Abstract

We present the experimental investigation of a single-mode double-clad Tm3+-doped silicate fiber with ion concentration of 7 wt.% (8.35 x 1020/cm3). A gain per unit length of 5.8 dB/cm at 1945 nm has been successfully achieved in a 3-cm Tm3+-doped silicate fiber amplifier, pumped with 647.6 mW at 1567 nm. To the best of our knowledge, this would be the highest gain per unit length reported for Tm3+-doped fibers. Furthermore, we experimentally demonstrate efficient cm-long fiber lasers and watt-level cladding pumped Tm3+-doped silicate fiber amplifiers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tm3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications

Guowu Tang, Tingting Zhu, Wangwang Liu, Wei Lin, Tian Qiao, Min Sun, Dongdan Chen, Qi Qian, and Zhongmin Yang
Opt. Mater. Express 6(6) 2147-2157 (2016)

Highly efficient ­Tm3+ doped germanate large mode area single mode fiber laser

Fedia Ben Slimen, Shaoxiang Chen, Joris Lousteau, Yongmin Jung, Nicholas White, Shaiful Alam, David J. Richardson, and Francesco Poletti
Opt. Mater. Express 9(10) 4115-4125 (2019)

Heavily Ho3+-doped lead silicate glass fiber for ~2 μm fiber lasers

Xueqiang Liu, Peiwen Kuan, Dahai Li, Song Gao, Xin Wang, Lei Zhang, Lili Hu, and Danping Chen
Opt. Mater. Express 6(4) 1093-1098 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. A. Clarkson, L. Pearson, Z. Zhang, J. W. Kim, D. Shen, A. J. Boyland, J. K. Sahu, and M. Ibsen, “High power thulium-doped fiber lasers,”in The Optical Fiber Communication Conference and Exposition (OFC 2009) Technical Digest, Los Angeles (US) (Optical Society of America, March, 2009), paper OWT1.
  2. M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
    [Crossref]
  3. C. Gaida, F. Stutzki, M. Gebhardt, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, “200 MW peak power from a Tm-doped fiber CPA system,” in Advanced Solid State Lasers (ASSL 2014) Technical Digest, Shanghai (China) (Optical Society of America, 2014), paper ATu5A.2.
    [Crossref]
  4. M. M. Broer, D. M. Krol, and D. J. Digiovanni, “Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber,” Opt. Lett. 18(10), 799–801 (1993).
    [Crossref] [PubMed]
  5. J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
    [Crossref] [PubMed]
  6. B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient ~2 μm Tm3+-doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
    [Crossref] [PubMed]
  7. J. Geng, Q. Wang, T. Luo, S. Jiang, and F. Amzajerdian, “Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber,” Opt. Lett. 34(22), 3493–3495 (2009).
    [Crossref] [PubMed]
  8. J. Geng, Q. Wang, J. Smith, T. Luo, F. Amzajerdian, and S. Jiang, “All-fiber Q-switched single-frequency Tm-doped laser near 2 µm,” Opt. Lett. 34(23), 3713–3715 (2009).
    [Crossref] [PubMed]
  9. Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 µm laser with highly thulium-doped silicate fiber,” Opt. Lett. 34(23), 3616–3618 (2009).
    [Crossref] [PubMed]
  10. J. Geng, Q. Wang, Y. W. Lee, and S. Jiang, “Development of eye-safe fiber lasers near 2 μm,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904011 (2014).
  11. Y. W. Lee, M. J. F. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-power Yb3+-doped phosphate fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
    [Crossref]
  12. E. Snitzer and R. Tumminelli, “SiO2-clad fibers with selectively volatilized soft-glass cores,” Opt. Lett. 14(14), 757–759 (1989).
    [Crossref] [PubMed]
  13. S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14(1), 50–57 (2006).
    [Crossref] [PubMed]
  14. D. E. McCumber, “Theory of phonon terminated optical masers,” Phys. Rev. Lett. 134(2A), A299–A306 (1964).
  15. M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental limitations of the McCumber relation applied to Er-doped silica and other amorphous-host lasers,” IEEE J. Quantum Electron. 38(12), 1629–1637 (2002).
    [Crossref]
  16. C. R. Giles and E. Desurvire, “Modeling Erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
    [Crossref]
  17. J. L. Wagener, D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A Mueller matrix formalism for modeling polarization effects in Erbium-doped fiber,” J. Lightwave Technol. 16(2), 200–206 (1998).
    [Crossref]
  18. LIEKKI™ Application Designer, v4.0, Available online: http://www.nlight.net/download/lad

2014 (2)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

J. Geng, Q. Wang, Y. W. Lee, and S. Jiang, “Development of eye-safe fiber lasers near 2 μm,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904011 (2014).

2009 (4)

2008 (1)

2007 (1)

2006 (1)

2002 (1)

M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental limitations of the McCumber relation applied to Er-doped silica and other amorphous-host lasers,” IEEE J. Quantum Electron. 38(12), 1629–1637 (2002).
[Crossref]

1998 (1)

1993 (1)

1991 (1)

C. R. Giles and E. Desurvire, “Modeling Erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
[Crossref]

1989 (1)

1964 (1)

D. E. McCumber, “Theory of phonon terminated optical masers,” Phys. Rev. Lett. 134(2A), A299–A306 (1964).

Agger, S. D.

Amzajerdian, F.

Binks, D.

Broer, M. M.

Byer, R. L.

Y. W. Lee, M. J. F. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-power Yb3+-doped phosphate fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[Crossref]

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

Desurvire, E.

