Abstract

The novel long persistent luminescence phosphors MAl2O4:Yb2+ (M = Ba, Sr) have been synthesized by a solid-state reaction. BaAl2O4:Yb2+ exhibits intense blue luminescence emission and the persistent time is even longer than the commercial phosphor SrAl2O4:Eu2+, Dy3+. The incorporation of Dy3+ ion as trap center evidently enhances persistent time of Yb2+ in SrAl2O4:Yb2+ host. We believe that MAl2O4:Yb2+ would replace the commercial SrAl2O4:Eu2+ as a new generation of long persistent luminescence materials due to the cheaper Yb2O3 than Eu2O3. To investigate the application in solar cell, MAl2O4:Yb2+ (M = Ba, Sr) phosphors are doped into methyl methacrylate monomer (MMA) polymer. The short circuit current density (Isc) of solar cell containing BaAl2O4:Yb2+ can easily be measured after removing the irradiation source.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near infrared photostimulated persistent luminescence and information storage of SrAl2O4:Eu2+,Dy3+ phosphor

Haibo Liu, Baoluo Feng, Li Luo, Chunlong Han, and Peter A. Tanner
Opt. Mater. Express 6(11) 3375-3385 (2016)

Design, synthesis and characterization of an orange-yellow long persistent phosphor: Sr3Al2O5Cl2:Eu2+,Tm3+

Yanqin Li, Yuhua Wang, Yu Gong, Xuhui Xu, and Meijiao Zhou
Opt. Express 18(24) 24853-24858 (2010)

Persistent luminescence in MSi2O2N2:Eu phosphors

Jonas Botterman, Koen Van den Eeckhout, Adrie J. J. Bos, Pieter Dorenbos, and Philippe F. Smet
Opt. Mater. Express 2(3) 341-349 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. Zeng, Y. H. Wang, S. C. Han, W. B. Chen, G. Li, Y. Z. Wang, and Y. Wen, Design, “Synthesis and characterization of a novel yellow long-persistent phosphor: Ca2BO3Cl: Eu2+, Dy3+,” J. Mater. Chem. C. 1(17), 3004–3011 (2013).
    [Crossref]
  2. Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
    [Crossref] [PubMed]
  3. Y. H. Wang, Y. Gong, X. H. Xu, and Y. Q. Li, “Recent progress in multicolor long persistent phosphors,” J. Lumin. 133, 25–29 (2013).
    [Crossref]
  4. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
    [Crossref]
  5. C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish- orange afterglow phosphor Y2O2S:Ti,Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
    [Crossref]
  6. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
    [Crossref]
  7. Y. Liu, B. Lei, and C. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
    [Crossref]
  8. X. Sun, J. Zhang, X. Zhang, Y. Luo, and X. J. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5:Eu2+ and Sr3SiO5:Eu2+,Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
    [Crossref]
  9. H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: flurescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
    [Crossref]
  10. M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to lonizing radiation,” Nucl. Instrum. Methods Phys. Res. Sect. A. 480(2–3), 431–439 (2002).
    [Crossref]
  11. C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Enhancement of adhesion and triboluminescence of ZnS:Mn films by annealing technique,” Appl. Phys. Lett. 352(1–2), 273–277 (1999).
  12. B. F. Lei, S. Yue, Y. Z. Zhang, and Y. L. Liu, “Luminescence properties of Sr2SnO4:Sm3+ afterglow phosphor,” Chin. Phys. Lett. 27(3), 037201 (2010).
    [Crossref]
  13. Y. Q. Li, Y. H. Wang, Y. Gong, X. H. Xu, and M. J. Zhou, “Design, synthesis and characterization of an orange-yellow long persistent phosphor: Sr3Al2O5Cl2:Eu2+,Tm3+,” Opt. Express 18(24), 24853–24858 (2010).
    [Crossref] [PubMed]
  14. X. Teng, Y. Liu, Y. Liu, Y. Hu, H. He, and W. Zhuang, “Luminescence properties of Tm3+ co-doped Sr2Si5N8:Eu2+ red phosphor,” J. Lumin. 130(5), 851–854 (2010).
    [Crossref]
  15. E. Nakazawa and T. Mochida, “Traps in SrAl2O4:Eu2+ phosphor with rare-earth ion doping,” J. Lumin. 72–74, 236–237 (1997).
    [Crossref]
  16. S. Yesilay, E. Kaya, Karacaoglu, and B. Karasu, “Effect of Al/Sr ratio on the luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors,” Ceram. Int. 38(5), 3701–3706 (2012).
  17. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence Study of Persistent Luminescence Materials: Eu2+- and R3+-Doped Calcium Aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
    [Crossref] [PubMed]
  18. H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72–74, 287–289 (1997).
    [Crossref]
  19. F. Palilla, A. K. Luvine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642 (1968).
    [Crossref]
  20. V. Abbruscato, “Optical and Electrical Properties of SrAl2O4: Eu2+,” J. Electrochem. Soc. 118(6), 930 (1971).
    [Crossref]
  21. M. Henke, J. Perßon, and S. Kück, “Preparation and spectroscopy of Yb2+-doped Y3Al5O12, YAlO3, and LiBaF3,” J. Lumin. 87–89, 1049–1051 (2000).
    [Crossref]
  22. H. Sun Yoo, S. Vaidyanathan, A. Wook Kim, and D. Young Jeon, “Synthesis and photoluminescence properties of Yb2+ doped Ba5(PO4)3Cl phosphor for white light-emitting diodes,” Opt. Mater. 31(11), 1555–1558 (2009).
    [Crossref]
  23. Z. J. Zhang, O. M. Ten Kate, A. C. A. Delsing, Z. Y. Man, R. J. Xie, Y. F. Shen, M. J. H. Stevens, N. Peter, D. Pieter, J. T. Zhao, and T. Hintzen Hubertus, “Preparation, electronic structure and photoluminescence properties of RE (RE = Ce, Yb)-activated SrAlSi4N7 phosphors,” J. Mater. Chem. C. 47(1), 7856–7865 (2013).
  24. Z. J. Zhang, O. M. Kate, A. C. A. Delsing, M. J. H. Stevens, J. T. Zhao, P. H. L. Notten, P. Dorenbos, and H. T. Hintzen, “Photoluminescence properties of Yb2+ in CaAlSiN3 as a novel red-emitting phosphor for white LEDs,” J. Mater. Chem. 22(45), 23871–23876 (2012).
    [Crossref]
  25. Y. M. Yang, X. Y. Su, X. D. Li, F. Yu, C. Mi, and G. Li, “A novel orange emitting BaS:xYb2+ phosphor for white light LEDs,” Mater. Res. Bull. 51, 202–204 (2014).
    [Crossref]
  26. H. Kanno, K. Noda, and K. Matsui, “New long-afterglow phosphors: Yb2+-doped strontium aluminates,” Chem. Phys. Lett. 580, 103–107 (2013).
    [Crossref]
  27. H. Rietveld, “Profile refinement method for nuclear and magnetic structures,” J. Appl. Cryst. 2(2), 65–71 (1969).
    [Crossref]
  28. J. Rodriquez-Carvajal, M. T. Fernadez-Diaz, and J. L. Martinez, “Neutron diffraction study on structural and magnetic properties of La2NiO4,” J. Phys. Condens. Matter 3(19), 3215–3234 (1991).
    [Crossref]
  29. X. D. Lü, W. G. Shu, Q. Fang, Q. M. Yu, and X. Q. Xiong, “Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, RE3+ phosphors,” J. Mater. Sci. 42(15), 6240–6245 (2007).
    [Crossref]
  30. X. H. Xu, Y. H. Wang, Y. Gong, W. Zeng, and Y. Q. Li, “Effect of oxygen vacancies on the red phosphorescence of Sr2SnO4:Sm3+ phosphor,” Opt. Express 18(16), 16989–16994 (2010).
    [Crossref] [PubMed]
  31. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+-Doped Compounds: A Review,” Mater. 3(4), 2536–2566 (2010).
    [Crossref]
  32. H. Sun, L. Pan, X. Piao, and Z. Sun, “Enhanced performance of cadmium selenide quantum dot-sensitized solar cells by incorporating long afterglow europium, dysprosium co-doped strontium aluminate phosphors,” J. Colloid Interface Sci. 416(15), 81–85 (2014).
    [Crossref] [PubMed]

