Abstract

We present measurements of the concentration dependence of the energy transfer upconversion (ETU) macro-parameter in Nd:YAG obtained via the Z-scan technique. The ETU coefficient is found to increase from 27 × 10−18 cm3∕s to 75 × 10−18 cm3∕s when the concentration increases from 0.31 at.% to 1.07 at.%.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterising energy transfer upconversion in Nd-doped vanadates at elevated temperatures

S. Cante, S. J. Beecher, and J. I. Mackenzie
Opt. Express 26(6) 6478-6489 (2018)

Nd:YAG optical electronic nonlinearity and energy transfer upconversion studied by the Z-scan technique

D. N. Messias, V. Pilla, A. A. Andrade, and T. Catunda
Opt. Mater. Express 5(11) 2588-2596 (2015)

Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals

V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov
J. Opt. Soc. Am. B 15(3) 1052-1060 (1998)

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan and R. L. Byer, “Modelling and CW operation of a quasi-3-level 946nm Nd-YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
    [Crossref]
  2. W. P. Risk, “Modelling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5(7), 1412–1423 (1988).
    [Crossref]
  3. S. Bjurshagen and R. Koch, “Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers,” Appl. Opt. 43(24), 4753–4767 (2004).
    [Crossref] [PubMed]
  4. S. P. Ng and J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Laser Phys. 22(3), 494–498 (2012).
    [Crossref]
  5. J. O. White and C. E. Mungan, “Measurement of upconversion in Er:YAG via Z-scan,” J. Opt. Soc. Am. B 28(10), 2358–2361 (2011).
    [Crossref]
  6. R. P. Yan, S. J. Yoon, S. J. Beecher, and J. I. Mackenzie, “Measuring the Elevated Temperature Dependence of up-conversion in Nd:YAG,” IEEE J. Sel. Top. Quantum Electron. 21, 1601208 (2015).
  7. C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses - A review,” J. Non-Cryst. Solids 352(32-35), 3582–3597 (2006).
    [Crossref]
  8. B. Ferrand, D. Pelenc, I. Chartier, and C. Wyon, “Growth by LPE of Nd-YAG single crystal layers for wave-guide laser applications,” J. Cryst. Growth 128(1-4), 966–969 (1993).
    [Crossref]
  9. A. A. Kaminskii, Laser Crystals (Springer-Verlag, Berlin, Germany, 1990).
  10. V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61(12), 8087–8098 (2000).
    [Crossref]
  11. Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70(4), 487–490 (2000).
    [Crossref]
  12. S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: Upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
    [Crossref]
  13. H. Glur, R. Lavi, and T. Graf, “Reduction of thermally induced lenses in Nd: YAG with low temperatures,” IEEE J. Quantum Electron. 40(5), 499–504 (2004).
    [Crossref]
  14. S. J. Yoon and J. I. Mackenzie, “Cryogenically cooled 946nm Nd:YAG laser,” Opt. Express 22(7), 8069–8075 (2014).
    [Crossref] [PubMed]
  15. W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. 35(9), 1724–1727 (2013).
    [Crossref]

2015 (1)

R. P. Yan, S. J. Yoon, S. J. Beecher, and J. I. Mackenzie, “Measuring the Elevated Temperature Dependence of up-conversion in Nd:YAG,” IEEE J. Sel. Top. Quantum Electron. 21, 1601208 (2015).

2014 (1)

2013 (1)

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. 35(9), 1724–1727 (2013).
[Crossref]

2012 (1)

S. P. Ng and J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Laser Phys. 22(3), 494–498 (2012).
[Crossref]

2011 (1)

2006 (1)

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses - A review,” J. Non-Cryst. Solids 352(32-35), 3582–3597 (2006).
[Crossref]

2004 (2)

H. Glur, R. Lavi, and T. Graf, “Reduction of thermally induced lenses in Nd: YAG with low temperatures,” IEEE J. Quantum Electron. 40(5), 499–504 (2004).
[Crossref]

S. Bjurshagen and R. Koch, “Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers,” Appl. Opt. 43(24), 4753–4767 (2004).
[Crossref] [PubMed]

2000 (2)

V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61(12), 8087–8098 (2000).
[Crossref]

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70(4), 487–490 (2000).
[Crossref]

1998 (1)

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: Upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[Crossref]

1993 (1)

B. Ferrand, D. Pelenc, I. Chartier, and C. Wyon, “Growth by LPE of Nd-YAG single crystal layers for wave-guide laser applications,” J. Cryst. Growth 128(1-4), 966–969 (1993).
[Crossref]

1988 (1)

1987 (1)

T. Y. Fan and R. L. Byer, “Modelling and CW operation of a quasi-3-level 946nm Nd-YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

Andrade, A. A.