C. R. Giles and E. Desurvire, “Modeling Erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
[Crossref]

Digiovanni, D. J.

Digonnet, M. J. F.

Y. W. Lee, M. J. F. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-power Yb3+-doped phosphate fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[Crossref]

M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental limitations of the McCumber relation applied to Er-doped silica and other amorphous-host lasers,” IEEE J. Quantum Electron. 38(12), 1629–1637 (2002).
[Crossref]

J. L. Wagener, D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A Mueller matrix formalism for modeling polarization effects in Erbium-doped fiber,” J. Lightwave Technol. 16(2), 200–206 (1998).
[Crossref]

Falquier, D. G.

M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental limitations of the McCumber relation applied to Er-doped silica and other amorphous-host lasers,” IEEE J. Quantum Electron. 38(12), 1629–1637 (2002).
[Crossref]

J. L. Wagener, D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A Mueller matrix formalism for modeling polarization effects in Erbium-doped fiber,” J. Lightwave Technol. 16(2), 200–206 (1998).
[Crossref]

Geng, J.

Giles, C. R.

C. R. Giles and E. Desurvire, “Modeling Erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
[Crossref]

Jha, A.

Jiang, S.

Krol, D. M.

Lee, Y. W.

J. Geng, Q. Wang, Y. W. Lee, and S. Jiang, “Development of eye-safe fiber lasers near 2 μm,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904011 (2014).

Y. W. Lee, M. J. F. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-power Yb3+-doped phosphate fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[Crossref]

Lousteau, J.

Luo, T.

McCumber, D. E.

D. E. McCumber, “Theory of phonon terminated optical masers,” Phys. Rev. Lett. 134(2A), A299–A306 (1964).

Murphy-Chutorian, E.

M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental limitations of the McCumber relation applied to Er-doped silica and other amorphous-host lasers,” IEEE J. Quantum Electron. 38(12), 1629–1637 (2002).
[Crossref]

Povlsen, J. H.

Richards, B.

Shaw, H. J.

Sinha, S.

Y. W. Lee, M. J. F. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-power Yb3+-doped phosphate fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[Crossref]

Smith, J.

Snitzer, E.

Tsang, Y.

Tumminelli, R.

Urbanek, K. E.

Y. W. Lee, M. J. F. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-power Yb3+-doped phosphate fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[Crossref]

Wagener, J. L.

Wang, Q.

Wu, J.

Yao, Z.

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

Zong, J.

IEEE J. Quantum Electron. (1)

M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental limitations of the McCumber relation applied to Er-doped silica and other amorphous-host lasers,” IEEE J. Quantum Electron. 38(12), 1629–1637 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

J. Geng, Q. Wang, Y. W. Lee, and S. Jiang, “Development of eye-safe fiber lasers near 2 μm,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904011 (2014).

Y. W. Lee, M. J. F. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-power Yb3+-doped phosphate fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (1)

Opt. Lett. (7)

Phys. Rev. Lett. (1)

D. E. McCumber, “Theory of phonon terminated optical masers,” Phys. Rev. Lett. 134(2A), A299–A306 (1964).

Other (3)

C. Gaida, F. Stutzki, M. Gebhardt, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, “200 MW peak power from a Tm-doped fiber CPA system,” in Advanced Solid State Lasers (ASSL 2014) Technical Digest, Shanghai (China) (Optical Society of America, 2014), paper ATu5A.2.
[Crossref]

LIEKKI™ Application Designer, v4.0, Available online: http://www.nlight.net/download/lad

W. A. Clarkson, L. Pearson, Z. Zhang, J. W. Kim, D. Shen, A. J. Boyland, J. K. Sahu, and M. Ibsen, “High power thulium-doped fiber lasers,”in The Optical Fiber Communication Conference and Exposition (OFC 2009) Technical Digest, Los Angeles (US) (Optical Society of America, March, 2009), paper OWT1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Photograph of the cleaved Tm3+-doped silicate fiber.
Fig. 2
Fig. 2 The absorption and emission cross-section spectra of the 7 wt.% Tm3+-doped silicate glass.
Fig. 3
Fig. 3 Theoretical predictions for the distribution of normalized excited-state population density ne and population inversion along the 6.5-cm Tm3+-doped silicate fiber amplifier, under the 1567-nm pump power of 650 mW.
Fig. 4
Fig. 4 Theoretical predictions of the gain per unit length of fiber amplifiers versus 1567-nm pump power for various fiber lengths.
Fig. 5
Fig. 5 Experimental setup of the 1945-nm Tm3+-doped silicate fiber amplifier.
Fig. 6
Fig. 6 The average gain per unit length versus launched pump power in core-pumped Tm3+-doped silicate fiber amplifiers of 3, 4.5, and 6.5 cm in length. The inset shows the amplifier output spectrum.
Fig. 7
Fig. 7 Experimental setup of Tm3+-doped silicate fiber lasers.
Fig. 8
Fig. 8 Laser output versus launched pump power in core-pumped Tm3+-doped silicate fiber lasers of (a) 8.5 and 6.5 cm (b) 4.5 and 3 cm in length. The insets are the measured laser output spectra.
Fig. 9
Fig. 9 Experimental setup of Tm3+-doped silicate fiber amplifier.
Fig. 10
Fig. 10 Measured 1985-nm signal output power generated by the 50-cm-long Tm3+ doped silicate fiber amplifier as a function of launched pump power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g v ( z )= N 0 Γ v { σ ev n e ( z ) σ av [ 1 n e (z) ] }

Metrics