. H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
    [Crossref]
  12. W. H. Wong, E. Y. B. Pun, and K. S. Chan, “Er3+–Yb3+ codoped polymeric optical waveguide amplifiers,” Appl. Phys. Lett. 84(2), 176–178 (2004).
    [Crossref]
  13. D. Zhang, C. Chen, X. Sun, Y. G. Zhang, X. Z. Zhang, A. H. Wu, B. Li, and D. M. Zhang, “Optical properties of Er(DBM)3Phen-doped polymer and fabrication of ridge waveguide,” Opt. Commun. 278(1), 90–93 (2007).
    [Crossref]
  14. L. M. Song, X. H. Liu, Z. Zhen, C. Chen, and D. M. Zhang, “Solution-processable erbium-ytterbium complex for potential planar optical amplifier application,” J. Mater. Chem. 17(43), 4586–4590 (2007).
    [Crossref]
  15. L. Q. A. Quoc, B. Eric, H. Rolland, M. Rolland Hierlea, M. Ahmad, R. Catherine, C. Robert, and L. R. Isabelle, “Polymer-based materials for amplification in the telecommunication window: Influence of erbium complex concentration on relevant parameters for the elaboration of waveguide amplifiers around 1550 nm,” Opt. Mater. 29, 941–948 (2007).
  16. L. H. Slooff, A. V. Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
    [Crossref]
  17. S. H. Bo, J. Hu, Z. Chen, Q. Wang, G. M. Xu, X. H. Liu, and Z. Zhen, “Core-shell LaF3: Er,Yb nanocrystal doped sol-gel materials as waveguide amplifiers,” Appl. Phys. B 97(3), 665–669 (2009).
    [Crossref]
  18. X. S. Zhai, S. S. Liu, X. Y. Liu, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Sub-10nm BaYF5:Yb3+, Er3+ core-shell nanoparticles with intense 1.53µm fluorescence for polymer-based waveguide amplifier,” J. Mater. Chem. C 1(7), 1525–1530 (2013).
    [Crossref]
  19. G. A. Kumar, C. W. Chen, J. Ballato, and R. E. Riman, “Optical Characterization of Infrared Emitting Rare-Earth-Doped Fluoride Nanocrystals and Their Transparent Nanocomposites,” Chem. Mater. 19(6), 1523–1528 (2007).
    [Crossref]
  20. K. L. Lei, C. F. Chow, K. C. Tsang, E. N. Y. Lei, V. A. L. Roy, M. H. W. Lam, C. S. Lee, E. Y. B. Pun, and J. Li, “Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers,” J. Mater. Chem. 20(35), 7526–7529 (2010).
  21. J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles,” Nano Lett. 2(7), 733–737 (2002).
  22. J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. J. M. van Veggel, “Lanthanide-doped nanoparticles with excellent luminescent properties in organic media,” Chem. Mater. 15(24), 4604–4616 (2003).
    [Crossref]
  23. J. W. Stouwdam and F. C. J. M. van Veggel, “Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification,” Langmuir 20(26), 11763–11771 (2004).
    [Crossref] [PubMed]
  24. P. C. Zhao, M. L. Zhang, T. J. Wang, X. Y. Liu, X. S. Zhai, G. S. Qin, W. P. Qin, F. Wang, and D. M. Zhang, “Optical Amplification at 1525nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 153028 (2014).
  25. X. S. Zhai, J. Li, S. S. Liu, X. Y. Liu, D. Zhao, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Enhancement of 1.53 μm emission band in NaYF4: Er3+, Yb3+, Ce3+ nanocrystals for polymer-based optical waveguide amplifiers,” Opt. Mater. Express 3(2), 270–277 (2013).
    [Crossref]

2014 (1)

P. C. Zhao, M. L. Zhang, T. J. Wang, X. Y. Liu, X. S. Zhai, G. S. Qin, W. P. Qin, F. Wang, and D. M. Zhang, “Optical Amplification at 1525nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 153028 (2014).

2013 (2)

X. S. Zhai, J. Li, S. S. Liu, X. Y. Liu, D. Zhao, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Enhancement of 1.53 μm emission band in NaYF4: Er3+, Yb3+, Ce3+ nanocrystals for polymer-based optical waveguide amplifiers,” Opt. Mater. Express 3(2), 270–277 (2013).
[Crossref]

X. S. Zhai, S. S. Liu, X. Y. Liu, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Sub-10nm BaYF5:Yb3+, Er3+ core-shell nanoparticles with intense 1.53µm fluorescence for polymer-based waveguide amplifier,” J. Mater. Chem. C 1(7), 1525–1530 (2013).
[Crossref]

2012 (1)

2011 (1)

A. A. Reddy, S. S. Babu, K. Pradeesh, C. J. Otton, and G. V. Prakash, “Optical properties of highly Er3+-doped sodium–aluminium–phosphate glasses for broadband 1.5 μm emission,” J. Alloy. Comp. 509(9), 4047–4052 (2011).
[Crossref]

2010 (2)

T. T. Fernandez, S. M. Eaton, G. Della Valle, R. M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, and P. Laporta, “Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass,” Opt. Express 18(19), 20289–20297 (2010).
[Crossref] [PubMed]

K. L. Lei, C. F. Chow, K. C. Tsang, E. N. Y. Lei, V. A. L. Roy, M. H. W. Lam, C. S. Lee, E. Y. B. Pun, and J. Li, “Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers,” J. Mater. Chem. 20(35), 7526–7529 (2010).