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses - A review,” J. Non-Cryst. Solids 352(32-35), 3582–3597 (2006).
[Crossref]

Baesso, M. L.

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses - A review,” J. Non-Cryst. Solids 352(32-35), 3582–3597 (2006).
[Crossref]

Beecher, S. J.

R. P. Yan, S. J. Yoon, S. J. Beecher, and J. I. Mackenzie, “Measuring the Elevated Temperature Dependence of up-conversion in Nd:YAG,” IEEE J. Sel. Top. Quantum Electron. 21, 1601208 (2015).

Bell, M. J. V.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. 35(9), 1724–1727 (2013).
[Crossref]

Bjurshagen, S.

Bonner, C. L.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: Upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[Crossref]

Byer, R. L.

T. Y. Fan and R. L. Byer, “Modelling and CW operation of a quasi-3-level 946nm Nd-YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

Catunda, T.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. 35(9), 1724–1727 (2013).
[Crossref]

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses - A review,” J. Non-Cryst. Solids 352(32-35), 3582–3597 (2006).
[Crossref]

Chartier, I.

B. Ferrand, D. Pelenc, I. Chartier, and C. Wyon, “Growth by LPE of Nd-YAG single crystal layers for wave-guide laser applications,” J. Cryst. Growth 128(1-4), 966–969 (1993).
[Crossref]

Chen, Y. F.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70(4), 487–490 (2000).
[Crossref]

Dantas, N. O.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. 35(9), 1724–1727 (2013).
[Crossref]

Fan, T. Y.

T. Y. Fan and R. L. Byer, “Modelling and CW operation of a quasi-3-level 946nm Nd-YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

Ferrand, B.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: Upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[Crossref]

B. Ferrand, D. Pelenc, I. Chartier, and C. Wyon, “Growth by LPE of Nd-YAG single crystal layers for wave-guide laser applications,” J. Cryst. Growth 128(1-4), 966–969 (1993).
[Crossref]

Glur, H.

H. Glur, R. Lavi, and T. Graf, “Reduction of thermally induced lenses in Nd: YAG with low temperatures,” IEEE J. Quantum Electron. 40(5), 499–504 (2004).
[Crossref]

Graf, T.

H. Glur, R. Lavi, and T. Graf, “Reduction of thermally induced lenses in Nd: YAG with low temperatures,” IEEE J. Quantum Electron. 40(5), 499–504 (2004).
[Crossref]

Guy, S.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: Upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[Crossref]

Hanna, D. C.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: Upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[Crossref]

Jacinto, C.

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses - A review,” J. Non-Cryst. Solids 352(32-35), 3582–3597 (2006).
[Crossref]

Koch, R.

Lan, Y. P.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70(4), 487–490 (2000).
[Crossref]

Lavi, R.

H. Glur, R. Lavi, and T. Graf, “Reduction of thermally induced lenses in Nd: YAG with low temperatures,” IEEE J. Quantum Electron. 40(5), 499–504 (2004).
[Crossref]

Liao, C. C.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70(4), 487–490 (2000).
[Crossref]

Lima, S. M.

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses - A review,” J. Non-Cryst. Solids 352(32-35), 3582–3597 (2006).
[Crossref]

Lima, W. J.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. 35(9), 1724–1727 (2013).
[Crossref]

Lupei, A.

V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61(12), 8087–8098 (2000).
[Crossref]

Lupei, V.

V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61(12), 8087–8098 (2000).
[Crossref]

Mackenzie, J. I.

R. P. Yan, S. J. Yoon, S. J. Beecher, and J. I. Mackenzie, “Measuring the Elevated Temperature Dependence of up-conversion in Nd:YAG,” IEEE J. Sel. Top. Quantum Electron. 21, 1601208 (2015).

S. J. Yoon and J. I. Mackenzie, “Cryogenically cooled 946nm Nd:YAG laser,” Opt. Express 22(7), 8069–8075 (2014).
[Crossref] [PubMed]

S. P. Ng and J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Laser Phys. 22(3), 494–498 (2012).
[Crossref]

Martins, V. M.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. 35(9), 1724–1727 (2013).
[Crossref]

Messias, D. N.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. 35(9), 1724–1727 (2013).
[Crossref]

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses - A review,” J. Non-Cryst. Solids 352(32-35), 3582–3597 (2006).
[Crossref]

Monte, A. F. G.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. 35(9), 1724–1727 (2013).
[Crossref]

Mungan, C. E.

Ng, S. P.

S. P. Ng and J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Laser Phys. 22(3), 494–498 (2012).
[Crossref]

Pelenc, D.

