Abstract

Abstract: Nano-sized Y2Mo4O15:Eu3+ was synthesized by the pechini method. The crystalline phase was confirmed by the structural refinements. The photoluminescence (PL) excitation and emission spectra, and decay lifetimes were investigated. The phosphors can be efficiently excited by near-ultraviolet light and exhibit a red luminescence around 616 nm from the forced electric dipole transition 5D07F2 of Eu3+ ions. The thermal stability was investigated from the temperature-dependent luminescence lifetimes and intensities. The Eu3+ ions were confirmed to distribute in one kind of crystallographic site with a high “ordered state” in this lattices. The structure provides long distances between Eu3+ ions limiting the luminescence energy transfer or diffusions. Crystal structure of Y2Mo4O15 is beneficial to the luminescence of activators such as Eu3+ ions. The absolute luminescence internal quantum efficiency (QE), CIE color coordinates and thermal activation energy (∆E) were reported.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A narrow red-emitting phosphor of NaLa4[Mo3O15]F:Eu3+ with broad excitation band extending in blue wavelength region

Shuyun Qi, Hongde Xie, Yanlin Huang, Sun Il Kim, and Hyo Jin Seo
Opt. Mater. Express 4(2) 190-197 (2014)

Eu3+-activated CdY4Mo3O16 nanoparticles with narrow red-emission and broad excitation in near-UV wavelength region

Ruijin Yu, Aiping Fan, Maosen Yuan, Tianbao Li, Qin Tu, Jinyi Wang, and Vincent Rotello
Opt. Mater. Express 6(7) 2397-2403 (2016)

Photoluminescence properties and analysis of spectral structure of R2(MoO4)3:Eu3+ (R=La,Gd) phosphors

Zuoling Fu, Qi Wu, Wangda Gong, Liang Shi, Wenhao Li, and Zhenwen Dai
J. Opt. Soc. Am. B 28(4) 709-713 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
    [Crossref]
  2. X. Y. Chen, W. Zhao, R. E. Cook, and G. K. Liu, “Anomalous luminescence dynamics of Eu3+ in BaFCl microcrystals,” Phys. Rev. B 70(20), 205122 (2004).
    [Crossref]
  3. P. S. Dutta and A. Khanna, “Eu3+ activated molybdate and tungstate based red phosphors with charge transfer band in blue region,” ECS J. Solid State Sci. and Tech. 2(2), R3153–R3167 (2013).
    [Crossref]
  4. H. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K. Jang, H. S. Lee, and S. S. Yi, “Crystal structure, electronic structure, and optical and photoluminescence properties of Eu(III) ion-doped Lu6Mo(W)O12.,” Inorg. Chem. 50(24), 12522–12530 (2011).
    [Crossref] [PubMed]
  5. Y. L. Yang, X. M. Li, W. L. Feng, W. J. Yang, W. L. Li, and C. Y. Tao, “Effect of surfactants on morphology and luminescent properties of CaMoO4: Eu3+ red phosphors,” J. Alloy. Comp. 509(3), 845–848 (2011).
    [Crossref]
  6. Z. Y. Hou, H. Z. Lian, M. L. Zhang, L. L. Wang, M. F. Lü, C. M. Zhang, and J. Lin, “Preparation and luminescence properties of Gd2MoO6:Eu3+ nanofibers and nanobelts by electrospinning,” J. Electrochem. Soc. 156(8), J209–J214 (2009).
    [Crossref]
  7. X. Li, Z. P. Yang, L. Guan, C. Liu, and P. L. Li, “Luminescent properties of Eu3+-doped La2Mo2O9 red phosphor by the flux method,” J. Cryst. Growth 310(12), 3117–3120 (2008).
    [Crossref]
  8. J. Wan, L. H. Cheng, J. S. Sun, H. Y. Zhong, X. P. Li, W. L. Lu, Y. Tian, H. Lin, and B. J. Chen, “Energy transfer and colorimetric properties of Eu3+/Dy3+ co-doped Gd2(MoO4)3 phosphors,” J. Alloy. Comp. 496(1–2), 331–334 (2010).
    [Crossref]
  9. G. D. Fallon and B. M. Gatehouse, “The crystal structure of a complex cerium(III) molybdate containing a dimolybdate chain, Ce2(MoO4)2(Mo2O7),” J. Solid State Chem. 44(2), 156–161 (1982).
    [Crossref]
  10. F. Dubois, F. Goutenoire, Y. Laligant, E. Suard, and P. Lacorre, “Ab-Initio determination of La2Mo4O15 crystal structure from x-rays and neutron powder diffraction,” J. Solid State Chem. 159(1), 228–233 (2001).
    [Crossref]
  11. L. Sebastian, J. Manjanna, A. M. Umarji, and J. Gopalakrishnan, “Anomalous thermal expansion behaviour of Ln2Mo4O15(Ln=Y, Dy, Ho, Tm),” Mater. Sci. Eng. B 103(3), 289–296 (2003).
    [Crossref]
  12. H. Wang, J. Peng, X. J. Li, Y. M. Hao, D. F. Chen, and Z. Hu, “Structural and thermal expansion properties of solid solution Y2−xSmxMo4O15 (x=0.0–0.8),” Physica B 388(1–2), 278–284 (2007).
  13. S. Laufer, S. Strobel, T. Schleid, J. Cybinska, A. V. Mudring, and I. Hartenbach, “Yttrium(III) oxomolybdates(VI) as potential host materials for luminescence applications: an investigation of Eu3+-doped Y2[MoO4]3 and Y2[MoO4]2[Mo2O7],” New J. Chem. 37(7), 1919–1926 (2013).
    [Crossref]
  14. Y. L. Huang, Y. Nakai, T. Tsuboi, and H. J. Seo, “The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications,” Opt. Express 19(7), 6303–6311 (2011).
    [Crossref] [PubMed]
  15. A. A. Setlur, H. A. Comanzo, A. M. Srivastava, and W. W. Beers, “Spectroscopic evaluation of a white light phosphor for UV-LEDs-Ca2NaMg2V3O12:Eu3+,” J. Electrochem. Soc. 152(12), H205–H208 (2005).
    [Crossref]
  16. R. Zhu, Y. L. Huang, and H. J. Seo, “A red-emitting phosphor of Eu-based borotungstate Eu3BWO9 for white light-emitting diodes,” J. Electrochem. Soc. 157(12), H1116–H1120 (2010).
    [Crossref]
  17. Y. C. Fang, S. Y. Chu, P. C. Kao, Y. M. Chuang, and Z. L. Zeng, “Energy transfer and thermal quenching behaviors of CaLa2(MoO4)4:Sm3+, Eu3+ red phosphors,” J. Electrochem. Soc. 158(2), J1–J5 (2011).
    [Crossref]