2009 (1)

S. H. Bo, J. Hu, Z. Chen, Q. Wang, G. M. Xu, X. H. Liu, and Z. Zhen, “Core-shell LaF3: Er,Yb nanocrystal doped sol-gel materials as waveguide amplifiers,” Appl. Phys. B 97(3), 665–669 (2009).
[Crossref]

2007 (4)

G. A. Kumar, C. W. Chen, J. Ballato, and R. E. Riman, “Optical Characterization of Infrared Emitting Rare-Earth-Doped Fluoride Nanocrystals and Their Transparent Nanocomposites,” Chem. Mater. 19(6), 1523–1528 (2007).
[Crossref]

D. Zhang, C. Chen, X. Sun, Y. G. Zhang, X. Z. Zhang, A. H. Wu, B. Li, and D. M. Zhang, “Optical properties of Er(DBM)3Phen-doped polymer and fabrication of ridge waveguide,” Opt. Commun. 278(1), 90–93 (2007).
[Crossref]

L. M. Song, X. H. Liu, Z. Zhen, C. Chen, and D. M. Zhang, “Solution-processable erbium-ytterbium complex for potential planar optical amplifier application,” J. Mater. Chem. 17(43), 4586–4590 (2007).
[Crossref]

L. Q. A. Quoc, B. Eric, H. Rolland, M. Rolland Hierlea, M. Ahmad, R. Catherine, C. Robert, and L. R. Isabelle, “Polymer-based materials for amplification in the telecommunication window: Influence of erbium complex concentration on relevant parameters for the elaboration of waveguide amplifiers around 1550 nm,” Opt. Mater. 29, 941–948 (2007).

2004 (2)

W. H. Wong, E. Y. B. Pun, and K. S. Chan, “Er3+–Yb3+ codoped polymeric optical waveguide amplifiers,” Appl. Phys. Lett. 84(2), 176–178 (2004).
[Crossref]

J. W. Stouwdam and F. C. J. M. van Veggel, “Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification,” Langmuir 20(26), 11763–11771 (2004).
[Crossref] [PubMed]

2003 (2)

J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. J. M. van Veggel, “Lanthanide-doped nanoparticles with excellent luminescent properties in organic media,” Chem. Mater. 15(24), 4604–4616 (2003).
[Crossref]

S. V. Frolov, T. M. Shen, and A. J. Bruce, “EDWA: Key enabler of optical integration on PLC,” Proc. SPIE 4990, 47–54 (2003).
[Crossref]

2002 (3)

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

L. H. Slooff, A. V. Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles,” Nano Lett. 2(7), 733–737 (2002).

2001 (1)

P. P. Iannone, K. C. Reichmann, M. Birk, N. J. Frigo, R. M. Derosier, D. Barbier, C. Cassagnettes, T. Garret, A. Verlucco, S. Perrier, and J. Philipsen, “A 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers,” OFC 3, 1–3 (2001).

2000 (1)

D. Barbier, “Erbium-doped waveguide amplifiers promote optical-networking evolution,” Lightwave 11, 19–20 (2000).

1997 (2)

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
[Crossref]

C. H. Huang and L. McCaughan, “Photorefractive-damage-resistant Er-indiffused MgO: LiNbO3 ZnO-waveguide amplifiers and lasers,” Electron. Lett. 33(19), 1639–1640 (1997).
[Crossref]

1996 (1)

C. H. Huang and L. McCaughan, “980nm-pumped Er- doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2(2), 367–372 (1996).
[Crossref]

Ahmad, M.

L. Q. A. Quoc, B. Eric, H. Rolland, M. Rolland Hierlea, M. Ahmad, R. Catherine, C. Robert, and L. R. Isabelle, “Polymer-based materials for amplification in the telecommunication window: Influence of erbium complex concentration on relevant parameters for the elaboration of waveguide amplifiers around 1550 nm,” Opt. Mater. 29, 941–948 (2007).

Babu, S. S.

A. A. Reddy, S. S. Babu, K. Pradeesh, C. J. Otton, and G. V. Prakash, “Optical properties of highly Er3+-doped sodium–aluminium–phosphate glasses for broadband 1.5 μm emission,” J. Alloy. Comp. 509(9), 4047–4052 (2011).
[Crossref]

Ballato, J.

G. A. Kumar, C. W. Chen, J. Ballato, and R. E. Riman, “Optical Characterization of Infrared Emitting Rare-Earth-Doped Fluoride Nanocrystals and Their Transparent Nanocomposites,” Chem. Mater. 19(6), 1523–1528 (2007).
[Crossref]

Barbier, D.

P. P. Iannone, K. C. Reichmann, M. Birk, N. J. Frigo, R. M. Derosier, D. Barbier, C. Cassagnettes, T. Garret, A. Verlucco, S. Perrier, and J. Philipsen, “A 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers,” OFC 3, 1–3 (2001).

D. Barbier, “Erbium-doped waveguide amplifiers promote optical-networking evolution,” Lightwave 11, 19–20 (2000).

Birk, M.

P. P. Iannone, K. C. Reichmann, M. Birk, N. J. Frigo, R. M. Derosier, D. Barbier, C. Cassagnettes, T. Garret, A. Verlucco, S. Perrier, and J. Philipsen, “A 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers,” OFC 3, 1–3 (2001).

Blaaderen, A. V.

L. H. Slooff, A. V. Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

Bo, S. H.

S. H. Bo, J. Hu, Z. Chen, Q. Wang, G. M. Xu, X. H. Liu, and Z. Zhen, “Core-shell LaF3: Er,Yb nanocrystal doped sol-gel materials as waveguide amplifiers,” Appl. Phys. B 97(3), 665–669 (2009).
[Crossref]

Bruce, A. J.

S. V. Frolov, T. M. Shen, and A. J. Bruce, “EDWA: Key enabler of optical integration on PLC,” Proc. SPIE 4990, 47–54 (2003).
[Crossref]

Cassagnettes, C.

P. P. Iannone, K. C. Reichmann, M. Birk, N. J. Frigo, R. M. Derosier, D. Barbier, C. Cassagnettes, T. Garret, A. Verlucco, S. Perrier, and J. Philipsen, “A 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers,” OFC 3, 1–3 (2001).

Catherine, R.