2014 (2)

Y. M. Yang, X. Y. Su, X. D. Li, F. Yu, C. Mi, and G. Li, “A novel orange emitting BaS:xYb2+ phosphor for white light LEDs,” Mater. Res. Bull. 51, 202–204 (2014).
[Crossref]

H. Sun, L. Pan, X. Piao, and Z. Sun, “Enhanced performance of cadmium selenide quantum dot-sensitized solar cells by incorporating long afterglow europium, dysprosium co-doped strontium aluminate phosphors,” J. Colloid Interface Sci. 416(15), 81–85 (2014).
[Crossref] [PubMed]

2013 (4)

H. Kanno, K. Noda, and K. Matsui, “New long-afterglow phosphors: Yb2+-doped strontium aluminates,” Chem. Phys. Lett. 580, 103–107 (2013).
[Crossref]

Z. J. Zhang, O. M. Ten Kate, A. C. A. Delsing, Z. Y. Man, R. J. Xie, Y. F. Shen, M. J. H. Stevens, N. Peter, D. Pieter, J. T. Zhao, and T. Hintzen Hubertus, “Preparation, electronic structure and photoluminescence properties of RE (RE = Ce, Yb)-activated SrAlSi4N7 phosphors,” J. Mater. Chem. C. 47(1), 7856–7865 (2013).

W. Zeng, Y. H. Wang, S. C. Han, W. B. Chen, G. Li, Y. Z. Wang, and Y. Wen, Design, “Synthesis and characterization of a novel yellow long-persistent phosphor: Ca2BO3Cl: Eu2+, Dy3+,” J. Mater. Chem. C. 1(17), 3004–3011 (2013).
[Crossref]

Y. H. Wang, Y. Gong, X. H. Xu, and Y. Q. Li, “Recent progress in multicolor long persistent phosphors,” J. Lumin. 133, 25–29 (2013).
[Crossref]

2012 (2)

S. Yesilay, E. Kaya, Karacaoglu, and B. Karasu, “Effect of Al/Sr ratio on the luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors,” Ceram. Int. 38(5), 3701–3706 (2012).

Z. J. Zhang, O. M. Kate, A. C. A. Delsing, M. J. H. Stevens, J. T. Zhao, P. H. L. Notten, P. Dorenbos, and H. T. Hintzen, “Photoluminescence properties of Yb2+ in CaAlSiN3 as a novel red-emitting phosphor for white LEDs,” J. Mater. Chem. 22(45), 23871–23876 (2012).
[Crossref]

2011 (1)

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

2010 (5)

B. F. Lei, S. Yue, Y. Z. Zhang, and Y. L. Liu, “Luminescence properties of Sr2SnO4:Sm3+ afterglow phosphor,” Chin. Phys. Lett. 27(3), 037201 (2010).
[Crossref]

Y. Q. Li, Y. H. Wang, Y. Gong, X. H. Xu, and M. J. Zhou, “Design, synthesis and characterization of an orange-yellow long persistent phosphor: Sr3Al2O5Cl2:Eu2+,Tm3+,” Opt. Express 18(24), 24853–24858 (2010).
[Crossref] [PubMed]

X. Teng, Y. Liu, Y. Liu, Y. Hu, H. He, and W. Zhuang, “Luminescence properties of Tm3+ co-doped Sr2Si5N8:Eu2+ red phosphor,” J. Lumin. 130(5), 851–854 (2010).
[Crossref]

X. H. Xu, Y. H. Wang, Y. Gong, W. Zeng, and Y. Q. Li, “Effect of oxygen vacancies on the red phosphorescence of Sr2SnO4:Sm3+ phosphor,” Opt. Express 18(16), 16989–16994 (2010).
[Crossref] [PubMed]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+-Doped Compounds: A Review,” Mater. 3(4), 2536–2566 (2010).
[Crossref]

2009 (1)

H. Sun Yoo, S. Vaidyanathan, A. Wook Kim, and D. Young Jeon, “Synthesis and photoluminescence properties of Yb2+ doped Ba5(PO4)3Cl phosphor for white light-emitting diodes,” Opt. Mater. 31(11), 1555–1558 (2009).
[Crossref]

2008 (1)

X. Sun, J. Zhang, X. Zhang, Y. Luo, and X. J. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5:Eu2+ and Sr3SiO5:Eu2+,Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[Crossref]

2007 (1)

X. D. Lü, W. G. Shu, Q. Fang, Q. M. Yu, and X. Q. Xiong, “Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, RE3+ phosphors,” J. Mater. Sci. 42(15), 6240–6245 (2007).
[Crossref]

2006 (1)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence Study of Persistent Luminescence Materials: Eu2+- and R3+-Doped Calcium Aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[Crossref] [PubMed]

2005 (2)

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Y. Liu, B. Lei, and C. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[Crossref]

2003 (1)

C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish- orange afterglow phosphor Y2O2S:Ti,Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[Crossref]

2002 (1)

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to lonizing radiation,” Nucl. Instrum. Methods Phys. Res. Sect. A. 480(2–3), 431–439 (2002).
[Crossref]

2000 (2)

M. Henke, J. Perßon, and S. Kück, “Preparation and spectroscopy of Yb2+-doped Y3Al5O12, YAlO3, and LiBaF3,” J. Lumin. 87–89, 1049–1051 (2000).
[Crossref]

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: flurescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[Crossref]

1999 (1)

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Enhancement of adhesion and triboluminescence of ZnS:Mn films by annealing technique,” Appl. Phys. Lett. 352(1–2), 273–277 (1999).