2013 (2)

P. S. Dutta and A. Khanna, “Eu3+ activated molybdate and tungstate based red phosphors with charge transfer band in blue region,” ECS J. Solid State Sci. and Tech. 2(2), R3153–R3167 (2013).
[Crossref]

S. Laufer, S. Strobel, T. Schleid, J. Cybinska, A. V. Mudring, and I. Hartenbach, “Yttrium(III) oxomolybdates(VI) as potential host materials for luminescence applications: an investigation of Eu3+-doped Y2[MoO4]3 and Y2[MoO4]2[Mo2O7],” New J. Chem. 37(7), 1919–1926 (2013).
[Crossref]

2011 (5)

Y. L. Huang, Y. Nakai, T. Tsuboi, and H. J. Seo, “The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications,” Opt. Express 19(7), 6303–6311 (2011).
[Crossref] [PubMed]

Y. C. Fang, S. Y. Chu, P. C. Kao, Y. M. Chuang, and Z. L. Zeng, “Energy transfer and thermal quenching behaviors of CaLa2(MoO4)4:Sm3+, Eu3+ red phosphors,” J. Electrochem. Soc. 158(2), J1–J5 (2011).
[Crossref]

H. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K. Jang, H. S. Lee, and S. S. Yi, “Crystal structure, electronic structure, and optical and photoluminescence properties of Eu(III) ion-doped Lu6Mo(W)O12.,” Inorg. Chem. 50(24), 12522–12530 (2011).
[Crossref] [PubMed]

Y. L. Yang, X. M. Li, W. L. Feng, W. J. Yang, W. L. Li, and C. Y. Tao, “Effect of surfactants on morphology and luminescent properties of CaMoO4: Eu3+ red phosphors,” J. Alloy. Comp. 509(3), 845–848 (2011).
[Crossref]

C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[Crossref]

2010 (2)

J. Wan, L. H. Cheng, J. S. Sun, H. Y. Zhong, X. P. Li, W. L. Lu, Y. Tian, H. Lin, and B. J. Chen, “Energy transfer and colorimetric properties of Eu3+/Dy3+ co-doped Gd2(MoO4)3 phosphors,” J. Alloy. Comp. 496(1–2), 331–334 (2010).
[Crossref]

R. Zhu, Y. L. Huang, and H. J. Seo, “A red-emitting phosphor of Eu-based borotungstate Eu3BWO9 for white light-emitting diodes,” J. Electrochem. Soc. 157(12), H1116–H1120 (2010).
[Crossref]

2009 (1)

Z. Y. Hou, H. Z. Lian, M. L. Zhang, L. L. Wang, M. F. Lü, C. M. Zhang, and J. Lin, “Preparation and luminescence properties of Gd2MoO6:Eu3+ nanofibers and nanobelts by electrospinning,” J. Electrochem. Soc. 156(8), J209–J214 (2009).
[Crossref]

2008 (1)

X. Li, Z. P. Yang, L. Guan, C. Liu, and P. L. Li, “Luminescent properties of Eu3+-doped La2Mo2O9 red phosphor by the flux method,” J. Cryst. Growth 310(12), 3117–3120 (2008).
[Crossref]

2007 (1)

H. Wang, J. Peng, X. J. Li, Y. M. Hao, D. F. Chen, and Z. Hu, “Structural and thermal expansion properties of solid solution Y2−xSmxMo4O15 (x=0.0–0.8),” Physica B 388(1–2), 278–284 (2007).

2005 (1)

A. A. Setlur, H. A. Comanzo, A. M. Srivastava, and W. W. Beers, “Spectroscopic evaluation of a white light phosphor for UV-LEDs-Ca2NaMg2V3O12:Eu3+,” J. Electrochem. Soc. 152(12), H205–H208 (2005).
[Crossref]

2004 (1)

X. Y. Chen, W. Zhao, R. E. Cook, and G. K. Liu, “Anomalous luminescence dynamics of Eu3+ in BaFCl microcrystals,” Phys. Rev. B 70(20), 205122 (2004).
[Crossref]

2003 (1)

L. Sebastian, J. Manjanna, A. M. Umarji, and J. Gopalakrishnan, “Anomalous thermal expansion behaviour of Ln2Mo4O15(Ln=Y, Dy, Ho, Tm),” Mater. Sci. Eng. B 103(3), 289–296 (2003).
[Crossref]

2001 (1)

F. Dubois, F. Goutenoire, Y. Laligant, E. Suard, and P. Lacorre, “Ab-Initio determination of La2Mo4O15 crystal structure from x-rays and neutron powder diffraction,” J. Solid State Chem. 159(1), 228–233 (2001).
[Crossref]

1982 (1)

G. D. Fallon and B. M. Gatehouse, “The crystal structure of a complex cerium(III) molybdate containing a dimolybdate chain, Ce2(MoO4)2(Mo2O7),” J. Solid State Chem. 44(2), 156–161 (1982).
[Crossref]

Beers, W. W.