L. Q. A. Quoc, B. Eric, H. Rolland, M. Rolland Hierlea, M. Ahmad, R. Catherine, C. Robert, and L. R. Isabelle, “Polymer-based materials for amplification in the telecommunication window: Influence of erbium complex concentration on relevant parameters for the elaboration of waveguide amplifiers around 1550 nm,” Opt. Mater. 29, 941–948 (2007).

Cerullo, G.

Chan, K. S.

W. H. Wong, E. Y. B. Pun, and K. S. Chan, “Er3+–Yb3+ codoped polymeric optical waveguide amplifiers,” Appl. Phys. Lett. 84(2), 176–178 (2004).
[Crossref]

Chen, C.

D. Zhang, C. Chen, X. Sun, Y. G. Zhang, X. Z. Zhang, A. H. Wu, B. Li, and D. M. Zhang, “Optical properties of Er(DBM)3Phen-doped polymer and fabrication of ridge waveguide,” Opt. Commun. 278(1), 90–93 (2007).
[Crossref]

L. M. Song, X. H. Liu, Z. Zhen, C. Chen, and D. M. Zhang, “Solution-processable erbium-ytterbium complex for potential planar optical amplifier application,” J. Mater. Chem. 17(43), 4586–4590 (2007).
[Crossref]

Chen, C. W.

G. A. Kumar, C. W. Chen, J. Ballato, and R. E. Riman, “Optical Characterization of Infrared Emitting Rare-Earth-Doped Fluoride Nanocrystals and Their Transparent Nanocomposites,” Chem. Mater. 19(6), 1523–1528 (2007).
[Crossref]

Chen, Z.

S. H. Bo, J. Hu, Z. Chen, Q. Wang, G. M. Xu, X. H. Liu, and Z. Zhen, “Core-shell LaF3: Er,Yb nanocrystal doped sol-gel materials as waveguide amplifiers,” Appl. Phys. B 97(3), 665–669 (2009).
[Crossref]

Chow, C. F.

K. L. Lei, C. F. Chow, K. C. Tsang, E. N. Y. Lei, V. A. L. Roy, M. H. W. Lam, C. S. Lee, E. Y. B. Pun, and J. Li, “Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers,” J. Mater. Chem. 20(35), 7526–7529 (2010).

Dalton, L. R.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Della Valle, G.

Derosier, R. M.

P. P. Iannone, K. C. Reichmann, M. Birk, N. J. Frigo, R. M. Derosier, D. Barbier, C. Cassagnettes, T. Garret, A. Verlucco, S. Perrier, and J. Philipsen, “A 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers,” OFC 3, 1–3 (2001).

Eaton, S. M.

Eric, B.

L. Q. A. Quoc, B. Eric, H. Rolland, M. Rolland Hierlea, M. Ahmad, R. Catherine, C. Robert, and L. R. Isabelle, “Polymer-based materials for amplification in the telecommunication window: Influence of erbium complex concentration on relevant parameters for the elaboration of waveguide amplifiers around 1550 nm,” Opt. Mater. 29, 941–948 (2007).

Fernandez, T. T.

Frigo, N. J.

P. P. Iannone, K. C. Reichmann, M. Birk, N. J. Frigo, R. M. Derosier, D. Barbier, C. Cassagnettes, T. Garret, A. Verlucco, S. Perrier, and J. Philipsen, “A 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers,” OFC 3, 1–3 (2001).

Frolov, S. V.

S. V. Frolov, T. M. Shen, and A. J. Bruce, “EDWA: Key enabler of optical integration on PLC,” Proc. SPIE 4990, 47–54 (2003).
[Crossref]

Garret, T.

P. P. Iannone, K. C. Reichmann, M. Birk, N. J. Frigo, R. M. Derosier, D. Barbier, C. Cassagnettes, T. Garret, A. Verlucco, S. Perrier, and J. Philipsen, “A 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers,” OFC 3, 1–3 (2001).

Hebbink, G. A.

J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. J. M. van Veggel, “Lanthanide-doped nanoparticles with excellent luminescent properties in organic media,” Chem. Mater. 15(24), 4604–4616 (2003).
[Crossref]

L. H. Slooff, A. V. Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

Hofstraat, J. W.

L. H. Slooff, A. V. Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

Hu, J.

S. H. Bo, J. Hu, Z. Chen, Q. Wang, G. M. Xu, X. H. Liu, and Z. Zhen, “Core-shell LaF3: Er,Yb nanocrystal doped sol-gel materials as waveguide amplifiers,” Appl. Phys. B 97(3), 665–669 (2009).
[Crossref]

Huang, C. H.

C. H. Huang and L. McCaughan, “Photorefractive-damage-resistant Er-indiffused MgO: LiNbO3 ZnO-waveguide amplifiers and lasers,” Electron. Lett. 33(19), 1639–1640 (1997).
[Crossref]

C. H. Huang and L. McCaughan, “980nm-pumped Er- doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2(2), 367–372 (1996).
[Crossref]

Huskens, J.

J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. J. M. van Veggel, “Lanthanide-doped nanoparticles with excellent luminescent properties in organic media,” Chem. Mater. 15(24), 4604–4616 (2003).
[Crossref]

Iannone, P. P.

P. P. Iannone, K. C. Reichmann, M. Birk, N. J. Frigo, R. M. Derosier, D. Barbier, C. Cassagnettes, T. Garret, A. Verlucco, S. Perrier, and J. Philipsen, “A 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers,” OFC 3, 1–3 (2001).

Irannejad, M.

Isabelle, L. R.

L. Q. A. Quoc, B. Eric, H. Rolland, M. Rolland Hierlea, M. Ahmad, R. Catherine, C. Robert, and L. R. Isabelle, “Polymer-based materials for amplification in the telecommunication window: Influence of erbium complex concentration on relevant parameters for the elaboration of waveguide amplifiers around 1550 nm,” Opt. Mater. 29, 941–948 (2007).

Jen, A. K. Y.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Jha, A.

Jose, G.

Klink, S. I.