1997 (2)

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72–74, 287–289 (1997).
[Crossref]

E. Nakazawa and T. Mochida, “Traps in SrAl2O4:Eu2+ phosphor with rare-earth ion doping,” J. Lumin. 72–74, 236–237 (1997).
[Crossref]

1996 (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

1991 (1)

J. Rodriquez-Carvajal, M. T. Fernadez-Diaz, and J. L. Martinez, “Neutron diffraction study on structural and magnetic properties of La2NiO4,” J. Phys. Condens. Matter 3(19), 3215–3234 (1991).
[Crossref]

1971 (1)

V. Abbruscato, “Optical and Electrical Properties of SrAl2O4: Eu2+,” J. Electrochem. Soc. 118(6), 930 (1971).
[Crossref]

1969 (1)

H. Rietveld, “Profile refinement method for nuclear and magnetic structures,” J. Appl. Cryst. 2(2), 65–71 (1969).
[Crossref]

1968 (1)

F. Palilla, A. K. Luvine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642 (1968).
[Crossref]

Abbruscato, V.

V. Abbruscato, “Optical and Electrical Properties of SrAl2O4: Eu2+,” J. Electrochem. Soc. 118(6), 930 (1971).
[Crossref]

Aitasalo, T.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence Study of Persistent Luminescence Materials: Eu2+- and R3+-Doped Calcium Aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[Crossref] [PubMed]

Akiyama, M.

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Enhancement of adhesion and triboluminescence of ZnS:Mn films by annealing technique,” Appl. Phys. Lett. 352(1–2), 273–277 (1999).

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Chang, J. C.

C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish- orange afterglow phosphor Y2O2S:Ti,Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[Crossref]

Chen, W. B.

W. Zeng, Y. H. Wang, S. C. Han, W. B. Chen, G. Li, Y. Z. Wang, and Y. Wen, Design, “Synthesis and characterization of a novel yellow long-persistent phosphor: Ca2BO3Cl: Eu2+, Dy3+,” J. Mater. Chem. C. 1(17), 3004–3011 (2013).
[Crossref]

Clabau, F.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Delsing, A. C. A.

Z. J. Zhang, O. M. Ten Kate, A. C. A. Delsing, Z. Y. Man, R. J. Xie, Y. F. Shen, M. J. H. Stevens, N. Peter, D. Pieter, J. T. Zhao, and T. Hintzen Hubertus, “Preparation, electronic structure and photoluminescence properties of RE (RE = Ce, Yb)-activated SrAlSi4N7 phosphors,” J. Mater. Chem. C. 47(1), 7856–7865 (2013).

Z. J. Zhang, O. M. Kate, A. C. A. Delsing, M. J. H. Stevens, J. T. Zhao, P. H. L. Notten, P. Dorenbos, and H. T. Hintzen, “Photoluminescence properties of Yb2+ in CaAlSiN3 as a novel red-emitting phosphor for white LEDs,” J. Mater. Chem. 22(45), 23871–23876 (2012).
[Crossref]

Deniard, P.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Dorenbos, P.

Z. J. Zhang, O. M. Kate, A. C. A. Delsing, M. J. H. Stevens, J. T. Zhao, P. H. L. Notten, P. Dorenbos, and H. T. Hintzen, “Photoluminescence properties of Yb2+ in CaAlSiN3 as a novel red-emitting phosphor for white LEDs,” J. Mater. Chem. 22(45), 23871–23876 (2012).
[Crossref]

Fang, Q.

X. D. Lü, W. G. Shu, Q. Fang, Q. M. Yu, and X. Q. Xiong, “Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, RE3+ phosphors,” J. Mater. Sci. 42(15), 6240–6245 (2007).
[Crossref]

Fernadez-Diaz, M. T.

J. Rodriquez-Carvajal, M. T. Fernadez-Diaz, and J. L. Martinez, “Neutron diffraction study on structural and magnetic properties of La2NiO4,” J. Phys. Condens. Matter 3(19), 3215–3234 (1991).
[Crossref]

Garcia, A.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Gong, Y.

Han, S. C.

W. Zeng, Y. H. Wang, S. C. Han, W. B. Chen, G. Li, Y. Z. Wang, and Y. Wen, Design, “Synthesis and characterization of a novel yellow long-persistent phosphor: Ca2BO3Cl: Eu2+, Dy3+,” J. Mater. Chem. C. 1(17), 3004–3011 (2013).
[Crossref]

He, H.

X. Teng, Y. Liu, Y. Liu, Y. Hu, H. He, and W. Zhuang, “Luminescence properties of Tm3+ co-doped Sr2Si5N8:Eu2+ red phosphor,” J. Lumin. 130(5), 851–854 (2010).
[Crossref]

Henke, M.

M. Henke, J. Perßon, and S. Kück, “Preparation and spectroscopy of Yb2+-doped Y3Al5O12, YAlO3, and LiBaF3,” J. Lumin. 87–89, 1049–1051 (2000).
[Crossref]

Hintzen, H. T.

Z. J. Zhang, O. M. Kate, A. C. A. Delsing, M. J. H. Stevens, J. T. Zhao, P. H. L. Notten, P. Dorenbos, and H. T. Hintzen, “Photoluminescence properties of Yb2+ in CaAlSiN3 as a novel red-emitting phosphor for white LEDs,” J. Mater. Chem. 22(45), 23871–23876 (2012).
[Crossref]

Hintzen Hubertus, T.

Z. J. Zhang, O. M. Ten Kate, A. C. A. Delsing, Z. Y. Man, R. J. Xie, Y. F. Shen, M. J. H. Stevens, N. Peter, D. Pieter, J. T. Zhao, and T. Hintzen Hubertus, “Preparation, electronic structure and photoluminescence properties of RE (RE = Ce, Yb)-activated SrAlSi4N7 phosphors,” J. Mater. Chem. C. 47(1), 7856–7865 (2013).

Hölsä, J.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence Study of Persistent Luminescence Materials: Eu2+- and R3+-Doped Calcium Aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[Crossref] [PubMed]

Höppe, H. A.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: flurescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[Crossref]

Hu, Y.

X. Teng, Y. Liu, Y. Liu, Y. Hu, H. He, and W. Zhuang, “Luminescence properties of Tm3+ co-doped Sr2Si5N8:Eu2+ red phosphor,” J. Lumin. 130(5), 851–854 (2010).
[Crossref]

Iinuma, K.

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to lonizing radiation,” Nucl. Instrum. Methods Phys. Res. Sect. A. 480(2–3), 431–439 (2002).
[Crossref]

Jobic, S.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Jungner, H.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence Study of Persistent Luminescence Materials: Eu2+- and R3+-Doped Calcium Aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[Crossref] [PubMed]

Kang, C. C.

