Abstract

New and improved gain materials for solid-state high power and high energy lasers are highly sought. GaN satisfies many of the criteria of an excellent lasing gain medium including its higher thermal conductivity and lower thermal expansion coefficient than traditional gain materials such as yttrium aluminum garnet (YAG) crystals doped with neodymium emitting 1.06 μm wavelength. Single crystals of erbium doped GaN (Er:GaN) thick layers have been successfully synthesized by hydride vapor-phase epitaxy. By utilizing a thin GaN epilayer grown on c-plane sapphire using metal organic chemical vapor deposition as a template and varying growth parameters including the NH3 flow rate, thick layers of Er:GaN which exhibit the desired Er3+ related emission at 1.54 μm window at room temperature have been realized for the first time. The work opens up the feasibility to utilize Er:GaN bulk crystals as a gain medium for next generation solid-state high power and high energy lasers operating in the eye-safer 1.5 μm window.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Erbium-doped a-plane GaN epilayers synthesized by metal-organic chemical vapor deposition

Talal Mohammed Al Tahtamouni, Xiaozhang Du, Jing Li, Jingyu Lin, and Hongxing Jiang
Opt. Mater. Express 5(2) 274-280 (2015)

Correlation between the optical loss and crystalline quality in erbium-doped GaN optical waveguides

I-Wen Feng, Weiping Zhao, Jing Li, Jingyu Lin, Hongxing Jiang, and John Zavada
Appl. Opt. 52(22) 5426-5429 (2013)

Effects of growth pressure on erbium doped GaN infrared emitters synthesized by metal organic chemical vapor deposition

I-Wen Feng, Jing Li, Jingyu Lin, Hongxing Jiang, and John Zavada
Opt. Mater. Express 2(8) 1095-1100 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering, 5th edition (Spring-Verlag, 1999).
  2. G. Huber, C. Krankel, and K. Petermann, “Solid-state laser: status and future,” J. Opt. Soc. Am. 27(11), B93 (2010).
    [Crossref]
  3. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
    [Crossref]
  4. A. Bergh, G. Crawford, A. Duggal, and R. Haitz, “The promise and challenge of solid-state lighting,” Phys. Today 54(12), 42–47 (2001).
    [Crossref]
  5. Y. Narukawa, M. Sano, M. Ichikawa, S. Minato, T. Sakamoto, T. Yamada, and T. Mukai, “Improvement of luminous efficiency in white light emitting diodes by reducing a forward-bias voltage,” Japn J. Appl. Phys. Part 2 Letters 46, 963 (2007).
  6. J. Day, J. Li, D. Lie, C. Bradford, J. Lin, and H. Jiang, “III-nitride full-scale high-resolution microdisplays,” Appl. Phys. Lett. 99(3), 031116 (2011).
    [Crossref]
  7. S. Nakamura, G. Fasol, and S. J. Pearton, The Blue Laser Diode: The Complete Story (Springer, 2000).
  8. M. T. Hardy, D. F. Feezell, S. P. DenBaarsa, and S. Nakamura, “Group III-Nitride lasers: a materials perspective,” Mater. Today 14(9), 408–415 (2011).
    [Crossref]
  9. P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials,” Electron. Lett. 25(11), 718–719 (1989).
    [Crossref]
  10. R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett. 65(8), 992–994 (1994).
    [Crossref]
  11. J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, Y. Xie, J. M. Poate, and L. C. Kimerling, “Impurity enhancement of the 1.54mm Er3+ luminescence in silicon,” J. Appl. Phys. 70(5), 2672 (1991).
    [Crossref]
  12. J. T. Torvik, R. J. Feuerstein, J. I. Pankove, C. H. Qiu, and F. Namavar, “Electro-luminescence from erbium and oxygen coimplanted GaN,” Appl. Phys. Lett. 69(14), 2098 (1996).
    [Crossref]
  13. S. Kim, S. J. Rhee, D. A. Turnbull, X. Li, J. J. Coleman, S. G. Bishop, and P. B. Klein, “Observation of multiple Er3+ sites in Er-implanted GaN by site-selective photoluminescence excitation spectroscopy,” Appl. Phys. Lett. 71, 2662 (1997).
    [Crossref]
  14. M. Garter, J. Scofield, R. Birkhahn, and A. J. Steckl, “Visible and infrared rare-earth-activated electroluminescence from indium tin oxide Schottky diodes to GaN:Er on Si,” Appl. Phys. Lett. 74(2), 182 (1999).
    [Crossref]
  15. A. J. Steckl and J. M. Zavada, “Optoelectronic properties and applications of rare-earth-doped GaN,” MRS Bull. 24(09), 33–38 (1999).
    [Crossref]
  16. J. M. Zavada, S. X. Jin, N. Nepal, J. Y. Lin, H. X. Jiang, P. Chow, and B. Hertog, “Electroluminescent properties of erbium-doped III-N light emitting diodes,” Appl. Phys. Lett. 84(7), 1061 (2004).
    [Crossref]
  17. C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89(15), 151903 (2006).
    [Crossref]
  18. R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 µm,” Appl. Phys. Lett. 95(11), 111109 (2009).
    [Crossref]
  19. R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett. 97(14), 141109 (2010).
    [Crossref]
  20. Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng. 49(9), 091003 (2010).
    [Crossref]
  21. J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-IR to far-IR transition region: proposed revisions to MPES,” Health Phys. 92(1), 15–23 (2007).
    [Crossref] [PubMed]
  22. C. Mion, “Investigation of the thermal properties of gallium nitride using the three omega technique.” Dissertation, North Carolina State University, (2005).
  23. D. C. Brown, “Ultrahigh-average-power diode-pumped ND:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. QE 33(5), 861–873 (1997).
    [Crossref]
  24. T. Taira, “Ceramic YAG lasers,” C. R. Phys. 8(2), 138–152 (2007).
    [Crossref]
  25. D. M. Hansen, R. Zhang, N. R. Perkins, S. Safvi, L. Zhang, K. L. Bray, and T. F. Kuech, “Photoluminescence of erbium-implanted GaN and in situ-doped GaN:Er,” Appl. Phys. Lett. 72(10), 1244 (1998).
    [Crossref]
  26. K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Preparation of large GaN substrates,” Mater. Sci. Eng. B 93, 123 (2002).
  27. K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Growth and characterization of freestanding GaN substrate,” J. Cryst. Growth 237, 912–921 (2002).
    [Crossref]
  28. P. R. Hageman, V. Kirilyuk, W. H. M. Corbeek, J. L. Weyher, B. Lucznik, M. Bockowski, S. Porowski, and S. Müller, “Thick GaN layers grown by hydride vapor-phase epitaxy: hetero- versus homo-epitaxy,” J. Cryst. Growth 255(3-4), 241–249 (2003).
    [Crossref]
  29. M. Klein, T. Meisch, F. Lipski, and F. Scholz, “The influence of prestrained metalorganic vapor phase epitaxial gallium-nitride templates on hydride vapor phase epitaxial growth,” Appl. Phys. Lett. 105(9), 092109 (2014).
    [Crossref]
  30. D. J. Miller, “Gallium nitride epitaxy by a novel hybrid VPE technique,” Dissertation, Stanford University (2011) and references therein.
  31. C. Ugolini, Dissertation, “Optical and structural properties of Er-doped GaN/InGaN materials and devices synthesized by metal organic chemical vapor deposition” Kansas State University (2008).
  32. R. Dahal, J. Y. Lin, H. X. Jiang, and J. Zavada, “Er doped InxGa1-xN for optical communications,” in Rare-earth doped III-Nitrides for Optoelectronic and Spintronic Applications, K O’Donnell & V Dierolf, eds. (Canopus Academic Publishing Ltd and Springer SBM, 2010), Chapter 5.