L. H. Slooff, A. V. Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

Kumar, G. A.

G. A. Kumar, C. W. Chen, J. Ballato, and R. E. Riman, “Optical Characterization of Infrared Emitting Rare-Earth-Doped Fluoride Nanocrystals and Their Transparent Nanocomposites,” Chem. Mater. 19(6), 1523–1528 (2007).
[Crossref]

Lam, M. H. W.

K. L. Lei, C. F. Chow, K. C. Tsang, E. N. Y. Lei, V. A. L. Roy, M. H. W. Lam, C. S. Lee, E. Y. B. Pun, and J. Li, “Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers,” J. Mater. Chem. 20(35), 7526–7529 (2010).

Laporta, P.

Lee, C. S.

K. L. Lei, C. F. Chow, K. C. Tsang, E. N. Y. Lei, V. A. L. Roy, M. H. W. Lam, C. S. Lee, E. Y. B. Pun, and J. Li, “Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers,” J. Mater. Chem. 20(35), 7526–7529 (2010).

Lei, E. N. Y.

K. L. Lei, C. F. Chow, K. C. Tsang, E. N. Y. Lei, V. A. L. Roy, M. H. W. Lam, C. S. Lee, E. Y. B. Pun, and J. Li, “Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers,” J. Mater. Chem. 20(35), 7526–7529 (2010).

Lei, K. L.

K. L. Lei, C. F. Chow, K. C. Tsang, E. N. Y. Lei, V. A. L. Roy, M. H. W. Lam, C. S. Lee, E. Y. B. Pun, and J. Li, “Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers,” J. Mater. Chem. 20(35), 7526–7529 (2010).

Li, B.

D. Zhang, C. Chen, X. Sun, Y. G. Zhang, X. Z. Zhang, A. H. Wu, B. Li, and D. M. Zhang, “Optical properties of Er(DBM)3Phen-doped polymer and fabrication of ridge waveguide,” Opt. Commun. 278(1), 90–93 (2007).
[Crossref]

Li, J.

X. S. Zhai, J. Li, S. S. Liu, X. Y. Liu, D. Zhao, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Enhancement of 1.53 μm emission band in NaYF4: Er3+, Yb3+, Ce3+ nanocrystals for polymer-based optical waveguide amplifiers,” Opt. Mater. Express 3(2), 270–277 (2013).
[Crossref]

K. L. Lei, C. F. Chow, K. C. Tsang, E. N. Y. Lei, V. A. L. Roy, M. H. W. Lam, C. S. Lee, E. Y. B. Pun, and J. Li, “Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers,” J. Mater. Chem. 20(35), 7526–7529 (2010).

Liu, S. S.

X. S. Zhai, S. S. Liu, X. Y. Liu, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Sub-10nm BaYF5:Yb3+, Er3+ core-shell nanoparticles with intense 1.53µm fluorescence for polymer-based waveguide amplifier,” J. Mater. Chem. C 1(7), 1525–1530 (2013).
[Crossref]

X. S. Zhai, J. Li, S. S. Liu, X. Y. Liu, D. Zhao, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Enhancement of 1.53 μm emission band in NaYF4: Er3+, Yb3+, Ce3+ nanocrystals for polymer-based optical waveguide amplifiers,” Opt. Mater. Express 3(2), 270–277 (2013).
[Crossref]

Liu, X. H.

S. H. Bo, J. Hu, Z. Chen, Q. Wang, G. M. Xu, X. H. Liu, and Z. Zhen, “Core-shell LaF3: Er,Yb nanocrystal doped sol-gel materials as waveguide amplifiers,” Appl. Phys. B 97(3), 665–669 (2009).
[Crossref]

L. M. Song, X. H. Liu, Z. Zhen, C. Chen, and D. M. Zhang, “Solution-processable erbium-ytterbium complex for potential planar optical amplifier application,” J. Mater. Chem. 17(43), 4586–4590 (2007).
[Crossref]

Liu, X. Y.

P. C. Zhao, M. L. Zhang, T. J. Wang, X. Y. Liu, X. S. Zhai, G. S. Qin, W. P. Qin, F. Wang, and D. M. Zhang, “Optical Amplification at 1525nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 153028 (2014).

X. S. Zhai, J. Li, S. S. Liu, X. Y. Liu, D. Zhao, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Enhancement of 1.53 μm emission band in NaYF4: Er3+, Yb3+, Ce3+ nanocrystals for polymer-based optical waveguide amplifiers,” Opt. Mater. Express 3(2), 270–277 (2013).
[Crossref]

X. S. Zhai, S. S. Liu, X. Y. Liu, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Sub-10nm BaYF5:Yb3+, Er3+ core-shell nanoparticles with intense 1.53µm fluorescence for polymer-based waveguide amplifier,” J. Mater. Chem. C 1(7), 1525–1530 (2013).
[Crossref]

Ma, H.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

McCaughan, L.

C. H. Huang and L. McCaughan, “Photorefractive-damage-resistant Er-indiffused MgO: LiNbO3 ZnO-waveguide amplifiers and lasers,” Electron. Lett. 33(19), 1639–1640 (1997).
[Crossref]

C. H. Huang and L. McCaughan, “980nm-pumped Er- doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2(2), 367–372 (1996).
[Crossref]

Murugan, G. S.

Osellame, R.

Otton, C. J.

A. A. Reddy, S. S. Babu, K. Pradeesh, C. J. Otton, and G. V. Prakash, “Optical properties of highly Er3+-doped sodium–aluminium–phosphate glasses for broadband 1.5 μm emission,” J. Alloy. Comp. 509(9), 4047–4052 (2011).
[Crossref]

Perrier, S.

P. P. Iannone, K. C. Reichmann, M. Birk, N. J. Frigo, R. M. Derosier, D. Barbier, C. Cassagnettes, T. Garret, A. Verlucco, S. Perrier, and J. Philipsen, “A 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers,” OFC 3, 1–3 (2001).