C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish- orange afterglow phosphor Y2O2S:Ti,Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[Crossref]

Kanno, H.

H. Kanno, K. Noda, and K. Matsui, “New long-afterglow phosphors: Yb2+-doped strontium aluminates,” Chem. Phys. Lett. 580, 103–107 (2013).
[Crossref]

Karacaoglu,

S. Yesilay, E. Kaya, Karacaoglu, and B. Karasu, “Effect of Al/Sr ratio on the luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors,” Ceram. Int. 38(5), 3701–3706 (2012).

Karasu, B.

S. Yesilay, E. Kaya, Karacaoglu, and B. Karasu, “Effect of Al/Sr ratio on the luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors,” Ceram. Int. 38(5), 3701–3706 (2012).

Kate, O. M.

Z. J. Zhang, O. M. Kate, A. C. A. Delsing, M. J. H. Stevens, J. T. Zhao, P. H. L. Notten, P. Dorenbos, and H. T. Hintzen, “Photoluminescence properties of Yb2+ in CaAlSiN3 as a novel red-emitting phosphor for white LEDs,” J. Mater. Chem. 22(45), 23871–23876 (2012).
[Crossref]

Kaya, E.

S. Yesilay, E. Kaya, Karacaoglu, and B. Karasu, “Effect of Al/Sr ratio on the luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors,” Ceram. Int. 38(5), 3701–3706 (2012).

Kowatari, M.

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to lonizing radiation,” Nucl. Instrum. Methods Phys. Res. Sect. A. 480(2–3), 431–439 (2002).
[Crossref]

Koyama, D.

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to lonizing radiation,” Nucl. Instrum. Methods Phys. Res. Sect. A. 480(2–3), 431–439 (2002).
[Crossref]

Kück, S.

M. Henke, J. Perßon, and S. Kück, “Preparation and spectroscopy of Yb2+-doped Y3Al5O12, YAlO3, and LiBaF3,” J. Lumin. 87–89, 1049–1051 (2000).
[Crossref]

Lastusaari, M.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence Study of Persistent Luminescence Materials: Eu2+- and R3+-Doped Calcium Aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[Crossref] [PubMed]

Le Mercier, T.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Lee, B. J.

C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish- orange afterglow phosphor Y2O2S:Ti,Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[Crossref]

Lei, B.

Y. Liu, B. Lei, and C. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[Crossref]

Lei, B. F.

B. F. Lei, S. Yue, Y. Z. Zhang, and Y. L. Liu, “Luminescence properties of Sr2SnO4:Sm3+ afterglow phosphor,” Chin. Phys. Lett. 27(3), 037201 (2010).
[Crossref]

Li, G.

Y. M. Yang, X. Y. Su, X. D. Li, F. Yu, C. Mi, and G. Li, “A novel orange emitting BaS:xYb2+ phosphor for white light LEDs,” Mater. Res. Bull. 51, 202–204 (2014).
[Crossref]

W. Zeng, Y. H. Wang, S. C. Han, W. B. Chen, G. Li, Y. Z. Wang, and Y. Wen, Design, “Synthesis and characterization of a novel yellow long-persistent phosphor: Ca2BO3Cl: Eu2+, Dy3+,” J. Mater. Chem. C. 1(17), 3004–3011 (2013).
[Crossref]

Li, X. D.

Y. M. Yang, X. Y. Su, X. D. Li, F. Yu, C. Mi, and G. Li, “A novel orange emitting BaS:xYb2+ phosphor for white light LEDs,” Mater. Res. Bull. 51, 202–204 (2014).
[Crossref]

Li, Y. Q.

Liu, F.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Liu, R. S.

C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish- orange afterglow phosphor Y2O2S:Ti,Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[Crossref]

Liu, Y.

X. Teng, Y. Liu, Y. Liu, Y. Hu, H. He, and W. Zhuang, “Luminescence properties of Tm3+ co-doped Sr2Si5N8:Eu2+ red phosphor,” J. Lumin. 130(5), 851–854 (2010).
[Crossref]

X. Teng, Y. Liu, Y. Liu, Y. Hu, H. He, and W. Zhuang, “Luminescence properties of Tm3+ co-doped Sr2Si5N8:Eu2+ red phosphor,” J. Lumin. 130(5), 851–854 (2010).
[Crossref]

Y. Liu, B. Lei, and C. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[Crossref]

Liu, Y. L.

B. F. Lei, S. Yue, Y. Z. Zhang, and Y. L. Liu, “Luminescence properties of Sr2SnO4:Sm3+ afterglow phosphor,” Chin. Phys. Lett. 27(3), 037201 (2010).
[Crossref]

Lu, Y. Y.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Lü, X. D.

X. D. Lü, W. G. Shu, Q. Fang, Q. M. Yu, and X. Q. Xiong, “Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, RE3+ phosphors,” J. Mater. Sci. 42(15), 6240–6245 (2007).
[Crossref]

Luo, Y.

X. Sun, J. Zhang, X. Zhang, Y. Luo, and X. J. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5:Eu2+ and Sr3SiO5:Eu2+,Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[Crossref]

Lutz, H.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: flurescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[Crossref]

Luvine, A. K.

F. Palilla, A. K. Luvine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642 (1968).
[Crossref]

Man, Z. Y.

Z. J. Zhang, O. M. Ten Kate, A. C. A. Delsing, Z. Y. Man, R. J. Xie, Y. F. Shen, M. J. H. Stevens, N. Peter, D. Pieter, J. T. Zhao, and T. Hintzen Hubertus, “Preparation, electronic structure and photoluminescence properties of RE (RE = Ce, Yb)-activated SrAlSi4N7 phosphors,” J. Mater. Chem. C. 47(1), 7856–7865 (2013).

Martinez, J. L.

J. Rodriquez-Carvajal, M. T. Fernadez-Diaz, and J. L. Martinez, “Neutron diffraction study on structural and magnetic properties of La2NiO4,” J. Phys. Condens. Matter 3(19), 3215–3234 (1991).
[Crossref]

Matsui, K.

H. Kanno, K. Noda, and K. Matsui, “New long-afterglow phosphors: Yb2+-doped strontium aluminates,” Chem. Phys. Lett. 580, 103–107 (2013).
[Crossref]

Matsuzawa, T.

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72–74, 287–289 (1997).
[Crossref]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Mi, C.

Y. M. Yang, X. Y. Su, X. D. Li, F. Yu, C. Mi, and G. Li, “A novel orange emitting BaS:xYb2+ phosphor for white light LEDs,” Mater. Res. Bull. 51, 202–204 (2014).
[Crossref]

Mochida, T.