A. A. Setlur, H. A. Comanzo, A. M. Srivastava, and W. W. Beers, “Spectroscopic evaluation of a white light phosphor for UV-LEDs-Ca2NaMg2V3O12:Eu3+,” J. Electrochem. Soc. 152(12), H205–H208 (2005).
[Crossref]

Chen, B. J.

J. Wan, L. H. Cheng, J. S. Sun, H. Y. Zhong, X. P. Li, W. L. Lu, Y. Tian, H. Lin, and B. J. Chen, “Energy transfer and colorimetric properties of Eu3+/Dy3+ co-doped Gd2(MoO4)3 phosphors,” J. Alloy. Comp. 496(1–2), 331–334 (2010).
[Crossref]

Chen, D. F.

H. Wang, J. Peng, X. J. Li, Y. M. Hao, D. F. Chen, and Z. Hu, “Structural and thermal expansion properties of solid solution Y2−xSmxMo4O15 (x=0.0–0.8),” Physica B 388(1–2), 278–284 (2007).

Chen, X. Y.

X. Y. Chen, W. Zhao, R. E. Cook, and G. K. Liu, “Anomalous luminescence dynamics of Eu3+ in BaFCl microcrystals,” Phys. Rev. B 70(20), 205122 (2004).
[Crossref]

Cheng, L. H.

J. Wan, L. H. Cheng, J. S. Sun, H. Y. Zhong, X. P. Li, W. L. Lu, Y. Tian, H. Lin, and B. J. Chen, “Energy transfer and colorimetric properties of Eu3+/Dy3+ co-doped Gd2(MoO4)3 phosphors,” J. Alloy. Comp. 496(1–2), 331–334 (2010).
[Crossref]

Choi, B. C.

H. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K. Jang, H. S. Lee, and S. S. Yi, “Crystal structure, electronic structure, and optical and photoluminescence properties of Eu(III) ion-doped Lu6Mo(W)O12.,” Inorg. Chem. 50(24), 12522–12530 (2011).
[Crossref] [PubMed]

Chu, S. Y.

Y. C. Fang, S. Y. Chu, P. C. Kao, Y. M. Chuang, and Z. L. Zeng, “Energy transfer and thermal quenching behaviors of CaLa2(MoO4)4:Sm3+, Eu3+ red phosphors,” J. Electrochem. Soc. 158(2), J1–J5 (2011).
[Crossref]

Chuang, Y. M.

Y. C. Fang, S. Y. Chu, P. C. Kao, Y. M. Chuang, and Z. L. Zeng, “Energy transfer and thermal quenching behaviors of CaLa2(MoO4)4:Sm3+, Eu3+ red phosphors,” J. Electrochem. Soc. 158(2), J1–J5 (2011).
[Crossref]

Comanzo, H. A.

A. A. Setlur, H. A. Comanzo, A. M. Srivastava, and W. W. Beers, “Spectroscopic evaluation of a white light phosphor for UV-LEDs-Ca2NaMg2V3O12:Eu3+,” J. Electrochem. Soc. 152(12), H205–H208 (2005).
[Crossref]

Cook, R. E.

X. Y. Chen, W. Zhao, R. E. Cook, and G. K. Liu, “Anomalous luminescence dynamics of Eu3+ in BaFCl microcrystals,” Phys. Rev. B 70(20), 205122 (2004).
[Crossref]

Cybinska, J.

S. Laufer, S. Strobel, T. Schleid, J. Cybinska, A. V. Mudring, and I. Hartenbach, “Yttrium(III) oxomolybdates(VI) as potential host materials for luminescence applications: an investigation of Eu3+-doped Y2[MoO4]3 and Y2[MoO4]2[Mo2O7],” New J. Chem. 37(7), 1919–1926 (2013).
[Crossref]

Dubois, F.

F. Dubois, F. Goutenoire, Y. Laligant, E. Suard, and P. Lacorre, “Ab-Initio determination of La2Mo4O15 crystal structure from x-rays and neutron powder diffraction,” J. Solid State Chem. 159(1), 228–233 (2001).
[Crossref]

Dutta, P. S.

P. S. Dutta and A. Khanna, “Eu3+ activated molybdate and tungstate based red phosphors with charge transfer band in blue region,” ECS J. Solid State Sci. and Tech. 2(2), R3153–R3167 (2013).
[Crossref]

Fallon, G. D.

G. D. Fallon and B. M. Gatehouse, “The crystal structure of a complex cerium(III) molybdate containing a dimolybdate chain, Ce2(MoO4)2(Mo2O7),” J. Solid State Chem. 44(2), 156–161 (1982).
[Crossref]

Fang, Y. C.

Y. C. Fang, S. Y. Chu, P. C. Kao, Y. M. Chuang, and Z. L. Zeng, “Energy transfer and thermal quenching behaviors of CaLa2(MoO4)4:Sm3+, Eu3+ red phosphors,” J. Electrochem. Soc. 158(2), J1–J5 (2011).
[Crossref]

Feng, W. L.