Philipsen, J.

P. P. Iannone, K. C. Reichmann, M. Birk, N. J. Frigo, R. M. Derosier, D. Barbier, C. Cassagnettes, T. Garret, A. Verlucco, S. Perrier, and J. Philipsen, “A 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers,” OFC 3, 1–3 (2001).

Polman, A.

L. H. Slooff, A. V. Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
[Crossref]

Pradeesh, K.

A. A. Reddy, S. S. Babu, K. Pradeesh, C. J. Otton, and G. V. Prakash, “Optical properties of highly Er3+-doped sodium–aluminium–phosphate glasses for broadband 1.5 μm emission,” J. Alloy. Comp. 509(9), 4047–4052 (2011).
[Crossref]

Prakash, G. V.

A. A. Reddy, S. S. Babu, K. Pradeesh, C. J. Otton, and G. V. Prakash, “Optical properties of highly Er3+-doped sodium–aluminium–phosphate glasses for broadband 1.5 μm emission,” J. Alloy. Comp. 509(9), 4047–4052 (2011).
[Crossref]

Pun, E. Y. B.

K. L. Lei, C. F. Chow, K. C. Tsang, E. N. Y. Lei, V. A. L. Roy, M. H. W. Lam, C. S. Lee, E. Y. B. Pun, and J. Li, “Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers,” J. Mater. Chem. 20(35), 7526–7529 (2010).

W. H. Wong, E. Y. B. Pun, and K. S. Chan, “Er3+–Yb3+ codoped polymeric optical waveguide amplifiers,” Appl. Phys. Lett. 84(2), 176–178 (2004).
[Crossref]

Qin, G. S.

P. C. Zhao, M. L. Zhang, T. J. Wang, X. Y. Liu, X. S. Zhai, G. S. Qin, W. P. Qin, F. Wang, and D. M. Zhang, “Optical Amplification at 1525nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 153028 (2014).

X. S. Zhai, J. Li, S. S. Liu, X. Y. Liu, D. Zhao, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Enhancement of 1.53 μm emission band in NaYF4: Er3+, Yb3+, Ce3+ nanocrystals for polymer-based optical waveguide amplifiers,” Opt. Mater. Express 3(2), 270–277 (2013).
[Crossref]

X. S. Zhai, S. S. Liu, X. Y. Liu, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Sub-10nm BaYF5:Yb3+, Er3+ core-shell nanoparticles with intense 1.53µm fluorescence for polymer-based waveguide amplifier,” J. Mater. Chem. C 1(7), 1525–1530 (2013).
[Crossref]

Qin, W. P.

P. C. Zhao, M. L. Zhang, T. J. Wang, X. Y. Liu, X. S. Zhai, G. S. Qin, W. P. Qin, F. Wang, and D. M. Zhang, “Optical Amplification at 1525nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 153028 (2014).

X. S. Zhai, J. Li, S. S. Liu, X. Y. Liu, D. Zhao, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Enhancement of 1.53 μm emission band in NaYF4: Er3+, Yb3+, Ce3+ nanocrystals for polymer-based optical waveguide amplifiers,” Opt. Mater. Express 3(2), 270–277 (2013).
[Crossref]

X. S. Zhai, S. S. Liu, X. Y. Liu, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Sub-10nm BaYF5:Yb3+, Er3+ core-shell nanoparticles with intense 1.53µm fluorescence for polymer-based waveguide amplifier,” J. Mater. Chem. C 1(7), 1525–1530 (2013).
[Crossref]

Quoc, L. Q. A.

L. Q. A. Quoc, B. Eric, H. Rolland, M. Rolland Hierlea, M. Ahmad, R. Catherine, C. Robert, and L. R. Isabelle, “Polymer-based materials for amplification in the telecommunication window: Influence of erbium complex concentration on relevant parameters for the elaboration of waveguide amplifiers around 1550 nm,” Opt. Mater. 29, 941–948 (2007).

Reddy, A. A.

A. A. Reddy, S. S. Babu, K. Pradeesh, C. J. Otton, and G. V. Prakash, “Optical properties of highly Er3+-doped sodium–aluminium–phosphate glasses for broadband 1.5 μm emission,” J. Alloy. Comp. 509(9), 4047–4052 (2011).
[Crossref]

Reichmann, K. C.

P. P. Iannone, K. C. Reichmann, M. Birk, N. J. Frigo, R. M. Derosier, D. Barbier, C. Cassagnettes, T. Garret, A. Verlucco, S. Perrier, and J. Philipsen, “A 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers,” OFC 3, 1–3 (2001).

Reinhoudt, D. N.

L. H. Slooff, A. V. Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

Riman, R. E.

G. A. Kumar, C. W. Chen, J. Ballato, and R. E. Riman, “Optical Characterization of Infrared Emitting Rare-Earth-Doped Fluoride Nanocrystals and Their Transparent Nanocomposites,” Chem. Mater. 19(6), 1523–1528 (2007).
[Crossref]

Robert, C.

L. Q. A. Quoc, B. Eric, H. Rolland, M. Rolland Hierlea, M. Ahmad, R. Catherine, C. Robert, and L. R. Isabelle, “Polymer-based materials for amplification in the telecommunication window: Influence of erbium complex concentration on relevant parameters for the elaboration of waveguide amplifiers around 1550 nm,” Opt. Mater. 29, 941–948 (2007).

Rolland, H.

L. Q. A. Quoc, B. Eric, H. Rolland, M. Rolland Hierlea, M. Ahmad, R. Catherine, C. Robert, and L. R. Isabelle, “Polymer-based materials for amplification in the telecommunication window: Influence of erbium complex concentration on relevant parameters for the elaboration of waveguide amplifiers around 1550 nm,” Opt. Mater. 29, 941–948 (2007).

Rolland Hierlea, M.