E. Nakazawa and T. Mochida, “Traps in SrAl2O4:Eu2+ phosphor with rare-earth ion doping,” J. Lumin. 72–74, 236–237 (1997).
[Crossref]

Morys, P.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: flurescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[Crossref]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Nakazawa, E.

E. Nakazawa and T. Mochida, “Traps in SrAl2O4:Eu2+ phosphor with rare-earth ion doping,” J. Lumin. 72–74, 236–237 (1997).
[Crossref]

Niittykoski, J.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence Study of Persistent Luminescence Materials: Eu2+- and R3+-Doped Calcium Aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[Crossref] [PubMed]

Noda, K.

H. Kanno, K. Noda, and K. Matsui, “New long-afterglow phosphors: Yb2+-doped strontium aluminates,” Chem. Phys. Lett. 580, 103–107 (2013).
[Crossref]

Notten, P. H. L.

Z. J. Zhang, O. M. Kate, A. C. A. Delsing, M. J. H. Stevens, J. T. Zhao, P. H. L. Notten, P. Dorenbos, and H. T. Hintzen, “Photoluminescence properties of Yb2+ in CaAlSiN3 as a novel red-emitting phosphor for white LEDs,” J. Mater. Chem. 22(45), 23871–23876 (2012).
[Crossref]

Palilla, F.

F. Palilla, A. K. Luvine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642 (1968).
[Crossref]

Pan, L.

H. Sun, L. Pan, X. Piao, and Z. Sun, “Enhanced performance of cadmium selenide quantum dot-sensitized solar cells by incorporating long afterglow europium, dysprosium co-doped strontium aluminate phosphors,” J. Colloid Interface Sci. 416(15), 81–85 (2014).
[Crossref] [PubMed]

Pan, Z.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Perßon, J.

M. Henke, J. Perßon, and S. Kück, “Preparation and spectroscopy of Yb2+-doped Y3Al5O12, YAlO3, and LiBaF3,” J. Lumin. 87–89, 1049–1051 (2000).
[Crossref]

Peter, N.

Z. J. Zhang, O. M. Ten Kate, A. C. A. Delsing, Z. Y. Man, R. J. Xie, Y. F. Shen, M. J. H. Stevens, N. Peter, D. Pieter, J. T. Zhao, and T. Hintzen Hubertus, “Preparation, electronic structure and photoluminescence properties of RE (RE = Ce, Yb)-activated SrAlSi4N7 phosphors,” J. Mater. Chem. C. 47(1), 7856–7865 (2013).

Piao, X.

H. Sun, L. Pan, X. Piao, and Z. Sun, “Enhanced performance of cadmium selenide quantum dot-sensitized solar cells by incorporating long afterglow europium, dysprosium co-doped strontium aluminate phosphors,” J. Colloid Interface Sci. 416(15), 81–85 (2014).
[Crossref] [PubMed]

Pieter, D.

Z. J. Zhang, O. M. Ten Kate, A. C. A. Delsing, Z. Y. Man, R. J. Xie, Y. F. Shen, M. J. H. Stevens, N. Peter, D. Pieter, J. T. Zhao, and T. Hintzen Hubertus, “Preparation, electronic structure and photoluminescence properties of RE (RE = Ce, Yb)-activated SrAlSi4N7 phosphors,” J. Mater. Chem. C. 47(1), 7856–7865 (2013).

Poelman, D.

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+-Doped Compounds: A Review,” Mater. 3(4), 2536–2566 (2010).
[Crossref]

Rietveld, H.

H. Rietveld, “Profile refinement method for nuclear and magnetic structures,” J. Appl. Cryst. 2(2), 65–71 (1969).
[Crossref]

Rocquefelte, X.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Rodriquez-Carvajal, J.

J. Rodriquez-Carvajal, M. T. Fernadez-Diaz, and J. L. Martinez, “Neutron diffraction study on structural and magnetic properties of La2NiO4,” J. Phys. Condens. Matter 3(19), 3215–3234 (1991).
[Crossref]

Satoh, Y.

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to lonizing radiation,” Nucl. Instrum. Methods Phys. Res. Sect. A. 480(2–3), 431–439 (2002).
[Crossref]

Schnick, W.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: flurescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[Crossref]

Seilmeier, A.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: flurescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[Crossref]

Shen, Y. F.

Z. J. Zhang, O. M. Ten Kate, A. C. A. Delsing, Z. Y. Man, R. J. Xie, Y. F. Shen, M. J. H. Stevens, N. Peter, D. Pieter, J. T. Zhao, and T. Hintzen Hubertus, “Preparation, electronic structure and photoluminescence properties of RE (RE = Ce, Yb)-activated SrAlSi4N7 phosphors,” J. Mater. Chem. C. 47(1), 7856–7865 (2013).

Shi, C.

Y. Liu, B. Lei, and C. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[Crossref]

Shu, W. G.

X. D. Lü, W. G. Shu, Q. Fang, Q. M. Yu, and X. Q. Xiong, “Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, RE3+ phosphors,” J. Mater. Sci. 42(15), 6240–6245 (2007).
[Crossref]

Smet, P. F.

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+-Doped Compounds: A Review,” Mater. 3(4), 2536–2566 (2010).
[Crossref]

Stevens, M. J. H.

Z. J. Zhang, O. M. Ten Kate, A. C. A. Delsing, Z. Y. Man, R. J. Xie, Y. F. Shen, M. J. H. Stevens, N. Peter, D. Pieter, J. T. Zhao, and T. Hintzen Hubertus, “Preparation, electronic structure and photoluminescence properties of RE (RE = Ce, Yb)-activated SrAlSi4N7 phosphors,” J. Mater. Chem. C. 47(1), 7856–7865 (2013).

Z. J. Zhang, O. M. Kate, A. C. A. Delsing, M. J. H. Stevens, J. T. Zhao, P. H. L. Notten, P. Dorenbos, and H. T. Hintzen, “Photoluminescence properties of Yb2+ in CaAlSiN3 as a novel red-emitting phosphor for white LEDs,” J. Mater. Chem. 22(45), 23871–23876 (2012).
[Crossref]

Su, X. Y.

Y. M. Yang, X. Y. Su, X. D. Li, F. Yu, C. Mi, and G. Li, “A novel orange emitting BaS:xYb2+ phosphor for white light LEDs,” Mater. Res. Bull. 51, 202–204 (2014).
[Crossref]

Sun, H.

H. Sun, L. Pan, X. Piao, and Z. Sun, “Enhanced performance of cadmium selenide quantum dot-sensitized solar cells by incorporating long afterglow europium, dysprosium co-doped strontium aluminate phosphors,” J. Colloid Interface Sci. 416(15), 81–85 (2014).
[Crossref] [PubMed]

Sun, X.

X. Sun, J. Zhang, X. Zhang, Y. Luo, and X. J. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5:Eu2+ and Sr3SiO5:Eu2+,Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[Crossref]

Sun, Z.