B. Ferrand, D. Pelenc, I. Chartier, and C. Wyon, “Growth by LPE of Nd-YAG single crystal layers for wave-guide laser applications,” J. Cryst. Growth 128(1-4), 966–969 (1993).
[Crossref]

Risk, W. P.

Shepherd, D. P.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: Upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[Crossref]

Tropper, A. C.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: Upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[Crossref]

Wang, S. C.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70(4), 487–490 (2000).
[Crossref]

White, J. O.

Wyon, C.

B. Ferrand, D. Pelenc, I. Chartier, and C. Wyon, “Growth by LPE of Nd-YAG single crystal layers for wave-guide laser applications,” J. Cryst. Growth 128(1-4), 966–969 (1993).
[Crossref]

Yan, R. P.

R. P. Yan, S. J. Yoon, S. J. Beecher, and J. I. Mackenzie, “Measuring the Elevated Temperature Dependence of up-conversion in Nd:YAG,” IEEE J. Sel. Top. Quantum Electron. 21, 1601208 (2015).

Yoon, S. J.

R. P. Yan, S. J. Yoon, S. J. Beecher, and J. I. Mackenzie, “Measuring the Elevated Temperature Dependence of up-conversion in Nd:YAG,” IEEE J. Sel. Top. Quantum Electron. 21, 1601208 (2015).

S. J. Yoon and J. I. Mackenzie, “Cryogenically cooled 946nm Nd:YAG laser,” Opt. Express 22(7), 8069–8075 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70(4), 487–490 (2000).
[Crossref]

IEEE J. Quantum Electron. (3)

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: Upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[Crossref]

H. Glur, R. Lavi, and T. Graf, “Reduction of thermally induced lenses in Nd: YAG with low temperatures,” IEEE J. Quantum Electron. 40(5), 499–504 (2004).
[Crossref]

T. Y. Fan and R. L. Byer, “Modelling and CW operation of a quasi-3-level 946nm Nd-YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. P. Yan, S. J. Yoon, S. J. Beecher, and J. I. Mackenzie, “Measuring the Elevated Temperature Dependence of up-conversion in Nd:YAG,” IEEE J. Sel. Top. Quantum Electron. 21, 1601208 (2015).

J. Cryst. Growth (1)

B. Ferrand, D. Pelenc, I. Chartier, and C. Wyon, “Growth by LPE of Nd-YAG single crystal layers for wave-guide laser applications,” J. Cryst. Growth 128(1-4), 966–969 (1993).
[Crossref]

J. Non-Cryst. Solids (1)

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses - A review,” J. Non-Cryst. Solids 352(32-35), 3582–3597 (2006).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

S. P. Ng and J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Laser Phys. 22(3), 494–498 (2012).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. 35(9), 1724–1727 (2013).
[Crossref]

Phys. Rev. B (1)

V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61(12), 8087–8098 (2000).
[Crossref]

Other (1)

A. A. Kaminskii, Laser Crystals (Springer-Verlag, Berlin, Germany, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup for Z-scan measurements with simultaneous capturing of the fluorescence waveforms.
Fig. 2
Fig. 2 Modelled 808nm transmission through a 3.25mm 0.95at.% doped Nd:YAG crystal (AR coated) versus incident pump irradiance, pump power 400mW, 20μm beam waist
Fig. 3
Fig. 3 Measured (symbol) and simulated (solid line) temporal waveform of the transmitted power at (a) low pump irradiance, and (b) the maximum pump irradiance for the different doping concentrations.
Fig. 4
Fig. 4 (a) Nd:YAG crystal transmission at 808 nm versus sample position relative to the focus for the different dopant concentrations (b) Concentration dependence of ETU coefficient in Nd:YAG.

Tables (1)

Tables Icon

Table 1 The parameters of Nd:YAG sample

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

N 2 ( r , z ) t = I P ( r , z ) h υ P σ a b s N 1 ( r , z ) N 2 ( r , z ) τ 0 W E T U N 2 ( r , z ) 2 W C R N 1 ( r , z ) N 2 ( r , z )
N 1 ( r , z ) t = I P ( r , z ) h υ P σ a b s N 1 ( r , z ) + N 2 ( r , z ) τ 0 + W E T U N 2 ( r , z ) 2 + W C R N 1 ( r , z ) N 2 ( r , z )
d N 2 d t = N 2 ( 1 τ o + N t o t a l W C R )
W C R N t o t a l = 1 τ f 1 τ 0
d I P ( r , z ) d z = I P ( r , z ) ( σ a b s N 1 ( r , z ) )
A e f f = π l c 0 l c ω ( z ) 2 d z

Metrics