L. Q. A. Quoc, B. Eric, H. Rolland, M. Rolland Hierlea, M. Ahmad, R. Catherine, C. Robert, and L. R. Isabelle, “Polymer-based materials for amplification in the telecommunication window: Influence of erbium complex concentration on relevant parameters for the elaboration of waveguide amplifiers around 1550 nm,” Opt. Mater. 29, 941–948 (2007).

Roy, V. A. L.

K. L. Lei, C. F. Chow, K. C. Tsang, E. N. Y. Lei, V. A. L. Roy, M. H. W. Lam, C. S. Lee, E. Y. B. Pun, and J. Li, “Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers,” J. Mater. Chem. 20(35), 7526–7529 (2010).

Shen, T. M.

S. V. Frolov, T. M. Shen, and A. J. Bruce, “EDWA: Key enabler of optical integration on PLC,” Proc. SPIE 4990, 47–54 (2003).
[Crossref]

Slooff, L. H.

L. H. Slooff, A. V. Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

Song, L. M.

L. M. Song, X. H. Liu, Z. Zhen, C. Chen, and D. M. Zhang, “Solution-processable erbium-ytterbium complex for potential planar optical amplifier application,” J. Mater. Chem. 17(43), 4586–4590 (2007).
[Crossref]

Stouwdam, J. W.

J. W. Stouwdam and F. C. J. M. van Veggel, “Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification,” Langmuir 20(26), 11763–11771 (2004).
[Crossref] [PubMed]

J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. J. M. van Veggel, “Lanthanide-doped nanoparticles with excellent luminescent properties in organic media,” Chem. Mater. 15(24), 4604–4616 (2003).
[Crossref]

J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles,” Nano Lett. 2(7), 733–737 (2002).

Subramanian, A. Z.

Sun, X.

D. Zhang, C. Chen, X. Sun, Y. G. Zhang, X. Z. Zhang, A. H. Wu, B. Li, and D. M. Zhang, “Optical properties of Er(DBM)3Phen-doped polymer and fabrication of ridge waveguide,” Opt. Commun. 278(1), 90–93 (2007).
[Crossref]

Tsang, K. C.

K. L. Lei, C. F. Chow, K. C. Tsang, E. N. Y. Lei, V. A. L. Roy, M. H. W. Lam, C. S. Lee, E. Y. B. Pun, and J. Li, “Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers,” J. Mater. Chem. 20(35), 7526–7529 (2010).

van Veggel, F. C. J. M.

J. W. Stouwdam and F. C. J. M. van Veggel, “Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification,” Langmuir 20(26), 11763–11771 (2004).
[Crossref] [PubMed]

J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. J. M. van Veggel, “Lanthanide-doped nanoparticles with excellent luminescent properties in organic media,” Chem. Mater. 15(24), 4604–4616 (2003).
[Crossref]

J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles,” Nano Lett. 2(7), 733–737 (2002).

L. H. Slooff, A. V. Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

Vazquez, R. M.

Verlucco, A.

P. P. Iannone, K. C. Reichmann, M. Birk, N. J. Frigo, R. M. Derosier, D. Barbier, C. Cassagnettes, T. Garret, A. Verlucco, S. Perrier, and J. Philipsen, “A 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers,” OFC 3, 1–3 (2001).

Wang, F.

P. C. Zhao, M. L. Zhang, T. J. Wang, X. Y. Liu, X. S. Zhai, G. S. Qin, W. P. Qin, F. Wang, and D. M. Zhang, “Optical Amplification at 1525nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 153028 (2014).

X. S. Zhai, J. Li, S. S. Liu, X. Y. Liu, D. Zhao, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Enhancement of 1.53 μm emission band in NaYF4: Er3+, Yb3+, Ce3+ nanocrystals for polymer-based optical waveguide amplifiers,” Opt. Mater. Express 3(2), 270–277 (2013).
[Crossref]

X. S. Zhai, S. S. Liu, X. Y. Liu, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Sub-10nm BaYF5:Yb3+, Er3+ core-shell nanoparticles with intense 1.53µm fluorescence for polymer-based waveguide amplifier,” J. Mater. Chem. C 1(7), 1525–1530 (2013).
[Crossref]

Wang, Q.

S. H. Bo, J. Hu, Z. Chen, Q. Wang, G. M. Xu, X. H. Liu, and Z. Zhen, “Core-shell LaF3: Er,Yb nanocrystal doped sol-gel materials as waveguide amplifiers,” Appl. Phys. B 97(3), 665–669 (2009).
[Crossref]

Wang, T. J.

P. C. Zhao, M. L. Zhang, T. J. Wang, X. Y. Liu, X. S. Zhai, G. S. Qin, W. P. Qin, F. Wang, and D. M. Zhang, “Optical Amplification at 1525nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 153028 (2014).

Wilkinson, J. S.

Wong, W. H.

W. H. Wong, E. Y. B. Pun, and K. S. Chan, “Er3+–Yb3+ codoped polymeric optical waveguide amplifiers,” Appl. Phys. Lett. 84(2), 176–178 (2004).
[Crossref]

Wu, A. H.

D. Zhang, C. Chen, X. Sun, Y. G. Zhang, X. Z. Zhang, A. H. Wu, B. Li, and D. M. Zhang, “Optical properties of Er(DBM)3Phen-doped polymer and fabrication of ridge waveguide,” Opt. Commun. 278(1), 90–93 (2007).
[Crossref]

Xu, G. M.

S. H. Bo, J. Hu, Z. Chen, Q. Wang, G. M. Xu, X. H. Liu, and Z. Zhen, “Core-shell LaF3: Er,Yb nanocrystal doped sol-gel materials as waveguide amplifiers,” Appl. Phys. B 97(3), 665–669 (2009).
[Crossref]

Zervas, M. N.

Zhai, X. S.

P. C. Zhao, M. L. Zhang, T. J. Wang, X. Y. Liu, X. S. Zhai, G. S. Qin, W. P. Qin, F. Wang, and D. M. Zhang, “Optical Amplification at 1525nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 153028 (2014).