H. Sun, L. Pan, X. Piao, and Z. Sun, “Enhanced performance of cadmium selenide quantum dot-sensitized solar cells by incorporating long afterglow europium, dysprosium co-doped strontium aluminate phosphors,” J. Colloid Interface Sci. 416(15), 81–85 (2014).
[Crossref] [PubMed]

Sun Yoo, H.

H. Sun Yoo, S. Vaidyanathan, A. Wook Kim, and D. Young Jeon, “Synthesis and photoluminescence properties of Yb2+ doped Ba5(PO4)3Cl phosphor for white light-emitting diodes,” Opt. Mater. 31(11), 1555–1558 (2009).
[Crossref]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Ten Kate, O. M.

Z. J. Zhang, O. M. Ten Kate, A. C. A. Delsing, Z. Y. Man, R. J. Xie, Y. F. Shen, M. J. H. Stevens, N. Peter, D. Pieter, J. T. Zhao, and T. Hintzen Hubertus, “Preparation, electronic structure and photoluminescence properties of RE (RE = Ce, Yb)-activated SrAlSi4N7 phosphors,” J. Mater. Chem. C. 47(1), 7856–7865 (2013).

Teng, X.

X. Teng, Y. Liu, Y. Liu, Y. Hu, H. He, and W. Zhuang, “Luminescence properties of Tm3+ co-doped Sr2Si5N8:Eu2+ red phosphor,” J. Lumin. 130(5), 851–854 (2010).
[Crossref]

Tomkus, M. R.

F. Palilla, A. K. Luvine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642 (1968).
[Crossref]

Uchida, S.

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to lonizing radiation,” Nucl. Instrum. Methods Phys. Res. Sect. A. 480(2–3), 431–439 (2002).
[Crossref]

Vaidyanathan, S.

H. Sun Yoo, S. Vaidyanathan, A. Wook Kim, and D. Young Jeon, “Synthesis and photoluminescence properties of Yb2+ doped Ba5(PO4)3Cl phosphor for white light-emitting diodes,” Opt. Mater. 31(11), 1555–1558 (2009).
[Crossref]

Van den Eeckhout, K.

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+-Doped Compounds: A Review,” Mater. 3(4), 2536–2566 (2010).
[Crossref]

Wang, X. J.

X. Sun, J. Zhang, X. Zhang, Y. Luo, and X. J. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5:Eu2+ and Sr3SiO5:Eu2+,Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[Crossref]

Wang, Y. H.

Y. H. Wang, Y. Gong, X. H. Xu, and Y. Q. Li, “Recent progress in multicolor long persistent phosphors,” J. Lumin. 133, 25–29 (2013).
[Crossref]

W. Zeng, Y. H. Wang, S. C. Han, W. B. Chen, G. Li, Y. Z. Wang, and Y. Wen, Design, “Synthesis and characterization of a novel yellow long-persistent phosphor: Ca2BO3Cl: Eu2+, Dy3+,” J. Mater. Chem. C. 1(17), 3004–3011 (2013).
[Crossref]

Y. Q. Li, Y. H. Wang, Y. Gong, X. H. Xu, and M. J. Zhou, “Design, synthesis and characterization of an orange-yellow long persistent phosphor: Sr3Al2O5Cl2:Eu2+,Tm3+,” Opt. Express 18(24), 24853–24858 (2010).
[Crossref] [PubMed]

X. H. Xu, Y. H. Wang, Y. Gong, W. Zeng, and Y. Q. Li, “Effect of oxygen vacancies on the red phosphorescence of Sr2SnO4:Sm3+ phosphor,” Opt. Express 18(16), 16989–16994 (2010).
[Crossref] [PubMed]

Wang, Y. Z.

W. Zeng, Y. H. Wang, S. C. Han, W. B. Chen, G. Li, Y. Z. Wang, and Y. Wen, Design, “Synthesis and characterization of a novel yellow long-persistent phosphor: Ca2BO3Cl: Eu2+, Dy3+,” J. Mater. Chem. C. 1(17), 3004–3011 (2013).
[Crossref]

Watanabe, T.

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Enhancement of adhesion and triboluminescence of ZnS:Mn films by annealing technique,” Appl. Phys. Lett. 352(1–2), 273–277 (1999).

Wen, Y.

W. Zeng, Y. H. Wang, S. C. Han, W. B. Chen, G. Li, Y. Z. Wang, and Y. Wen, Design, “Synthesis and characterization of a novel yellow long-persistent phosphor: Ca2BO3Cl: Eu2+, Dy3+,” J. Mater. Chem. C. 1(17), 3004–3011 (2013).
[Crossref]

Whangbo, M.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Wook Kim, A.

H. Sun Yoo, S. Vaidyanathan, A. Wook Kim, and D. Young Jeon, “Synthesis and photoluminescence properties of Yb2+ doped Ba5(PO4)3Cl phosphor for white light-emitting diodes,” Opt. Mater. 31(11), 1555–1558 (2009).
[Crossref]

Xie, R. J.

Z. J. Zhang, O. M. Ten Kate, A. C. A. Delsing, Z. Y. Man, R. J. Xie, Y. F. Shen, M. J. H. Stevens, N. Peter, D. Pieter, J. T. Zhao, and T. Hintzen Hubertus, “Preparation, electronic structure and photoluminescence properties of RE (RE = Ce, Yb)-activated SrAlSi4N7 phosphors,” J. Mater. Chem. C. 47(1), 7856–7865 (2013).

Xiong, X. Q.

X. D. Lü, W. G. Shu, Q. Fang, Q. M. Yu, and X. Q. Xiong, “Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, RE3+ phosphors,” J. Mater. Sci. 42(15), 6240–6245 (2007).
[Crossref]

Xu, C. N.

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Enhancement of adhesion and triboluminescence of ZnS:Mn films by annealing technique,” Appl. Phys. Lett. 352(1–2), 273–277 (1999).

Xu, X. H.

Yamamoto, H.

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72–74, 287–289 (1997).
[Crossref]

Yang, Y. M.

Y. M. Yang, X. Y. Su, X. D. Li, F. Yu, C. Mi, and G. Li, “A novel orange emitting BaS:xYb2+ phosphor for white light LEDs,” Mater. Res. Bull. 51, 202–204 (2014).
[Crossref]

Yesilay, S.

S. Yesilay, E. Kaya, Karacaoglu, and B. Karasu, “Effect of Al/Sr ratio on the luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors,” Ceram. Int. 38(5), 3701–3706 (2012).

Young Jeon, D.

H. Sun Yoo, S. Vaidyanathan, A. Wook Kim, and D. Young Jeon, “Synthesis and photoluminescence properties of Yb2+ doped Ba5(PO4)3Cl phosphor for white light-emitting diodes,” Opt. Mater. 31(11), 1555–1558 (2009).
[Crossref]

Yu, F.