2014 (1)

M. Klein, T. Meisch, F. Lipski, and F. Scholz, “The influence of prestrained metalorganic vapor phase epitaxial gallium-nitride templates on hydride vapor phase epitaxial growth,” Appl. Phys. Lett. 105(9), 092109 (2014).
[Crossref]

2011 (2)

J. Day, J. Li, D. Lie, C. Bradford, J. Lin, and H. Jiang, “III-nitride full-scale high-resolution microdisplays,” Appl. Phys. Lett. 99(3), 031116 (2011).
[Crossref]

M. T. Hardy, D. F. Feezell, S. P. DenBaarsa, and S. Nakamura, “Group III-Nitride lasers: a materials perspective,” Mater. Today 14(9), 408–415 (2011).
[Crossref]

2010 (3)

G. Huber, C. Krankel, and K. Petermann, “Solid-state laser: status and future,” J. Opt. Soc. Am. 27(11), B93 (2010).
[Crossref]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett. 97(14), 141109 (2010).
[Crossref]

Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng. 49(9), 091003 (2010).
[Crossref]

2009 (1)

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 µm,” Appl. Phys. Lett. 95(11), 111109 (2009).
[Crossref]

2007 (4)

T. Taira, “Ceramic YAG lasers,” C. R. Phys. 8(2), 138–152 (2007).
[Crossref]

J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-IR to far-IR transition region: proposed revisions to MPES,” Health Phys. 92(1), 15–23 (2007).
[Crossref] [PubMed]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Y. Narukawa, M. Sano, M. Ichikawa, S. Minato, T. Sakamoto, T. Yamada, and T. Mukai, “Improvement of luminous efficiency in white light emitting diodes by reducing a forward-bias voltage,” Japn J. Appl. Phys. Part 2 Letters 46, 963 (2007).

2006 (1)

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89(15), 151903 (2006).
[Crossref]

2004 (1)

J. M. Zavada, S. X. Jin, N. Nepal, J. Y. Lin, H. X. Jiang, P. Chow, and B. Hertog, “Electroluminescent properties of erbium-doped III-N light emitting diodes,” Appl. Phys. Lett. 84(7), 1061 (2004).
[Crossref]

2003 (1)

P. R. Hageman, V. Kirilyuk, W. H. M. Corbeek, J. L. Weyher, B. Lucznik, M. Bockowski, S. Porowski, and S. Müller, “Thick GaN layers grown by hydride vapor-phase epitaxy: hetero- versus homo-epitaxy,” J. Cryst. Growth 255(3-4), 241–249 (2003).
[Crossref]

2002 (2)

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Preparation of large GaN substrates,” Mater. Sci. Eng. B 93, 123 (2002).

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Growth and characterization of freestanding GaN substrate,” J. Cryst. Growth 237, 912–921 (2002).
[Crossref]

2001 (1)

A. Bergh, G. Crawford, A. Duggal, and R. Haitz, “The promise and challenge of solid-state lighting,” Phys. Today 54(12), 42–47 (2001).
[Crossref]

1999 (2)

M. Garter, J. Scofield, R. Birkhahn, and A. J. Steckl, “Visible and infrared rare-earth-activated electroluminescence from indium tin oxide Schottky diodes to GaN:Er on Si,” Appl. Phys. Lett. 74(2), 182 (1999).
[Crossref]

A. J. Steckl and J. M. Zavada, “Optoelectronic properties and applications of rare-earth-doped GaN,” MRS Bull. 24(09), 33–38 (1999).
[Crossref]

1998 (1)

D. M. Hansen, R. Zhang, N. R. Perkins, S. Safvi, L. Zhang, K. L. Bray, and T. F. Kuech, “Photoluminescence of erbium-implanted GaN and in situ-doped GaN:Er,” Appl. Phys. Lett. 72(10), 1244 (1998).
[Crossref]

1997 (2)

S. Kim, S. J. Rhee, D. A. Turnbull, X. Li, J. J. Coleman, S. G. Bishop, and P. B. Klein, “Observation of multiple Er3+ sites in Er-implanted GaN by site-selective photoluminescence excitation spectroscopy,” Appl. Phys. Lett. 71, 2662 (1997).
[Crossref]

D. C. Brown, “Ultrahigh-average-power diode-pumped ND:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. QE 33(5), 861–873 (1997).
[Crossref]

1996 (1)

J. T. Torvik, R. J. Feuerstein, J. I. Pankove, C. H. Qiu, and F. Namavar, “Electro-luminescence from erbium and oxygen coimplanted GaN,” Appl. Phys. Lett. 69(14), 2098 (1996).
[Crossref]

1994 (1)

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett. 65(8), 992–994 (1994).
[Crossref]

1991 (1)

J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, Y. Xie, J. M. Poate, and L. C. Kimerling, “Impurity enhancement of the 1.54mm Er3+ luminescence in silicon,” J. Appl. Phys. 70(5), 2672 (1991).
[Crossref]

1989 (1)

P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials,” Electron. Lett. 25(11), 718–719 (1989).
[Crossref]

Abernathy, C. R.