X. S. Zhai, J. Li, S. S. Liu, X. Y. Liu, D. Zhao, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Enhancement of 1.53 μm emission band in NaYF4: Er3+, Yb3+, Ce3+ nanocrystals for polymer-based optical waveguide amplifiers,” Opt. Mater. Express 3(2), 270–277 (2013).
[Crossref]

X. S. Zhai, S. S. Liu, X. Y. Liu, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Sub-10nm BaYF5:Yb3+, Er3+ core-shell nanoparticles with intense 1.53µm fluorescence for polymer-based waveguide amplifier,” J. Mater. Chem. C 1(7), 1525–1530 (2013).
[Crossref]

Zhang, D.

D. Zhang, C. Chen, X. Sun, Y. G. Zhang, X. Z. Zhang, A. H. Wu, B. Li, and D. M. Zhang, “Optical properties of Er(DBM)3Phen-doped polymer and fabrication of ridge waveguide,” Opt. Commun. 278(1), 90–93 (2007).
[Crossref]

Zhang, D. M.

P. C. Zhao, M. L. Zhang, T. J. Wang, X. Y. Liu, X. S. Zhai, G. S. Qin, W. P. Qin, F. Wang, and D. M. Zhang, “Optical Amplification at 1525nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 153028 (2014).

X. S. Zhai, J. Li, S. S. Liu, X. Y. Liu, D. Zhao, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Enhancement of 1.53 μm emission band in NaYF4: Er3+, Yb3+, Ce3+ nanocrystals for polymer-based optical waveguide amplifiers,” Opt. Mater. Express 3(2), 270–277 (2013).
[Crossref]

X. S. Zhai, S. S. Liu, X. Y. Liu, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Sub-10nm BaYF5:Yb3+, Er3+ core-shell nanoparticles with intense 1.53µm fluorescence for polymer-based waveguide amplifier,” J. Mater. Chem. C 1(7), 1525–1530 (2013).
[Crossref]

D. Zhang, C. Chen, X. Sun, Y. G. Zhang, X. Z. Zhang, A. H. Wu, B. Li, and D. M. Zhang, “Optical properties of Er(DBM)3Phen-doped polymer and fabrication of ridge waveguide,” Opt. Commun. 278(1), 90–93 (2007).
[Crossref]

L. M. Song, X. H. Liu, Z. Zhen, C. Chen, and D. M. Zhang, “Solution-processable erbium-ytterbium complex for potential planar optical amplifier application,” J. Mater. Chem. 17(43), 4586–4590 (2007).
[Crossref]

Zhang, M. L.

P. C. Zhao, M. L. Zhang, T. J. Wang, X. Y. Liu, X. S. Zhai, G. S. Qin, W. P. Qin, F. Wang, and D. M. Zhang, “Optical Amplification at 1525nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 153028 (2014).

Zhang, X. Z.

D. Zhang, C. Chen, X. Sun, Y. G. Zhang, X. Z. Zhang, A. H. Wu, B. Li, and D. M. Zhang, “Optical properties of Er(DBM)3Phen-doped polymer and fabrication of ridge waveguide,” Opt. Commun. 278(1), 90–93 (2007).
[Crossref]

Zhang, Y. G.

D. Zhang, C. Chen, X. Sun, Y. G. Zhang, X. Z. Zhang, A. H. Wu, B. Li, and D. M. Zhang, “Optical properties of Er(DBM)3Phen-doped polymer and fabrication of ridge waveguide,” Opt. Commun. 278(1), 90–93 (2007).
[Crossref]

Zhao, D.

Zhao, P. C.

P. C. Zhao, M. L. Zhang, T. J. Wang, X. Y. Liu, X. S. Zhai, G. S. Qin, W. P. Qin, F. Wang, and D. M. Zhang, “Optical Amplification at 1525nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 153028 (2014).

Zhen, Z.

S. H. Bo, J. Hu, Z. Chen, Q. Wang, G. M. Xu, X. H. Liu, and Z. Zhen, “Core-shell LaF3: Er,Yb nanocrystal doped sol-gel materials as waveguide amplifiers,” Appl. Phys. B 97(3), 665–669 (2009).
[Crossref]

L. M. Song, X. H. Liu, Z. Zhen, C. Chen, and D. M. Zhang, “Solution-processable erbium-ytterbium complex for potential planar optical amplifier application,” J. Mater. Chem. 17(43), 4586–4590 (2007).
[Crossref]

Adv. Mater. (1)

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Appl. Phys. B (1)

S. H. Bo, J. Hu, Z. Chen, Q. Wang, G. M. Xu, X. H. Liu, and Z. Zhen, “Core-shell LaF3: Er,Yb nanocrystal doped sol-gel materials as waveguide amplifiers,” Appl. Phys. B 97(3), 665–669 (2009).
[Crossref]

Appl. Phys. Lett. (1)

W. H. Wong, E. Y. B. Pun, and K. S. Chan, “Er3+–Yb3+ codoped polymeric optical waveguide amplifiers,” Appl. Phys. Lett. 84(2), 176–178 (2004).
[Crossref]

Chem. Mater. (2)

G. A. Kumar, C. W. Chen, J. Ballato, and R. E. Riman, “Optical Characterization of Infrared Emitting Rare-Earth-Doped Fluoride Nanocrystals and Their Transparent Nanocomposites,” Chem. Mater. 19(6), 1523–1528 (2007).
[Crossref]

J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. J. M. van Veggel, “Lanthanide-doped nanoparticles with excellent luminescent properties in organic media,” Chem. Mater. 15(24), 4604–4616 (2003).
[Crossref]

Electron. Lett. (1)

C. H. Huang and L. McCaughan, “Photorefractive-damage-resistant Er-indiffused MgO: LiNbO3 ZnO-waveguide amplifiers and lasers,” Electron. Lett. 33(19), 1639–1640 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. H. Huang and L. McCaughan, “980nm-pumped Er- doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2(2), 367–372 (1996).
[Crossref]