Y. M. Yang, X. Y. Su, X. D. Li, F. Yu, C. Mi, and G. Li, “A novel orange emitting BaS:xYb2+ phosphor for white light LEDs,” Mater. Res. Bull. 51, 202–204 (2014).
[Crossref]

Yu, Q. M.

X. D. Lü, W. G. Shu, Q. Fang, Q. M. Yu, and X. Q. Xiong, “Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, RE3+ phosphors,” J. Mater. Sci. 42(15), 6240–6245 (2007).
[Crossref]

Yue, S.

B. F. Lei, S. Yue, Y. Z. Zhang, and Y. L. Liu, “Luminescence properties of Sr2SnO4:Sm3+ afterglow phosphor,” Chin. Phys. Lett. 27(3), 037201 (2010).
[Crossref]

Zeng, W.

W. Zeng, Y. H. Wang, S. C. Han, W. B. Chen, G. Li, Y. Z. Wang, and Y. Wen, Design, “Synthesis and characterization of a novel yellow long-persistent phosphor: Ca2BO3Cl: Eu2+, Dy3+,” J. Mater. Chem. C. 1(17), 3004–3011 (2013).
[Crossref]

X. H. Xu, Y. H. Wang, Y. Gong, W. Zeng, and Y. Q. Li, “Effect of oxygen vacancies on the red phosphorescence of Sr2SnO4:Sm3+ phosphor,” Opt. Express 18(16), 16989–16994 (2010).
[Crossref] [PubMed]

Zhang, J.

X. Sun, J. Zhang, X. Zhang, Y. Luo, and X. J. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5:Eu2+ and Sr3SiO5:Eu2+,Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[Crossref]

Zhang, X.

X. Sun, J. Zhang, X. Zhang, Y. Luo, and X. J. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5:Eu2+ and Sr3SiO5:Eu2+,Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[Crossref]

Zhang, Y. Z.

B. F. Lei, S. Yue, Y. Z. Zhang, and Y. L. Liu, “Luminescence properties of Sr2SnO4:Sm3+ afterglow phosphor,” Chin. Phys. Lett. 27(3), 037201 (2010).
[Crossref]

Zhang, Z. J.

Z. J. Zhang, O. M. Ten Kate, A. C. A. Delsing, Z. Y. Man, R. J. Xie, Y. F. Shen, M. J. H. Stevens, N. Peter, D. Pieter, J. T. Zhao, and T. Hintzen Hubertus, “Preparation, electronic structure and photoluminescence properties of RE (RE = Ce, Yb)-activated SrAlSi4N7 phosphors,” J. Mater. Chem. C. 47(1), 7856–7865 (2013).

Z. J. Zhang, O. M. Kate, A. C. A. Delsing, M. J. H. Stevens, J. T. Zhao, P. H. L. Notten, P. Dorenbos, and H. T. Hintzen, “Photoluminescence properties of Yb2+ in CaAlSiN3 as a novel red-emitting phosphor for white LEDs,” J. Mater. Chem. 22(45), 23871–23876 (2012).
[Crossref]

Zhao, J. T.

Z. J. Zhang, O. M. Ten Kate, A. C. A. Delsing, Z. Y. Man, R. J. Xie, Y. F. Shen, M. J. H. Stevens, N. Peter, D. Pieter, J. T. Zhao, and T. Hintzen Hubertus, “Preparation, electronic structure and photoluminescence properties of RE (RE = Ce, Yb)-activated SrAlSi4N7 phosphors,” J. Mater. Chem. C. 47(1), 7856–7865 (2013).

Z. J. Zhang, O. M. Kate, A. C. A. Delsing, M. J. H. Stevens, J. T. Zhao, P. H. L. Notten, P. Dorenbos, and H. T. Hintzen, “Photoluminescence properties of Yb2+ in CaAlSiN3 as a novel red-emitting phosphor for white LEDs,” J. Mater. Chem. 22(45), 23871–23876 (2012).
[Crossref]

Zheng, X. G.

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Enhancement of adhesion and triboluminescence of ZnS:Mn films by annealing technique,” Appl. Phys. Lett. 352(1–2), 273–277 (1999).

Zhou, M. J.

Zhuang, W.

X. Teng, Y. Liu, Y. Liu, Y. Hu, H. He, and W. Zhuang, “Luminescence properties of Tm3+ co-doped Sr2Si5N8:Eu2+ red phosphor,” J. Lumin. 130(5), 851–854 (2010).
[Crossref]

Appl. Phys. Lett. (1)

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Enhancement of adhesion and triboluminescence of ZnS:Mn films by annealing technique,” Appl. Phys. Lett. 352(1–2), 273–277 (1999).

Ceram. Int. (1)

S. Yesilay, E. Kaya, Karacaoglu, and B. Karasu, “Effect of Al/Sr ratio on the luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors,” Ceram. Int. 38(5), 3701–3706 (2012).

Chem. Mater. (3)

C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish- orange afterglow phosphor Y2O2S:Ti,Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[Crossref]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Y. Liu, B. Lei, and C. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[Crossref]

Chem. Phys. Lett. (1)

H. Kanno, K. Noda, and K. Matsui, “New long-afterglow phosphors: Yb2+-doped strontium aluminates,” Chem. Phys. Lett. 580, 103–107 (2013).
[Crossref]

Chin. Phys. Lett. (1)

B. F. Lei, S. Yue, Y. Z. Zhang, and Y. L. Liu, “Luminescence properties of Sr2SnO4:Sm3+ afterglow phosphor,” Chin. Phys. Lett. 27(3), 037201 (2010).
[Crossref]

J. Appl. Cryst. (1)

H. Rietveld, “Profile refinement method for nuclear and magnetic structures,” J. Appl. Cryst. 2(2), 65–71 (1969).
[Crossref]

J. Colloid Interface Sci. (1)

H. Sun, L. Pan, X. Piao, and Z. Sun, “Enhanced performance of cadmium selenide quantum dot-sensitized solar cells by incorporating long afterglow europium, dysprosium co-doped strontium aluminate phosphors,” J. Colloid Interface Sci. 416(15), 81–85 (2014).
[Crossref] [PubMed]

J. Electrochem. Soc. (3)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

F. Palilla, A. K. Luvine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642 (1968).
[Crossref]

V. Abbruscato, “Optical and Electrical Properties of SrAl2O4: Eu2+,” J. Electrochem. Soc. 118(6), 930 (1971).
[Crossref]

J. Lumin. (5)

M. Henke, J. Perßon, and S. Kück, “Preparation and spectroscopy of Yb2+-doped Y3Al5O12, YAlO3, and LiBaF3,” J. Lumin. 87–89, 1049–1051 (2000).
[Crossref]