Y. L. Yang, X. M. Li, W. L. Feng, W. J. Yang, W. L. Li, and C. Y. Tao, “Effect of surfactants on morphology and luminescent properties of CaMoO4: Eu3+ red phosphors,” J. Alloy. Comp. 509(3), 845–848 (2011).
[Crossref]

Gatehouse, B. M.

G. D. Fallon and B. M. Gatehouse, “The crystal structure of a complex cerium(III) molybdate containing a dimolybdate chain, Ce2(MoO4)2(Mo2O7),” J. Solid State Chem. 44(2), 156–161 (1982).
[Crossref]

Gopalakrishnan, J.

L. Sebastian, J. Manjanna, A. M. Umarji, and J. Gopalakrishnan, “Anomalous thermal expansion behaviour of Ln2Mo4O15(Ln=Y, Dy, Ho, Tm),” Mater. Sci. Eng. B 103(3), 289–296 (2003).
[Crossref]

Goutenoire, F.

F. Dubois, F. Goutenoire, Y. Laligant, E. Suard, and P. Lacorre, “Ab-Initio determination of La2Mo4O15 crystal structure from x-rays and neutron powder diffraction,” J. Solid State Chem. 159(1), 228–233 (2001).
[Crossref]

Guan, L.

X. Li, Z. P. Yang, L. Guan, C. Liu, and P. L. Li, “Luminescent properties of Eu3+-doped La2Mo2O9 red phosphor by the flux method,” J. Cryst. Growth 310(12), 3117–3120 (2008).
[Crossref]

Hao, Y. M.

H. Wang, J. Peng, X. J. Li, Y. M. Hao, D. F. Chen, and Z. Hu, “Structural and thermal expansion properties of solid solution Y2−xSmxMo4O15 (x=0.0–0.8),” Physica B 388(1–2), 278–284 (2007).

Hartenbach, I.

S. Laufer, S. Strobel, T. Schleid, J. Cybinska, A. V. Mudring, and I. Hartenbach, “Yttrium(III) oxomolybdates(VI) as potential host materials for luminescence applications: an investigation of Eu3+-doped Y2[MoO4]3 and Y2[MoO4]2[Mo2O7],” New J. Chem. 37(7), 1919–1926 (2013).
[Crossref]

Hou, Z. Y.

Z. Y. Hou, H. Z. Lian, M. L. Zhang, L. L. Wang, M. F. Lü, C. M. Zhang, and J. Lin, “Preparation and luminescence properties of Gd2MoO6:Eu3+ nanofibers and nanobelts by electrospinning,” J. Electrochem. Soc. 156(8), J209–J214 (2009).
[Crossref]

Hu, Z.

H. Wang, J. Peng, X. J. Li, Y. M. Hao, D. F. Chen, and Z. Hu, “Structural and thermal expansion properties of solid solution Y2−xSmxMo4O15 (x=0.0–0.8),” Physica B 388(1–2), 278–284 (2007).

Huang, Y. L.

Y. L. Huang, Y. Nakai, T. Tsuboi, and H. J. Seo, “The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications,” Opt. Express 19(7), 6303–6311 (2011).
[Crossref] [PubMed]

R. Zhu, Y. L. Huang, and H. J. Seo, “A red-emitting phosphor of Eu-based borotungstate Eu3BWO9 for white light-emitting diodes,” J. Electrochem. Soc. 157(12), H1116–H1120 (2010).
[Crossref]

Jang, K.

H. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K. Jang, H. S. Lee, and S. S. Yi, “Crystal structure, electronic structure, and optical and photoluminescence properties of Eu(III) ion-doped Lu6Mo(W)O12.,” Inorg. Chem. 50(24), 12522–12530 (2011).
[Crossref] [PubMed]

Jeong, J. H.

H. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K. Jang, H. S. Lee, and S. S. Yi, “Crystal structure, electronic structure, and optical and photoluminescence properties of Eu(III) ion-doped Lu6Mo(W)O12.,” Inorg. Chem. 50(24), 12522–12530 (2011).
[Crossref] [PubMed]

Kao, P. C.

Y. C. Fang, S. Y. Chu, P. C. Kao, Y. M. Chuang, and Z. L. Zeng, “Energy transfer and thermal quenching behaviors of CaLa2(MoO4)4:Sm3+, Eu3+ red phosphors,” J. Electrochem. Soc. 158(2), J1–J5 (2011).
[Crossref]

Khanna, A.

P. S. Dutta and A. Khanna, “Eu3+ activated molybdate and tungstate based red phosphors with charge transfer band in blue region,” ECS J. Solid State Sci. and Tech. 2(2), R3153–R3167 (2013).
[Crossref]

Lacorre, P.

F. Dubois, F. Goutenoire, Y. Laligant, E. Suard, and P. Lacorre, “Ab-Initio determination of La2Mo4O15 crystal structure from x-rays and neutron powder diffraction,” J. Solid State Chem. 159(1), 228–233 (2001).
[Crossref]

Laligant, Y.

F. Dubois, F. Goutenoire, Y. Laligant, E. Suard, and P. Lacorre, “Ab-Initio determination of La2Mo4O15 crystal structure from x-rays and neutron powder diffraction,” J. Solid State Chem. 159(1), 228–233 (2001).
[Crossref]

Laufer, S.