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett. 65(8), 992–994 (1994).
[Crossref]

Benton, J. L.

J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, Y. Xie, J. M. Poate, and L. C. Kimerling, “Impurity enhancement of the 1.54mm Er3+ luminescence in silicon,” J. Appl. Phys. 70(5), 2672 (1991).
[Crossref]

Bergh, A.

A. Bergh, G. Crawford, A. Duggal, and R. Haitz, “The promise and challenge of solid-state lighting,” Phys. Today 54(12), 42–47 (2001).
[Crossref]

Birkhahn, R.

M. Garter, J. Scofield, R. Birkhahn, and A. J. Steckl, “Visible and infrared rare-earth-activated electroluminescence from indium tin oxide Schottky diodes to GaN:Er on Si,” Appl. Phys. Lett. 74(2), 182 (1999).
[Crossref]

Bishop, S. G.

S. Kim, S. J. Rhee, D. A. Turnbull, X. Li, J. J. Coleman, S. G. Bishop, and P. B. Klein, “Observation of multiple Er3+ sites in Er-implanted GaN by site-selective photoluminescence excitation spectroscopy,” Appl. Phys. Lett. 71, 2662 (1997).
[Crossref]

Bockowski, M.

P. R. Hageman, V. Kirilyuk, W. H. M. Corbeek, J. L. Weyher, B. Lucznik, M. Bockowski, S. Porowski, and S. Müller, “Thick GaN layers grown by hydride vapor-phase epitaxy: hetero- versus homo-epitaxy,” J. Cryst. Growth 255(3-4), 241–249 (2003).
[Crossref]

Bradford, C.

J. Day, J. Li, D. Lie, C. Bradford, J. Lin, and H. Jiang, “III-nitride full-scale high-resolution microdisplays,” Appl. Phys. Lett. 99(3), 031116 (2011).
[Crossref]

Bray, K. L.

D. M. Hansen, R. Zhang, N. R. Perkins, S. Safvi, L. Zhang, K. L. Bray, and T. F. Kuech, “Photoluminescence of erbium-implanted GaN and in situ-doped GaN:Er,” Appl. Phys. Lett. 72(10), 1244 (1998).
[Crossref]

Brown, D. C.

D. C. Brown, “Ultrahigh-average-power diode-pumped ND:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. QE 33(5), 861–873 (1997).
[Crossref]

Chow, P.

J. M. Zavada, S. X. Jin, N. Nepal, J. Y. Lin, H. X. Jiang, P. Chow, and B. Hertog, “Electroluminescent properties of erbium-doped III-N light emitting diodes,” Appl. Phys. Lett. 84(7), 1061 (2004).
[Crossref]

Coleman, J. J.

S. Kim, S. J. Rhee, D. A. Turnbull, X. Li, J. J. Coleman, S. G. Bishop, and P. B. Klein, “Observation of multiple Er3+ sites in Er-implanted GaN by site-selective photoluminescence excitation spectroscopy,” Appl. Phys. Lett. 71, 2662 (1997).
[Crossref]

Corbeek, W. H. M.

P. R. Hageman, V. Kirilyuk, W. H. M. Corbeek, J. L. Weyher, B. Lucznik, M. Bockowski, S. Porowski, and S. Müller, “Thick GaN layers grown by hydride vapor-phase epitaxy: hetero- versus homo-epitaxy,” J. Cryst. Growth 255(3-4), 241–249 (2003).
[Crossref]

Crawford, G.

A. Bergh, G. Crawford, A. Duggal, and R. Haitz, “The promise and challenge of solid-state lighting,” Phys. Today 54(12), 42–47 (2001).
[Crossref]

Dahal, R.

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett. 97(14), 141109 (2010).
[Crossref]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 µm,” Appl. Phys. Lett. 95(11), 111109 (2009).
[Crossref]

Day, J.

J. Day, J. Li, D. Lie, C. Bradford, J. Lin, and H. Jiang, “III-nitride full-scale high-resolution microdisplays,” Appl. Phys. Lett. 99(3), 031116 (2011).
[Crossref]

DenBaarsa, S. P.

M. T. Hardy, D. F. Feezell, S. P. DenBaarsa, and S. Nakamura, “Group III-Nitride lasers: a materials perspective,” Mater. Today 14(9), 408–415 (2011).
[Crossref]

Duggal, A.

A. Bergh, G. Crawford, A. Duggal, and R. Haitz, “The promise and challenge of solid-state lighting,” Phys. Today 54(12), 42–47 (2001).
[Crossref]

Eaglesham, D. J.

J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, Y. Xie, J. M. Poate, and L. C. Kimerling, “Impurity enhancement of the 1.54mm Er3+ luminescence in silicon,” J. Appl. Phys. 70(5), 2672 (1991).
[Crossref]

Favennec, P. N.

P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials,” Electron. Lett. 25(11), 718–719 (1989).
[Crossref]

Feezell, D. F.

M. T. Hardy, D. F. Feezell, S. P. DenBaarsa, and S. Nakamura, “Group III-Nitride lasers: a materials perspective,” Mater. Today 14(9), 408–415 (2011).
[Crossref]

Ferrante, R. F.

J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, Y. Xie, J. M. Poate, and L. C. Kimerling, “Impurity enhancement of the 1.54mm Er3+ luminescence in silicon,” J. Appl. Phys. 70(5), 2672 (1991).
[Crossref]

Feuerstein, R. J.

J. T. Torvik, R. J. Feuerstein, J. I. Pankove, C. H. Qiu, and F. Namavar, “Electro-luminescence from erbium and oxygen coimplanted GaN,” Appl. Phys. Lett. 69(14), 2098 (1996).
[Crossref]

Fitzgerald, E. A.