X. Teng, Y. Liu, Y. Liu, Y. Hu, H. He, and W. Zhuang, “Luminescence properties of Tm3+ co-doped Sr2Si5N8:Eu2+ red phosphor,” J. Lumin. 130(5), 851–854 (2010).
[Crossref]

E. Nakazawa and T. Mochida, “Traps in SrAl2O4:Eu2+ phosphor with rare-earth ion doping,” J. Lumin. 72–74, 236–237 (1997).
[Crossref]

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72–74, 287–289 (1997).
[Crossref]

Y. H. Wang, Y. Gong, X. H. Xu, and Y. Q. Li, “Recent progress in multicolor long persistent phosphors,” J. Lumin. 133, 25–29 (2013).
[Crossref]

J. Mater. Chem. (1)

Z. J. Zhang, O. M. Kate, A. C. A. Delsing, M. J. H. Stevens, J. T. Zhao, P. H. L. Notten, P. Dorenbos, and H. T. Hintzen, “Photoluminescence properties of Yb2+ in CaAlSiN3 as a novel red-emitting phosphor for white LEDs,” J. Mater. Chem. 22(45), 23871–23876 (2012).
[Crossref]

J. Mater. Chem. C. (2)

Z. J. Zhang, O. M. Ten Kate, A. C. A. Delsing, Z. Y. Man, R. J. Xie, Y. F. Shen, M. J. H. Stevens, N. Peter, D. Pieter, J. T. Zhao, and T. Hintzen Hubertus, “Preparation, electronic structure and photoluminescence properties of RE (RE = Ce, Yb)-activated SrAlSi4N7 phosphors,” J. Mater. Chem. C. 47(1), 7856–7865 (2013).

W. Zeng, Y. H. Wang, S. C. Han, W. B. Chen, G. Li, Y. Z. Wang, and Y. Wen, Design, “Synthesis and characterization of a novel yellow long-persistent phosphor: Ca2BO3Cl: Eu2+, Dy3+,” J. Mater. Chem. C. 1(17), 3004–3011 (2013).
[Crossref]

J. Mater. Sci. (1)

X. D. Lü, W. G. Shu, Q. Fang, Q. M. Yu, and X. Q. Xiong, “Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, RE3+ phosphors,” J. Mater. Sci. 42(15), 6240–6245 (2007).
[Crossref]

J. Phys. Chem. B (1)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence Study of Persistent Luminescence Materials: Eu2+- and R3+-Doped Calcium Aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[Crossref] [PubMed]

J. Phys. Chem. Solids (1)

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: flurescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[Crossref]

J. Phys. Condens. Matter (1)

J. Rodriquez-Carvajal, M. T. Fernadez-Diaz, and J. L. Martinez, “Neutron diffraction study on structural and magnetic properties of La2NiO4,” J. Phys. Condens. Matter 3(19), 3215–3234 (1991).
[Crossref]

J. Phys. D Appl. Phys. (1)

X. Sun, J. Zhang, X. Zhang, Y. Luo, and X. J. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5:Eu2+ and Sr3SiO5:Eu2+,Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[Crossref]

Mater. (1)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+-Doped Compounds: A Review,” Mater. 3(4), 2536–2566 (2010).
[Crossref]

Mater. Res. Bull. (1)

Y. M. Yang, X. Y. Su, X. D. Li, F. Yu, C. Mi, and G. Li, “A novel orange emitting BaS:xYb2+ phosphor for white light LEDs,” Mater. Res. Bull. 51, 202–204 (2014).
[Crossref]

Nat. Mater. (1)

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. Sect. A. (1)

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to lonizing radiation,” Nucl. Instrum. Methods Phys. Res. Sect. A. 480(2–3), 431–439 (2002).
[Crossref]

Opt. Express (2)

Opt. Mater. (1)

H. Sun Yoo, S. Vaidyanathan, A. Wook Kim, and D. Young Jeon, “Synthesis and photoluminescence properties of Yb2+ doped Ba5(PO4)3Cl phosphor for white light-emitting diodes,” Opt. Mater. 31(11), 1555–1558 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The XRD patterns of BaAl2O4: 0.5%Yb2+ and SrAl2O4: 0.5%Yb2+ sintered at 1500°C and 1450°C, respectively for 4h under a reducing atmosphere.
Fig. 2
Fig. 2 XRD refinement and crystal structure of (a) BaAl2O4: 0.5%Yb2+ and (b) SrAl2O4: 0.5%Yb2+
Fig. 3
Fig. 3 The luminescence spectra of BaAl2O4:Yb2+ and BaAl2O4:Eu2+. (a. The excitation and emission spectra of BaAl2O4: 0.5%Yb2+ and BaAl2O4:Eu2+; b. the influence of temperature on the emission intensity of BaAl2O4:0.5%Yb2+; c. the influence of Yb2+ doping concentration on the emission intensity).
Fig. 4
Fig. 4 The luminescence spectra from SrAl2O4:Yb2+ and SrAl2O4:Eu2+ (a. The excitation and emission spectra of SrAl2O4:0.5%Yb2+ and SrAl2O4:Eu2+; b. the influence of temperature on the emission intensity of SrAl2O4:0.5%Yb2+; c. the influence of Yb2+ doping concentration on the emission intensity).
Fig. 5
Fig. 5 The LPL properties of BaAl2O4:0.5% Yb2+, SrAl2O4:0.5%Yb2+, x%Dy3+ (x = 0,0.5,1) and SrAl2O4:0.5%Eu2+, x%Dy3+ (x = 0,0.5) after irradiated at 365 nm for 15 min (a. The afterglow decay curves; b. The photographs at different times after removing the irradiation source).
Fig. 6
Fig. 6 The TL glow curves of BaAl2O4: 0.5%Yb2+, SrAl2O4: 0.5%Yb2+, SrAl2O4: 0.5%Yb2+, 0.5%Dy3+ and SrAl2O4: 0.5%Eu2+, 0.5%Dy3+ phosphors.
Fig. 7
Fig. 7 The photograph of polymers (a. the transparency of polymers with x wt % (x = 1, 5, 10, 20, 50) BaAl2O4: 0.5%Yb2+; b. The afterglow photograph of polymers with 1 wt % BaAl2O4: 0.5%Yb2+(1) and SrAl2O4: 0.5%Yb2+(2) in polymer at different time; c. the photograph of polymer on solar cell when measuring the Isc).
Fig. 8
Fig. 8 The Isc of polymers with x wt % (x = 5, 10, 20, 50) BaAl2O4: 0.5%Yb2+ at different times after remove the 365 nm UV lamp (Inset: the amplification of part of the data).

Tables (3)

Tables Icon

Table 1 Crystallographic data, experimental details of X-ray powder diffraction, and Rietveld refinement data for BaAl2O4: 0.5%Yb2+ and SrAl2O4: 0.5%Yb2+.

Tables Icon

Table 2 Distance (Å) between cations in BaAl2O4 and SrAl2O4.

Metrics