S. Laufer, S. Strobel, T. Schleid, J. Cybinska, A. V. Mudring, and I. Hartenbach, “Yttrium(III) oxomolybdates(VI) as potential host materials for luminescence applications: an investigation of Eu3+-doped Y2[MoO4]3 and Y2[MoO4]2[Mo2O7],” New J. Chem. 37(7), 1919–1926 (2013).
[Crossref]

Lee, H. S.

H. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K. Jang, H. S. Lee, and S. S. Yi, “Crystal structure, electronic structure, and optical and photoluminescence properties of Eu(III) ion-doped Lu6Mo(W)O12.,” Inorg. Chem. 50(24), 12522–12530 (2011).
[Crossref] [PubMed]

Li, H.

H. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K. Jang, H. S. Lee, and S. S. Yi, “Crystal structure, electronic structure, and optical and photoluminescence properties of Eu(III) ion-doped Lu6Mo(W)O12.,” Inorg. Chem. 50(24), 12522–12530 (2011).
[Crossref] [PubMed]

Li, P. L.

X. Li, Z. P. Yang, L. Guan, C. Liu, and P. L. Li, “Luminescent properties of Eu3+-doped La2Mo2O9 red phosphor by the flux method,” J. Cryst. Growth 310(12), 3117–3120 (2008).
[Crossref]

Li, W. L.

Y. L. Yang, X. M. Li, W. L. Feng, W. J. Yang, W. L. Li, and C. Y. Tao, “Effect of surfactants on morphology and luminescent properties of CaMoO4: Eu3+ red phosphors,” J. Alloy. Comp. 509(3), 845–848 (2011).
[Crossref]

Li, X.

X. Li, Z. P. Yang, L. Guan, C. Liu, and P. L. Li, “Luminescent properties of Eu3+-doped La2Mo2O9 red phosphor by the flux method,” J. Cryst. Growth 310(12), 3117–3120 (2008).
[Crossref]

Li, X. J.

H. Wang, J. Peng, X. J. Li, Y. M. Hao, D. F. Chen, and Z. Hu, “Structural and thermal expansion properties of solid solution Y2−xSmxMo4O15 (x=0.0–0.8),” Physica B 388(1–2), 278–284 (2007).

Li, X. M.

Y. L. Yang, X. M. Li, W. L. Feng, W. J. Yang, W. L. Li, and C. Y. Tao, “Effect of surfactants on morphology and luminescent properties of CaMoO4: Eu3+ red phosphors,” J. Alloy. Comp. 509(3), 845–848 (2011).
[Crossref]

Li, X. P.

J. Wan, L. H. Cheng, J. S. Sun, H. Y. Zhong, X. P. Li, W. L. Lu, Y. Tian, H. Lin, and B. J. Chen, “Energy transfer and colorimetric properties of Eu3+/Dy3+ co-doped Gd2(MoO4)3 phosphors,” J. Alloy. Comp. 496(1–2), 331–334 (2010).
[Crossref]

Lian, H. Z.

Z. Y. Hou, H. Z. Lian, M. L. Zhang, L. L. Wang, M. F. Lü, C. M. Zhang, and J. Lin, “Preparation and luminescence properties of Gd2MoO6:Eu3+ nanofibers and nanobelts by electrospinning,” J. Electrochem. Soc. 156(8), J209–J214 (2009).
[Crossref]

Lin, C. C.

C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[Crossref]

Lin, H.

J. Wan, L. H. Cheng, J. S. Sun, H. Y. Zhong, X. P. Li, W. L. Lu, Y. Tian, H. Lin, and B. J. Chen, “Energy transfer and colorimetric properties of Eu3+/Dy3+ co-doped Gd2(MoO4)3 phosphors,” J. Alloy. Comp. 496(1–2), 331–334 (2010).
[Crossref]

Lin, J.

Z. Y. Hou, H. Z. Lian, M. L. Zhang, L. L. Wang, M. F. Lü, C. M. Zhang, and J. Lin, “Preparation and luminescence properties of Gd2MoO6:Eu3+ nanofibers and nanobelts by electrospinning,” J. Electrochem. Soc. 156(8), J209–J214 (2009).
[Crossref]

Liu, C.

X. Li, Z. P. Yang, L. Guan, C. Liu, and P. L. Li, “Luminescent properties of Eu3+-doped La2Mo2O9 red phosphor by the flux method,” J. Cryst. Growth 310(12), 3117–3120 (2008).
[Crossref]

Liu, G. K.

X. Y. Chen, W. Zhao, R. E. Cook, and G. K. Liu, “Anomalous luminescence dynamics of Eu3+ in BaFCl microcrystals,” Phys. Rev. B 70(20), 205122 (2004).
[Crossref]

Liu, R. S.

C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[Crossref]

Lu, W. L.

J. Wan, L. H. Cheng, J. S. Sun, H. Y. Zhong, X. P. Li, W. L. Lu, Y. Tian, H. Lin, and B. J. Chen, “Energy transfer and colorimetric properties of Eu3+/Dy3+ co-doped Gd2(MoO4)3 phosphors,” J. Alloy. Comp. 496(1–2), 331–334 (2010).
[Crossref]

Lü, M. F.

Z. Y. Hou, H. Z. Lian, M. L. Zhang, L. L. Wang, M. F. Lü, C. M. Zhang, and J. Lin, “Preparation and luminescence properties of Gd2MoO6:Eu3+ nanofibers and nanobelts by electrospinning,” J. Electrochem. Soc. 156(8), J209–J214 (2009).
[Crossref]

Manjanna, J.