J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, Y. Xie, J. M. Poate, and L. C. Kimerling, “Impurity enhancement of the 1.54mm Er3+ luminescence in silicon,” J. Appl. Phys. 70(5), 2672 (1991).
[Crossref]

Fu, T.

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett. 65(8), 992–994 (1994).
[Crossref]

Garter, M.

M. Garter, J. Scofield, R. Birkhahn, and A. J. Steckl, “Visible and infrared rare-earth-activated electroluminescence from indium tin oxide Schottky diodes to GaN:Er on Si,” Appl. Phys. Lett. 74(2), 182 (1999).
[Crossref]

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Hageman, P. R.

P. R. Hageman, V. Kirilyuk, W. H. M. Corbeek, J. L. Weyher, B. Lucznik, M. Bockowski, S. Porowski, and S. Müller, “Thick GaN layers grown by hydride vapor-phase epitaxy: hetero- versus homo-epitaxy,” J. Cryst. Growth 255(3-4), 241–249 (2003).
[Crossref]

Haitz, R.

A. Bergh, G. Crawford, A. Duggal, and R. Haitz, “The promise and challenge of solid-state lighting,” Phys. Today 54(12), 42–47 (2001).
[Crossref]

Hansen, D. M.

D. M. Hansen, R. Zhang, N. R. Perkins, S. Safvi, L. Zhang, K. L. Bray, and T. F. Kuech, “Photoluminescence of erbium-implanted GaN and in situ-doped GaN:Er,” Appl. Phys. Lett. 72(10), 1244 (1998).
[Crossref]

Hardy, M. T.

M. T. Hardy, D. F. Feezell, S. P. DenBaarsa, and S. Nakamura, “Group III-Nitride lasers: a materials perspective,” Mater. Today 14(9), 408–415 (2011).
[Crossref]

Hertog, B.

J. M. Zavada, S. X. Jin, N. Nepal, J. Y. Lin, H. X. Jiang, P. Chow, and B. Hertog, “Electroluminescent properties of erbium-doped III-N light emitting diodes,” Appl. Phys. Lett. 84(7), 1061 (2004).
[Crossref]

Huber, G.

G. Huber, C. Krankel, and K. Petermann, “Solid-state laser: status and future,” J. Opt. Soc. Am. 27(11), B93 (2010).
[Crossref]

Ichikawa, M.

Y. Narukawa, M. Sano, M. Ichikawa, S. Minato, T. Sakamoto, T. Yamada, and T. Mukai, “Improvement of luminous efficiency in white light emitting diodes by reducing a forward-bias voltage,” Japn J. Appl. Phys. Part 2 Letters 46, 963 (2007).

Jacobson, D. C.

J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, Y. Xie, J. M. Poate, and L. C. Kimerling, “Impurity enhancement of the 1.54mm Er3+ luminescence in silicon,” J. Appl. Phys. 70(5), 2672 (1991).
[Crossref]

Jiang, H.

J. Day, J. Li, D. Lie, C. Bradford, J. Lin, and H. Jiang, “III-nitride full-scale high-resolution microdisplays,” Appl. Phys. Lett. 99(3), 031116 (2011).
[Crossref]

Jiang, H. X.

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett. 97(14), 141109 (2010).
[Crossref]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 µm,” Appl. Phys. Lett. 95(11), 111109 (2009).
[Crossref]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89(15), 151903 (2006).
[Crossref]

J. M. Zavada, S. X. Jin, N. Nepal, J. Y. Lin, H. X. Jiang, P. Chow, and B. Hertog, “Electroluminescent properties of erbium-doped III-N light emitting diodes,” Appl. Phys. Lett. 84(7), 1061 (2004).
[Crossref]

Jin, S. X.

J. M. Zavada, S. X. Jin, N. Nepal, J. Y. Lin, H. X. Jiang, P. Chow, and B. Hertog, “Electroluminescent properties of erbium-doped III-N light emitting diodes,” Appl. Phys. Lett. 84(7), 1061 (2004).
[Crossref]

Kalisky, O.

Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng. 49(9), 091003 (2010).
[Crossref]

Kalisky, Y.

Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng. 49(9), 091003 (2010).
[Crossref]

Kasai, H.

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Preparation of large GaN substrates,” Mater. Sci. Eng. B 93, 123 (2002).

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Growth and characterization of freestanding GaN substrate,” J. Cryst. Growth 237, 912–921 (2002).
[Crossref]

Kim, S.

S. Kim, S. J. Rhee, D. A. Turnbull, X. Li, J. J. Coleman, S. G. Bishop, and P. B. Klein, “Observation of multiple Er3+ sites in Er-implanted GaN by site-selective photoluminescence excitation spectroscopy,” Appl. Phys. Lett. 71, 2662 (1997).
[Crossref]

Kimerling, L. C.

J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, Y. Xie, J. M. Poate, and L. C. Kimerling, “Impurity enhancement of the 1.54mm Er3+ luminescence in silicon,” J. Appl. Phys. 70(5), 2672 (1991).
[Crossref]

Kimura, H.

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Growth and characterization of freestanding GaN substrate,” J. Cryst. Growth 237, 912–921 (2002).
[Crossref]

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Preparation of large GaN substrates,” Mater. Sci. Eng. B 93, 123 (2002).

Kirilyuk, V.

P. R. Hageman, V. Kirilyuk, W. H. M. Corbeek, J. L. Weyher, B. Lucznik, M. Bockowski, S. Porowski, and S. Müller, “Thick GaN layers grown by hydride vapor-phase epitaxy: hetero- versus homo-epitaxy,” J. Cryst. Growth 255(3-4), 241–249 (2003).
[Crossref]

Klein, M.

M. Klein, T. Meisch, F. Lipski, and F. Scholz, “The influence of prestrained metalorganic vapor phase epitaxial gallium-nitride templates on hydride vapor phase epitaxial growth,” Appl. Phys. Lett. 105(9), 092109 (2014).
[Crossref]

Klein, P. B.