J. Alloy. Comp. (1)

A. A. Reddy, S. S. Babu, K. Pradeesh, C. J. Otton, and G. V. Prakash, “Optical properties of highly Er3+-doped sodium–aluminium–phosphate glasses for broadband 1.5 μm emission,” J. Alloy. Comp. 509(9), 4047–4052 (2011).
[Crossref]

J. Appl. Phys. (2)

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
[Crossref]

L. H. Slooff, A. V. Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Chem. (2)

L. M. Song, X. H. Liu, Z. Zhen, C. Chen, and D. M. Zhang, “Solution-processable erbium-ytterbium complex for potential planar optical amplifier application,” J. Mater. Chem. 17(43), 4586–4590 (2007).
[Crossref]

K. L. Lei, C. F. Chow, K. C. Tsang, E. N. Y. Lei, V. A. L. Roy, M. H. W. Lam, C. S. Lee, E. Y. B. Pun, and J. Li, “Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers,” J. Mater. Chem. 20(35), 7526–7529 (2010).

J. Mater. Chem. C (1)

X. S. Zhai, S. S. Liu, X. Y. Liu, F. Wang, D. M. Zhang, G. S. Qin, and W. P. Qin, “Sub-10nm BaYF5:Yb3+, Er3+ core-shell nanoparticles with intense 1.53µm fluorescence for polymer-based waveguide amplifier,” J. Mater. Chem. C 1(7), 1525–1530 (2013).
[Crossref]

J. Nanomater. (1)

P. C. Zhao, M. L. Zhang, T. J. Wang, X. Y. Liu, X. S. Zhai, G. S. Qin, W. P. Qin, F. Wang, and D. M. Zhang, “Optical Amplification at 1525nm in BaYF5: 20% Yb3+, 2% Er3+ nanocrystals doped SU-8 polymer waveguide,” J. Nanomater. 2014, 153028 (2014).

Langmuir (1)

J. W. Stouwdam and F. C. J. M. van Veggel, “Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification,” Langmuir 20(26), 11763–11771 (2004).
[Crossref] [PubMed]

Lightwave (1)

D. Barbier, “Erbium-doped waveguide amplifiers promote optical-networking evolution,” Lightwave 11, 19–20 (2000).

Nano Lett. (1)

J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles,” Nano Lett. 2(7), 733–737 (2002).

OFC (1)

P. P. Iannone, K. C. Reichmann, M. Birk, N. J. Frigo, R. M. Derosier, D. Barbier, C. Cassagnettes, T. Garret, A. Verlucco, S. Perrier, and J. Philipsen, “A 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers,” OFC 3, 1–3 (2001).

Opt. Commun. (1)

D. Zhang, C. Chen, X. Sun, Y. G. Zhang, X. Z. Zhang, A. H. Wu, B. Li, and D. M. Zhang, “Optical properties of Er(DBM)3Phen-doped polymer and fabrication of ridge waveguide,” Opt. Commun. 278(1), 90–93 (2007).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

L. Q. A. Quoc, B. Eric, H. Rolland, M. Rolland Hierlea, M. Ahmad, R. Catherine, C. Robert, and L. R. Isabelle, “Polymer-based materials for amplification in the telecommunication window: Influence of erbium complex concentration on relevant parameters for the elaboration of waveguide amplifiers around 1550 nm,” Opt. Mater. 29, 941–948 (2007).

Opt. Mater. Express (1)

Proc. SPIE (1)

S. V. Frolov, T. M. Shen, and A. J. Bruce, “EDWA: Key enabler of optical integration on PLC,” Proc. SPIE 4990, 47–54 (2003).
[Crossref]

Other (1)

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer processes in Al2O3: Er3+ waveguide amplifiers,” in Conference on Lasers and Electro-Optics/Science and Innovations, (Optical Society of America, 2012), paper CF3A. 3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic image of the NaYF4: Er3+, Yb3+ NPs-PMMA covalent-linking nanocomposites.
Fig. 2
Fig. 2 Characterization data for NaYF4:Er3+, Yb3+ NPs. (a) TEM image; (b) histogram of the particle sizes distribution.
Fig. 3
Fig. 3 Infrared emission spectrum of NaYF4: Er3+, Yb3+ NPs at room temperature with the excitation of a 980 nm laser diode.
Fig. 4
Fig. 4 AFM image of the NPs-PMMA core with a mean roughness of 0.9 nm.
Fig. 5
Fig. 5 Characterization of the waveguides. (a) The cross section of the rib waveguides; (b) The TM mode field distribution of signal in rib waveguides.
Fig. 6
Fig. 6 Fabrication process for waveguide amplifier. (a) spin-coat PMMA bottom cladding layer, evaporate Al mask, spin-coat BP212 photoresist. (b) photolithography. (c) wet etching. (d) ICP etching, then remove the remaining Al mask and BP212. (e) spin-coat NaYF4: Er3+, Yb3+ NPs-PMMA material. (f) spin-coat PMMA upper cladding layer.
Fig. 7
Fig. 7 SEM micrograph of the waveguide. (a) The groove cross-section without embedding the NaYF4: Er3+, Yb3+ NPs-PMMA; (b) the cross section of the waveguide after embedding the core material into the groove.
Fig. 8
Fig. 8 Experimental setup for measuring the optical gain of waveguide amplifiers.
Fig. 9
Fig. 9 The output signal power as a function of signal wavelength. The black line is 400 mW pump power, and the red one is 0 mW pump power.
Fig. 10
Fig. 10 The relative gain as a function of pump power for different signal wavelengths when the signal power was set as 0.14 mW.
Fig. 11
Fig. 11 The relative gain as a function of pump power for different signal power for the signal wavelength 1540 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Gain[dB]=10log( P sout p P s-out )=10log( P sout p )10log( P s-out )

Metrics