L. Sebastian, J. Manjanna, A. M. Umarji, and J. Gopalakrishnan, “Anomalous thermal expansion behaviour of Ln2Mo4O15(Ln=Y, Dy, Ho, Tm),” Mater. Sci. Eng. B 103(3), 289–296 (2003).
[Crossref]

Moon, B. K.

H. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K. Jang, H. S. Lee, and S. S. Yi, “Crystal structure, electronic structure, and optical and photoluminescence properties of Eu(III) ion-doped Lu6Mo(W)O12.,” Inorg. Chem. 50(24), 12522–12530 (2011).
[Crossref] [PubMed]

Mudring, A. V.

S. Laufer, S. Strobel, T. Schleid, J. Cybinska, A. V. Mudring, and I. Hartenbach, “Yttrium(III) oxomolybdates(VI) as potential host materials for luminescence applications: an investigation of Eu3+-doped Y2[MoO4]3 and Y2[MoO4]2[Mo2O7],” New J. Chem. 37(7), 1919–1926 (2013).
[Crossref]

Nakai, Y.

Peng, J.

H. Wang, J. Peng, X. J. Li, Y. M. Hao, D. F. Chen, and Z. Hu, “Structural and thermal expansion properties of solid solution Y2−xSmxMo4O15 (x=0.0–0.8),” Physica B 388(1–2), 278–284 (2007).

Schleid, T.

S. Laufer, S. Strobel, T. Schleid, J. Cybinska, A. V. Mudring, and I. Hartenbach, “Yttrium(III) oxomolybdates(VI) as potential host materials for luminescence applications: an investigation of Eu3+-doped Y2[MoO4]3 and Y2[MoO4]2[Mo2O7],” New J. Chem. 37(7), 1919–1926 (2013).
[Crossref]

Sebastian, L.

L. Sebastian, J. Manjanna, A. M. Umarji, and J. Gopalakrishnan, “Anomalous thermal expansion behaviour of Ln2Mo4O15(Ln=Y, Dy, Ho, Tm),” Mater. Sci. Eng. B 103(3), 289–296 (2003).
[Crossref]

Seo, H. J.

Y. L. Huang, Y. Nakai, T. Tsuboi, and H. J. Seo, “The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications,” Opt. Express 19(7), 6303–6311 (2011).
[Crossref] [PubMed]

R. Zhu, Y. L. Huang, and H. J. Seo, “A red-emitting phosphor of Eu-based borotungstate Eu3BWO9 for white light-emitting diodes,” J. Electrochem. Soc. 157(12), H1116–H1120 (2010).
[Crossref]

Setlur, A. A.

A. A. Setlur, H. A. Comanzo, A. M. Srivastava, and W. W. Beers, “Spectroscopic evaluation of a white light phosphor for UV-LEDs-Ca2NaMg2V3O12:Eu3+,” J. Electrochem. Soc. 152(12), H205–H208 (2005).
[Crossref]

Srivastava, A. M.

A. A. Setlur, H. A. Comanzo, A. M. Srivastava, and W. W. Beers, “Spectroscopic evaluation of a white light phosphor for UV-LEDs-Ca2NaMg2V3O12:Eu3+,” J. Electrochem. Soc. 152(12), H205–H208 (2005).
[Crossref]

Strobel, S.

S. Laufer, S. Strobel, T. Schleid, J. Cybinska, A. V. Mudring, and I. Hartenbach, “Yttrium(III) oxomolybdates(VI) as potential host materials for luminescence applications: an investigation of Eu3+-doped Y2[MoO4]3 and Y2[MoO4]2[Mo2O7],” New J. Chem. 37(7), 1919–1926 (2013).
[Crossref]

Suard, E.

F. Dubois, F. Goutenoire, Y. Laligant, E. Suard, and P. Lacorre, “Ab-Initio determination of La2Mo4O15 crystal structure from x-rays and neutron powder diffraction,” J. Solid State Chem. 159(1), 228–233 (2001).
[Crossref]

Sun, J. S.

J. Wan, L. H. Cheng, J. S. Sun, H. Y. Zhong, X. P. Li, W. L. Lu, Y. Tian, H. Lin, and B. J. Chen, “Energy transfer and colorimetric properties of Eu3+/Dy3+ co-doped Gd2(MoO4)3 phosphors,” J. Alloy. Comp. 496(1–2), 331–334 (2010).
[Crossref]

Tao, C. Y.

Y. L. Yang, X. M. Li, W. L. Feng, W. J. Yang, W. L. Li, and C. Y. Tao, “Effect of surfactants on morphology and luminescent properties of CaMoO4: Eu3+ red phosphors,” J. Alloy. Comp. 509(3), 845–848 (2011).
[Crossref]

Tian, Y.

J. Wan, L. H. Cheng, J. S. Sun, H. Y. Zhong, X. P. Li, W. L. Lu, Y. Tian, H. Lin, and B. J. Chen, “Energy transfer and colorimetric properties of Eu3+/Dy3+ co-doped Gd2(MoO4)3 phosphors,” J. Alloy. Comp. 496(1–2), 331–334 (2010).
[Crossref]

Tsuboi, T.

Umarji, A. M.

L. Sebastian, J. Manjanna, A. M. Umarji, and J. Gopalakrishnan, “Anomalous thermal expansion behaviour of Ln2Mo4O15(Ln=Y, Dy, Ho, Tm),” Mater. Sci. Eng. B 103(3), 289–296 (2003).
[Crossref]

Wan, J.

J. Wan, L. H. Cheng, J. S. Sun, H. Y. Zhong, X. P. Li, W. L. Lu, Y. Tian, H. Lin, and B. J. Chen, “Energy transfer and colorimetric properties of Eu3+/Dy3+ co-doped Gd2(MoO4)3 phosphors,” J. Alloy. Comp. 496(1–2), 331–334 (2010).
[Crossref]

Wang, H.