S. Kim, S. J. Rhee, D. A. Turnbull, X. Li, J. J. Coleman, S. G. Bishop, and P. B. Klein, “Observation of multiple Er3+ sites in Er-implanted GaN by site-selective photoluminescence excitation spectroscopy,” Appl. Phys. Lett. 71, 2662 (1997).
[Crossref]

Koukitu, A.

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Growth and characterization of freestanding GaN substrate,” J. Cryst. Growth 237, 912–921 (2002).
[Crossref]

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Preparation of large GaN substrates,” Mater. Sci. Eng. B 93, 123 (2002).

Krankel, C.

G. Huber, C. Krankel, and K. Petermann, “Solid-state laser: status and future,” J. Opt. Soc. Am. 27(11), B93 (2010).
[Crossref]

Kuech, T. F.

D. M. Hansen, R. Zhang, N. R. Perkins, S. Safvi, L. Zhang, K. L. Bray, and T. F. Kuech, “Photoluminescence of erbium-implanted GaN and in situ-doped GaN:Er,” Appl. Phys. Lett. 72(10), 1244 (1998).
[Crossref]

Kumagai, Y.

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Preparation of large GaN substrates,” Mater. Sci. Eng. B 93, 123 (2002).

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Growth and characterization of freestanding GaN substrate,” J. Cryst. Growth 237, 912–921 (2002).
[Crossref]

L’Haridon, H.

P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials,” Electron. Lett. 25(11), 718–719 (1989).
[Crossref]

Le Guillou, Y.

P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials,” Electron. Lett. 25(11), 718–719 (1989).
[Crossref]

Li, J.

J. Day, J. Li, D. Lie, C. Bradford, J. Lin, and H. Jiang, “III-nitride full-scale high-resolution microdisplays,” Appl. Phys. Lett. 99(3), 031116 (2011).
[Crossref]

Li, X.

S. Kim, S. J. Rhee, D. A. Turnbull, X. Li, J. J. Coleman, S. G. Bishop, and P. B. Klein, “Observation of multiple Er3+ sites in Er-implanted GaN by site-selective photoluminescence excitation spectroscopy,” Appl. Phys. Lett. 71, 2662 (1997).
[Crossref]

Lie, D.

J. Day, J. Li, D. Lie, C. Bradford, J. Lin, and H. Jiang, “III-nitride full-scale high-resolution microdisplays,” Appl. Phys. Lett. 99(3), 031116 (2011).
[Crossref]

Lin, J.

J. Day, J. Li, D. Lie, C. Bradford, J. Lin, and H. Jiang, “III-nitride full-scale high-resolution microdisplays,” Appl. Phys. Lett. 99(3), 031116 (2011).
[Crossref]

Lin, J. Y.

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett. 97(14), 141109 (2010).
[Crossref]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 µm,” Appl. Phys. Lett. 95(11), 111109 (2009).
[Crossref]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89(15), 151903 (2006).
[Crossref]

J. M. Zavada, S. X. Jin, N. Nepal, J. Y. Lin, H. X. Jiang, P. Chow, and B. Hertog, “Electroluminescent properties of erbium-doped III-N light emitting diodes,” Appl. Phys. Lett. 84(7), 1061 (2004).
[Crossref]

Lipski, F.

M. Klein, T. Meisch, F. Lipski, and F. Scholz, “The influence of prestrained metalorganic vapor phase epitaxial gallium-nitride templates on hydride vapor phase epitaxial growth,” Appl. Phys. Lett. 105(9), 092109 (2014).
[Crossref]

Lucznik, B.

P. R. Hageman, V. Kirilyuk, W. H. M. Corbeek, J. L. Weyher, B. Lucznik, M. Bockowski, S. Porowski, and S. Müller, “Thick GaN layers grown by hydride vapor-phase epitaxy: hetero- versus homo-epitaxy,” J. Cryst. Growth 255(3-4), 241–249 (2003).
[Crossref]

Lund, D. J.

J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-IR to far-IR transition region: proposed revisions to MPES,” Health Phys. 92(1), 15–23 (2007).
[Crossref] [PubMed]

Matsumoto, N.

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Preparation of large GaN substrates,” Mater. Sci. Eng. B 93, 123 (2002).

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Growth and characterization of freestanding GaN substrate,” J. Cryst. Growth 237, 912–921 (2002).
[Crossref]

Meisch, T.

M. Klein, T. Meisch, F. Lipski, and F. Scholz, “The influence of prestrained metalorganic vapor phase epitaxial gallium-nitride templates on hydride vapor phase epitaxial growth,” Appl. Phys. Lett. 105(9), 092109 (2014).
[Crossref]

Michel, J.

J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, Y. Xie, J. M. Poate, and L. C. Kimerling, “Impurity enhancement of the 1.54mm Er3+ luminescence in silicon,” J. Appl. Phys. 70(5), 2672 (1991).
[Crossref]

Minato, S.

Y. Narukawa, M. Sano, M. Ichikawa, S. Minato, T. Sakamoto, T. Yamada, and T. Mukai, “Improvement of luminous efficiency in white light emitting diodes by reducing a forward-bias voltage,” Japn J. Appl. Phys. Part 2 Letters 46, 963 (2007).

Motoki, K.

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Growth and characterization of freestanding GaN substrate,” J. Cryst. Growth 237, 912–921 (2002).
[Crossref]

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Preparation of large GaN substrates,” Mater. Sci. Eng. B 93, 123 (2002).

Moutonnet, D.

P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials,” Electron. Lett. 25(11), 718–719 (1989).
[Crossref]

Mukai, T.

Y. Narukawa, M. Sano, M. Ichikawa, S. Minato, T. Sakamoto, T. Yamada, and T. Mukai, “Improvement of luminous efficiency in white light emitting diodes by reducing a forward-bias voltage,” Japn J. Appl. Phys. Part 2 Letters 46, 963 (2007).

Müller, S.

P. R. Hageman, V. Kirilyuk, W. H. M. Corbeek, J. L. Weyher, B. Lucznik, M. Bockowski, S. Porowski, and S. Müller, “Thick GaN layers grown by hydride vapor-phase epitaxy: hetero- versus homo-epitaxy,” J. Cryst. Growth 255(3-4), 241–249 (2003).
[Crossref]

Nakahata, S.

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Growth and characterization of freestanding GaN substrate,” J. Cryst. Growth 237, 912–921 (2002).
[Crossref]

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Preparation of large GaN substrates,” Mater. Sci. Eng. B 93, 123 (2002).

Nakamura, S.

M. T. Hardy, D. F. Feezell, S. P. DenBaarsa, and S. Nakamura, “Group III-Nitride lasers: a materials perspective,” Mater. Today 14(9), 408–415 (2011).
[Crossref]

Namavar, F.

J. T. Torvik, R. J. Feuerstein, J. I. Pankove, C. H. Qiu, and F. Namavar, “Electro-luminescence from erbium and oxygen coimplanted GaN,” Appl. Phys. Lett. 69(14), 2098 (1996).
[Crossref]

Narukawa, Y.

Y. Narukawa, M. Sano, M. Ichikawa, S. Minato, T. Sakamoto, T. Yamada, and T. Mukai, “Improvement of luminous efficiency in white light emitting diodes by reducing a forward-bias voltage,” Japn J. Appl. Phys. Part 2 Letters 46, 963 (2007).

Nepal, N.

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89(15), 151903 (2006).
[Crossref]

J. M. Zavada, S. X. Jin, N. Nepal, J. Y. Lin, H. X. Jiang, P. Chow, and B. Hertog, “Electroluminescent properties of erbium-doped III-N light emitting diodes,” Appl. Phys. Lett. 84(7), 1061 (2004).
[Crossref]

Newman, N.

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett. 65(8), 992–994 (1994).
[Crossref]

Okahisa, T.

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Preparation of large GaN substrates,” Mater. Sci. Eng. B 93, 123 (2002).

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Growth and characterization of freestanding GaN substrate,” J. Cryst. Growth 237, 912–921 (2002).
[Crossref]

Pankove, J. I.

J. T. Torvik, R. J. Feuerstein, J. I. Pankove, C. H. Qiu, and F. Namavar, “Electro-luminescence from erbium and oxygen coimplanted GaN,” Appl. Phys. Lett. 69(14), 2098 (1996).
[Crossref]

Pearton, S. J.

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett. 65(8), 992–994 (1994).
[Crossref]

Perkins, N. R.

D. M. Hansen, R. Zhang, N. R. Perkins, S. Safvi, L. Zhang, K. L. Bray, and T. F. Kuech, “Photoluminescence of erbium-implanted GaN and in situ-doped GaN:Er,” Appl. Phys. Lett. 72(10), 1244 (1998).
[Crossref]

Petermann, K.

G. Huber, C. Krankel, and K. Petermann, “Solid-state laser: status and future,” J. Opt. Soc. Am. 27(11), B93 (2010).
[Crossref]

Poate, J. M.

J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, Y. Xie, J. M. Poate, and L. C. Kimerling, “Impurity enhancement of the 1.54mm Er3+ luminescence in silicon,” J. Appl. Phys. 70(5), 2672 (1991).
[Crossref]

Porowski, S.

P. R. Hageman, V. Kirilyuk, W. H. M. Corbeek, J. L. Weyher, B. Lucznik, M. Bockowski, S. Porowski, and S. Müller, “Thick GaN layers grown by hydride vapor-phase epitaxy: hetero- versus homo-epitaxy,” J. Cryst. Growth 255(3-4), 241–249 (2003).
[Crossref]

Qiu, C. H.

J. T. Torvik, R. J. Feuerstein, J. I. Pankove, C. H. Qiu, and F. Namavar, “Electro-luminescence from erbium and oxygen coimplanted GaN,” Appl. Phys. Lett. 69(14), 2098 (1996).
[Crossref]

Rhee, S. J.

S. Kim, S. J. Rhee, D. A. Turnbull, X. Li, J. J. Coleman, S. G. Bishop, and P. B. Klein, “Observation of multiple Er3+ sites in Er-implanted GaN by site-selective photoluminescence excitation spectroscopy,” Appl. Phys. Lett. 71, 2662 (1997).
[Crossref]

Rubin, M.

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett. 65(8), 992–994 (1994).
[Crossref]

Safvi, S.

D. M. Hansen, R. Zhang, N. R. Perkins, S. Safvi, L. Zhang, K. L. Bray, and T. F. Kuech, “Photoluminescence of erbium-implanted GaN and in situ-doped GaN:Er,” Appl. Phys. Lett. 72(10), 1244 (1998).
[Crossref]

Sakamoto, T.

Y. Narukawa, M. Sano, M. Ichikawa, S. Minato, T. Sakamoto, T. Yamada, and T. Mukai, “Improvement of luminous efficiency in white light emitting diodes by reducing a forward-bias voltage,” Japn J. Appl. Phys. Part 2 Letters 46, 963 (2007).

Salvi, M.

P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials,” Electron. Lett. 25(11), 718–719 (1989).
[Crossref]

Sano, M.

Y. Narukawa, M. Sano, M. Ichikawa, S. Minato, T. Sakamoto, T. Yamada, and T. Mukai, “Improvement of luminous efficiency in white light emitting diodes by reducing a forward-bias voltage,” Japn J. Appl. Phys. Part 2 Letters 46, 963 (2007).

Scholz, F.

M. Klein, T. Meisch, F. Lipski, and F. Scholz, “The influence of prestrained metalorganic vapor phase epitaxial gallium-nitride templates on hydride vapor phase epitaxial growth,” Appl. Phys. Lett. 105(9), 092109 (2014).
[Crossref]

Schwartz, R. N.

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett. 65(8), 992–994 (1994).
[Crossref]

Scofield, J.

M. Garter, J. Scofield, R. Birkhahn, and A. J. Steckl, “Visible and infrared rare-earth-activated electroluminescence from indium tin oxide Schottky diodes to GaN:Er on Si,” Appl. Phys. Lett. 74(2), 182 (1999).
[Crossref]

Seki, H.

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Growth and characterization of freestanding GaN substrate,” J. Cryst. Growth 237, 912–921 (2002).
[Crossref]

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Preparation of large GaN substrates,” Mater. Sci. Eng. B 93, 123 (2002).

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Steckl, A. J.