H. Wang, J. Peng, X. J. Li, Y. M. Hao, D. F. Chen, and Z. Hu, “Structural and thermal expansion properties of solid solution Y2−xSmxMo4O15 (x=0.0–0.8),” Physica B 388(1–2), 278–284 (2007).

Wang, L. L.

Z. Y. Hou, H. Z. Lian, M. L. Zhang, L. L. Wang, M. F. Lü, C. M. Zhang, and J. Lin, “Preparation and luminescence properties of Gd2MoO6:Eu3+ nanofibers and nanobelts by electrospinning,” J. Electrochem. Soc. 156(8), J209–J214 (2009).
[Crossref]

Yang, H. K.

H. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K. Jang, H. S. Lee, and S. S. Yi, “Crystal structure, electronic structure, and optical and photoluminescence properties of Eu(III) ion-doped Lu6Mo(W)O12.,” Inorg. Chem. 50(24), 12522–12530 (2011).
[Crossref] [PubMed]

Yang, W. J.

Y. L. Yang, X. M. Li, W. L. Feng, W. J. Yang, W. L. Li, and C. Y. Tao, “Effect of surfactants on morphology and luminescent properties of CaMoO4: Eu3+ red phosphors,” J. Alloy. Comp. 509(3), 845–848 (2011).
[Crossref]

Yang, Y. L.

Y. L. Yang, X. M. Li, W. L. Feng, W. J. Yang, W. L. Li, and C. Y. Tao, “Effect of surfactants on morphology and luminescent properties of CaMoO4: Eu3+ red phosphors,” J. Alloy. Comp. 509(3), 845–848 (2011).
[Crossref]

Yang, Z. P.

X. Li, Z. P. Yang, L. Guan, C. Liu, and P. L. Li, “Luminescent properties of Eu3+-doped La2Mo2O9 red phosphor by the flux method,” J. Cryst. Growth 310(12), 3117–3120 (2008).
[Crossref]

Yi, S. S.

H. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K. Jang, H. S. Lee, and S. S. Yi, “Crystal structure, electronic structure, and optical and photoluminescence properties of Eu(III) ion-doped Lu6Mo(W)O12.,” Inorg. Chem. 50(24), 12522–12530 (2011).
[Crossref] [PubMed]

Zeng, Z. L.

Y. C. Fang, S. Y. Chu, P. C. Kao, Y. M. Chuang, and Z. L. Zeng, “Energy transfer and thermal quenching behaviors of CaLa2(MoO4)4:Sm3+, Eu3+ red phosphors,” J. Electrochem. Soc. 158(2), J1–J5 (2011).
[Crossref]

Zhang, C. M.

Z. Y. Hou, H. Z. Lian, M. L. Zhang, L. L. Wang, M. F. Lü, C. M. Zhang, and J. Lin, “Preparation and luminescence properties of Gd2MoO6:Eu3+ nanofibers and nanobelts by electrospinning,” J. Electrochem. Soc. 156(8), J209–J214 (2009).
[Crossref]

Zhang, M. L.

Z. Y. Hou, H. Z. Lian, M. L. Zhang, L. L. Wang, M. F. Lü, C. M. Zhang, and J. Lin, “Preparation and luminescence properties of Gd2MoO6:Eu3+ nanofibers and nanobelts by electrospinning,” J. Electrochem. Soc. 156(8), J209–J214 (2009).
[Crossref]

Zhao, W.

X. Y. Chen, W. Zhao, R. E. Cook, and G. K. Liu, “Anomalous luminescence dynamics of Eu3+ in BaFCl microcrystals,” Phys. Rev. B 70(20), 205122 (2004).
[Crossref]

Zhong, H. Y.

J. Wan, L. H. Cheng, J. S. Sun, H. Y. Zhong, X. P. Li, W. L. Lu, Y. Tian, H. Lin, and B. J. Chen, “Energy transfer and colorimetric properties of Eu3+/Dy3+ co-doped Gd2(MoO4)3 phosphors,” J. Alloy. Comp. 496(1–2), 331–334 (2010).
[Crossref]

Zhu, R.

R. Zhu, Y. L. Huang, and H. J. Seo, “A red-emitting phosphor of Eu-based borotungstate Eu3BWO9 for white light-emitting diodes,” J. Electrochem. Soc. 157(12), H1116–H1120 (2010).
[Crossref]

ECS J. Solid State Sci. and Tech. (1)

P. S. Dutta and A. Khanna, “Eu3+ activated molybdate and tungstate based red phosphors with charge transfer band in blue region,” ECS J. Solid State Sci. and Tech. 2(2), R3153–R3167 (2013).
[Crossref]

Inorg. Chem. (1)

H. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K. Jang, H. S. Lee, and S. S. Yi, “Crystal structure, electronic structure, and optical and photoluminescence properties of Eu(III) ion-doped Lu6Mo(W)O12.,” Inorg. Chem. 50(24), 12522–12530 (2011).
[Crossref] [PubMed]

J. Alloy. Comp. (2)

Y. L. Yang, X. M. Li, W. L. Feng, W. J. Yang, W. L. Li, and C. Y. Tao, “Effect of surfactants on morphology and luminescent properties of CaMoO4: Eu3+ red phosphors,” J. Alloy. Comp. 509(3), 845–848 (2011).
[Crossref]