M. Garter, J. Scofield, R. Birkhahn, and A. J. Steckl, “Visible and infrared rare-earth-activated electroluminescence from indium tin oxide Schottky diodes to GaN:Er on Si,” Appl. Phys. Lett. 74(2), 182 (1999).
[Crossref]

A. J. Steckl and J. M. Zavada, “Optoelectronic properties and applications of rare-earth-doped GaN,” MRS Bull. 24(09), 33–38 (1999).
[Crossref]

Stuck, B. E.

J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-IR to far-IR transition region: proposed revisions to MPES,” Health Phys. 92(1), 15–23 (2007).
[Crossref] [PubMed]

Taira, T.

T. Taira, “Ceramic YAG lasers,” C. R. Phys. 8(2), 138–152 (2007).
[Crossref]

Takemoto, K.

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Preparation of large GaN substrates,” Mater. Sci. Eng. B 93, 123 (2002).

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Growth and characterization of freestanding GaN substrate,” J. Cryst. Growth 237, 912–921 (2002).
[Crossref]

Torvik, J. T.

J. T. Torvik, R. J. Feuerstein, J. I. Pankove, C. H. Qiu, and F. Namavar, “Electro-luminescence from erbium and oxygen coimplanted GaN,” Appl. Phys. Lett. 69(14), 2098 (1996).
[Crossref]

Turnbull, D. A.

S. Kim, S. J. Rhee, D. A. Turnbull, X. Li, J. J. Coleman, S. G. Bishop, and P. B. Klein, “Observation of multiple Er3+ sites in Er-implanted GaN by site-selective photoluminescence excitation spectroscopy,” Appl. Phys. Lett. 71, 2662 (1997).
[Crossref]

Uematsu, K.

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Growth and characterization of freestanding GaN substrate,” J. Cryst. Growth 237, 912–921 (2002).
[Crossref]

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Preparation of large GaN substrates,” Mater. Sci. Eng. B 93, 123 (2002).

Ueno, M.

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Preparation of large GaN substrates,” Mater. Sci. Eng. B 93, 123 (2002).

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Growth and characterization of freestanding GaN substrate,” J. Cryst. Growth 237, 912–921 (2002).
[Crossref]

Ugolini, C.

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett. 97(14), 141109 (2010).
[Crossref]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 µm,” Appl. Phys. Lett. 95(11), 111109 (2009).
[Crossref]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89(15), 151903 (2006).
[Crossref]

Weyher, J. L.

P. R. Hageman, V. Kirilyuk, W. H. M. Corbeek, J. L. Weyher, B. Lucznik, M. Bockowski, S. Porowski, and S. Müller, “Thick GaN layers grown by hydride vapor-phase epitaxy: hetero- versus homo-epitaxy,” J. Cryst. Growth 255(3-4), 241–249 (2003).
[Crossref]

Wilson, R. G.

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett. 65(8), 992–994 (1994).
[Crossref]

Xie, Y.

J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, Y. Xie, J. M. Poate, and L. C. Kimerling, “Impurity enhancement of the 1.54mm Er3+ luminescence in silicon,” J. Appl. Phys. 70(5), 2672 (1991).
[Crossref]

Yamada, T.

Y. Narukawa, M. Sano, M. Ichikawa, S. Minato, T. Sakamoto, T. Yamada, and T. Mukai, “Improvement of luminous efficiency in white light emitting diodes by reducing a forward-bias voltage,” Japn J. Appl. Phys. Part 2 Letters 46, 963 (2007).

Zavada, J. M.

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett. 97(14), 141109 (2010).
[Crossref]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 µm,” Appl. Phys. Lett. 95(11), 111109 (2009).
[Crossref]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89(15), 151903 (2006).
[Crossref]

J. M. Zavada, S. X. Jin, N. Nepal, J. Y. Lin, H. X. Jiang, P. Chow, and B. Hertog, “Electroluminescent properties of erbium-doped III-N light emitting diodes,” Appl. Phys. Lett. 84(7), 1061 (2004).
[Crossref]

A. J. Steckl and J. M. Zavada, “Optoelectronic properties and applications of rare-earth-doped GaN,” MRS Bull. 24(09), 33–38 (1999).
[Crossref]

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett. 65(8), 992–994 (1994).
[Crossref]

Zhang, L.

D. M. Hansen, R. Zhang, N. R. Perkins, S. Safvi, L. Zhang, K. L. Bray, and T. F. Kuech, “Photoluminescence of erbium-implanted GaN and in situ-doped GaN:Er,” Appl. Phys. Lett. 72(10), 1244 (1998).
[Crossref]

Zhang, R.

D. M. Hansen, R. Zhang, N. R. Perkins, S. Safvi, L. Zhang, K. L. Bray, and T. F. Kuech, “Photoluminescence of erbium-implanted GaN and in situ-doped GaN:Er,” Appl. Phys. Lett. 72(10), 1244 (1998).
[Crossref]

Zuclich, J. A.

J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-IR to far-IR transition region: proposed revisions to MPES,” Health Phys. 92(1), 15–23 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (11)

J. Day, J. Li, D. Lie, C. Bradford, J. Lin, and H. Jiang, “III-nitride full-scale high-resolution microdisplays,” Appl. Phys. Lett. 99(3), 031116 (2011).
[Crossref]

J. T. Torvik, R. J. Feuerstein, J. I. Pankove, C. H. Qiu, and F. Namavar, “Electro-luminescence from erbium and oxygen coimplanted GaN,” Appl. Phys. Lett. 69(14), 2098 (1996).
[Crossref]

S. Kim, S. J. Rhee, D. A. Turnbull, X. Li, J. J. Coleman, S. G. Bishop, and P. B. Klein, “Observation of multiple Er3+ sites in Er-implanted GaN by site-selective photoluminescence excitation spectroscopy,” Appl. Phys. Lett. 71, 2662 (1997).
[Crossref]

M. Garter, J. Scofield, R. Birkhahn, and A. J. Steckl, “Visible and infrared rare-earth-activated electroluminescence from indium tin oxide Schottky diodes to GaN:Er on Si,” Appl. Phys. Lett. 74(2), 182 (1999).
[Crossref]