J. Wan, L. H. Cheng, J. S. Sun, H. Y. Zhong, X. P. Li, W. L. Lu, Y. Tian, H. Lin, and B. J. Chen, “Energy transfer and colorimetric properties of Eu3+/Dy3+ co-doped Gd2(MoO4)3 phosphors,” J. Alloy. Comp. 496(1–2), 331–334 (2010).
[Crossref]

J. Cryst. Growth (1)

X. Li, Z. P. Yang, L. Guan, C. Liu, and P. L. Li, “Luminescent properties of Eu3+-doped La2Mo2O9 red phosphor by the flux method,” J. Cryst. Growth 310(12), 3117–3120 (2008).
[Crossref]

J. Electrochem. Soc. (4)

A. A. Setlur, H. A. Comanzo, A. M. Srivastava, and W. W. Beers, “Spectroscopic evaluation of a white light phosphor for UV-LEDs-Ca2NaMg2V3O12:Eu3+,” J. Electrochem. Soc. 152(12), H205–H208 (2005).
[Crossref]

R. Zhu, Y. L. Huang, and H. J. Seo, “A red-emitting phosphor of Eu-based borotungstate Eu3BWO9 for white light-emitting diodes,” J. Electrochem. Soc. 157(12), H1116–H1120 (2010).
[Crossref]

Y. C. Fang, S. Y. Chu, P. C. Kao, Y. M. Chuang, and Z. L. Zeng, “Energy transfer and thermal quenching behaviors of CaLa2(MoO4)4:Sm3+, Eu3+ red phosphors,” J. Electrochem. Soc. 158(2), J1–J5 (2011).
[Crossref]

Z. Y. Hou, H. Z. Lian, M. L. Zhang, L. L. Wang, M. F. Lü, C. M. Zhang, and J. Lin, “Preparation and luminescence properties of Gd2MoO6:Eu3+ nanofibers and nanobelts by electrospinning,” J. Electrochem. Soc. 156(8), J209–J214 (2009).
[Crossref]

J. Phys. Chem. Lett. (1)

C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[Crossref]

J. Solid State Chem. (2)

G. D. Fallon and B. M. Gatehouse, “The crystal structure of a complex cerium(III) molybdate containing a dimolybdate chain, Ce2(MoO4)2(Mo2O7),” J. Solid State Chem. 44(2), 156–161 (1982).
[Crossref]

F. Dubois, F. Goutenoire, Y. Laligant, E. Suard, and P. Lacorre, “Ab-Initio determination of La2Mo4O15 crystal structure from x-rays and neutron powder diffraction,” J. Solid State Chem. 159(1), 228–233 (2001).
[Crossref]

Mater. Sci. Eng. B (1)

L. Sebastian, J. Manjanna, A. M. Umarji, and J. Gopalakrishnan, “Anomalous thermal expansion behaviour of Ln2Mo4O15(Ln=Y, Dy, Ho, Tm),” Mater. Sci. Eng. B 103(3), 289–296 (2003).
[Crossref]

New J. Chem. (1)

S. Laufer, S. Strobel, T. Schleid, J. Cybinska, A. V. Mudring, and I. Hartenbach, “Yttrium(III) oxomolybdates(VI) as potential host materials for luminescence applications: an investigation of Eu3+-doped Y2[MoO4]3 and Y2[MoO4]2[Mo2O7],” New J. Chem. 37(7), 1919–1926 (2013).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

X. Y. Chen, W. Zhao, R. E. Cook, and G. K. Liu, “Anomalous luminescence dynamics of Eu3+ in BaFCl microcrystals,” Phys. Rev. B 70(20), 205122 (2004).
[Crossref]

Physica B (1)

H. Wang, J. Peng, X. J. Li, Y. M. Hao, D. F. Chen, and Z. Hu, “Structural and thermal expansion properties of solid solution Y2−xSmxMo4O15 (x=0.0–0.8),” Physica B 388(1–2), 278–284 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) a representative experimental (crossed) and calculated (red solid line) X-ray diffraction profiles of Y2-2xEu2xMo4O15 (x = 0.4), Rp = 0.1402, Rwp = 0.0705, R(F2) = 0.170, and χ2 = 1.615; (b):the sketch maps of monoclinic structure of Y2Mo4O15 viewed along [100].
Fig. 2
Fig. 2 SEM micrographs (a) and the TEM image (b) of Y2-2xEu2xMo4O15 (x = 0.4) nanoparticles.
Fig. 3
Fig. 3 (a): Luminescence of Y2-2xEu2xMo4O15 (x = 0.05, 0.2, 0.3, 0.4) excited at 395 nm, inset is the absolute QEs efficiencies on Eu3+-doping; (b): typical excitation spectrum of Y2-2xEu2xMo4O15 (x = 0.05, 0.2, 0.4) (λem = 616 nm).
Fig. 4
Fig. 4 (a): the spectra of Y2-2xEu2xMo4O15 (x = 0.4) at the selected temperatures; inset shows the temperature dependence of the integrated intensity normalized to the value at 20 °C; (b): the decay curves of 5D07F2 transition (616 nm) under excitation of 355 nm at different temperature; inset is the dependence of the lifetimes on temperature.
Fig. 5
Fig. 5 The excitation spectra of Y2-2xEu2xMo4O15 (x = 0.4) detected in the wavelength region of 7F05D0 transitions at 300 and 15 K. The spectra were obtained with a 580 nm filter by monitoring 5D07F2 luminescence of 616 nm of Eu3+ from the sample.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ ( T ) = τ r 1 + [ τ r / τ n r ] exp ( Δ E / k T )

Metrics