J. M. Zavada, S. X. Jin, N. Nepal, J. Y. Lin, H. X. Jiang, P. Chow, and B. Hertog, “Electroluminescent properties of erbium-doped III-N light emitting diodes,” Appl. Phys. Lett. 84(7), 1061 (2004).
[Crossref]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89(15), 151903 (2006).
[Crossref]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 µm,” Appl. Phys. Lett. 95(11), 111109 (2009).
[Crossref]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett. 97(14), 141109 (2010).
[Crossref]

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett. 65(8), 992–994 (1994).
[Crossref]

D. M. Hansen, R. Zhang, N. R. Perkins, S. Safvi, L. Zhang, K. L. Bray, and T. F. Kuech, “Photoluminescence of erbium-implanted GaN and in situ-doped GaN:Er,” Appl. Phys. Lett. 72(10), 1244 (1998).
[Crossref]

M. Klein, T. Meisch, F. Lipski, and F. Scholz, “The influence of prestrained metalorganic vapor phase epitaxial gallium-nitride templates on hydride vapor phase epitaxial growth,” Appl. Phys. Lett. 105(9), 092109 (2014).
[Crossref]

C. R. Phys. (1)

T. Taira, “Ceramic YAG lasers,” C. R. Phys. 8(2), 138–152 (2007).
[Crossref]

Electron. Lett. (1)

P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials,” Electron. Lett. 25(11), 718–719 (1989).
[Crossref]

Health Phys. (1)

J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-IR to far-IR transition region: proposed revisions to MPES,” Health Phys. 92(1), 15–23 (2007).
[Crossref] [PubMed]

IEEE J. Quantum Electron. QE (1)

D. C. Brown, “Ultrahigh-average-power diode-pumped ND:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. QE 33(5), 861–873 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

J. Appl. Phys. (1)

J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, Y. Xie, J. M. Poate, and L. C. Kimerling, “Impurity enhancement of the 1.54mm Er3+ luminescence in silicon,” J. Appl. Phys. 70(5), 2672 (1991).
[Crossref]

J. Cryst. Growth (2)

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Growth and characterization of freestanding GaN substrate,” J. Cryst. Growth 237, 912–921 (2002).
[Crossref]

P. R. Hageman, V. Kirilyuk, W. H. M. Corbeek, J. L. Weyher, B. Lucznik, M. Bockowski, S. Porowski, and S. Müller, “Thick GaN layers grown by hydride vapor-phase epitaxy: hetero- versus homo-epitaxy,” J. Cryst. Growth 255(3-4), 241–249 (2003).
[Crossref]

J. Opt. Soc. Am. (1)

G. Huber, C. Krankel, and K. Petermann, “Solid-state laser: status and future,” J. Opt. Soc. Am. 27(11), B93 (2010).
[Crossref]

Japn J. Appl. Phys. Part 2 Letters (1)

Y. Narukawa, M. Sano, M. Ichikawa, S. Minato, T. Sakamoto, T. Yamada, and T. Mukai, “Improvement of luminous efficiency in white light emitting diodes by reducing a forward-bias voltage,” Japn J. Appl. Phys. Part 2 Letters 46, 963 (2007).

Mater. Sci. Eng. B (1)

K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, “Preparation of large GaN substrates,” Mater. Sci. Eng. B 93, 123 (2002).

Mater. Today (1)

M. T. Hardy, D. F. Feezell, S. P. DenBaarsa, and S. Nakamura, “Group III-Nitride lasers: a materials perspective,” Mater. Today 14(9), 408–415 (2011).
[Crossref]

MRS Bull. (1)

A. J. Steckl and J. M. Zavada, “Optoelectronic properties and applications of rare-earth-doped GaN,” MRS Bull. 24(09), 33–38 (1999).
[Crossref]

Opt. Eng. (1)

Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng. 49(9), 091003 (2010).
[Crossref]

Phys. Today (1)

A. Bergh, G. Crawford, A. Duggal, and R. Haitz, “The promise and challenge of solid-state lighting,” Phys. Today 54(12), 42–47 (2001).
[Crossref]

Other (6)

W. Koechner, Solid-State Laser Engineering, 5th edition (Spring-Verlag, 1999).

S. Nakamura, G. Fasol, and S. J. Pearton, The Blue Laser Diode: The Complete Story (Springer, 2000).

C. Mion, “Investigation of the thermal properties of gallium nitride using the three omega technique.” Dissertation, North Carolina State University, (2005).

D. J. Miller, “Gallium nitride epitaxy by a novel hybrid VPE technique,” Dissertation, Stanford University (2011) and references therein.

C. Ugolini, Dissertation, “Optical and structural properties of Er-doped GaN/InGaN materials and devices synthesized by metal organic chemical vapor deposition” Kansas State University (2008).

R. Dahal, J. Y. Lin, H. X. Jiang, and J. Zavada, “Er doped InxGa1-xN for optical communications,” in Rare-earth doped III-Nitrides for Optoelectronic and Spintronic Applications, K O’Donnell & V Dierolf, eds. (Canopus Academic Publishing Ltd and Springer SBM, 2010), Chapter 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Comparison of GaN (0002) reflection XRD rocking curves (ω-scans) between two HVPE Er:GaN samples grown on sapphire with and without the use of MOCVD GaN epi-template.
Fig. 2
Fig. 2 Micrographs of an Er:GaN wafer grown by HVPE. (a) Cross-section view indicating a 40 μm thickness; (b) Top view. The insets show the surface morphologies of two different regions on the wafer surface.
Fig. 3
Fig. 3 Comparison of GaN (0002) XRD results between the MOCVD GaN epi-template and the subsequent HVEP Er:GaN layer grown on sapphire. (a) θ-2θ scans and (b) rocking curves (ω-scans).
Fig. 4
Fig. 4 Room temperature photoluminescence spectra of three HVPE Er:GaN samples grown under different NH3 flow rates.
Fig. 5
Fig. 5 SIMS measurement results of an Er:GaN sample grown by HVPE. The thickness of the MOCVD GaN epi-template is about 3 μm and the thickness of the subsequent HVPE grown Er:GaN was controlled to about 2 μm in order to reduce the cost of SIMS measurements.

Metrics