Abstract

Enhanced broadband 1.8 μm emission has been demonstrated in Bi/Tm3+ co-doped fluorogermanate glasses under a selectable pumping scheme. Detailed studies based on structure analysis, absorption spectra, excitation and emission spectra, and dynamic luminescence decay curves indicate that the enhanced broadband 1.8 μm luminescence originates from extremely efficient energy transfer process from Bi to Tm3+. Furthermore, the detailed energy transfer mechanism between Bi and Tm3+ is rationally analyzed. This novel pumping scheme and sensitizing mechanism of Bi/Tm3+ co-doping could provide the experimental basis for ~2.0 μm laser flexibly pumped by visible lasers, optical parametric oscillators, commercial 808 and 980 nm laser diodes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient 2.0 μm fluorescence in Ho3+-doped fluorogermanate glass sensitized by Cr3+

F. F. Zhang, J. Yuan, Y. Liu, W. C. Wang, D. C. Yu, M. Y. Peng, and Q. Y. Zhang
Opt. Mater. Express 4(7) 1404-1410 (2014)

Thermal and luminescent properties of 2  μm emission in thulium-sensitized holmium-doped silicate-germanate glass

Rong Chen, Ying Tian, Bingpeng Li, Xufeng Jing, Junjie Zhang, Shiqing Xu, Hellmut Eckert, and Xianghua Zhang
Photon. Res. 4(6) 214-221 (2016)

Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses

Mingying Peng, Na Zhang, Lothar Wondraczek, Jianrong Qiu, Zhongmin Yang, and Qinyuan Zhang
Opt. Express 19(21) 20799-20807 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Q. Wang, J. H. Geng, and S. B. Jiang, “2-μm fiber laser sources for sensing,” Opt. Eng. 53(6), 061609 (2014).
    [Crossref]
  2. L. Shah, C. Gaida, M. Gebhardt, A. Sincore, J. B. Bradford, N. Gerlich, I. Mingareev, and M. Richardson, “Thulium fiber laser and application development,” Proc. SPIE 9081, 9081H (2014).
  3. S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  4. M. Guney, B. Tunc, and M. Gulsoy, “Investigating the ablation efficiency of a 1940-nm thulium fibre laser for intraoral surgery,” Int. J. Oral Maxillofac. Surg. 43(8), 1015–1021 (2014).
    [Crossref] [PubMed]
  5. B. Richards, A. Jia, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbert, “Tellurite glass lasers operating close to 2.0 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
    [Crossref]
  6. D. A. Simpson, W. E. K. Gibbs, S. F. Collins, W. Blanc, B. Dussardier, G. Monnom, P. Peterka, and G. W. Baxter, “Visible and near infra-red up-conversion in Tm3+/Yb3+ co-doped silica fibers under 980 nm excitation,” Opt. Express 16(18), 13781–13799 (2008).
    [PubMed]
  7. B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, “Infrared emission and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre,” Opt. Express 15(11), 6546–6551 (2007).
    [Crossref] [PubMed]
  8. H. T. Sun, J. J. Zhou, and J. R. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 64, 1–72 (2014).
    [Crossref]
  9. Q. C. Sheng, X. L. Wang, and D. P. Chen, “Enhanced broadband 2.0 μm emission and energy transfer mechanism in Ho-Bi co-doped borophosphate glass,” J. Am. Ceram. Soc. 95(10), 3019–3021 (2012).
    [Crossref]
  10. B. B. Xu, J. H. Hao, Q. B. Guo, J. C. Wang, G. X. Bai, B. Fei, S. F. Zhou, and J. R. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
    [Crossref]
  11. J. Ruan, G. Dong, X. Liu, Q. Zhang, D. Chen, and J. Qiu, “Enhanced broadband near-infrared emission and energy transfer in Bi-Tm-codoped germanate glasses for broadband optical amplification,” Opt. Lett. 34(16), 2486–2488 (2009).
    [Crossref] [PubMed]
  12. Q. Q. Yan, C. Shen, W. Wang, S. F. Wang, G. R. Chen, and Z. Xing, “Near infrared emission and energy transfer of bismuth-thulium co-doped chalcohalide glasses,” J. Am. Ceram. Soc. 93(11), 3539–3541 (2010).
    [Crossref]
  13. B. Zhou, H. Lin, B. Chen, and E. Y. Pun, “Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses,” Opt. Express 19(7), 6514–6523 (2011).
    [Crossref] [PubMed]
  14. T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, and J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
    [Crossref]
  15. H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, and S. W. Harun, “Analytical model for broadband thulium-bismuth doped fiber amplifier,” IEEE Quantum Electron. 48(8), 1052–1058 (2012).
    [Crossref]
  16. A. Halder, N. Saidin, D. I. M. Zen, S. S. A. Damanhuri, S. W. Hurun, H. Ahmad, K. Dimyati, M. C. Paul, S. Das, and S. K. Bhadra, “Thulium-bismuth co-doped fiber lasers at 1901 nm by 802 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902106 (2014).
    [Crossref]
  17. M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth-doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B 25(8), 1380–1386 (2008).
    [Crossref]
  18. M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express 19(21), 20799–20807 (2011).
    [Crossref] [PubMed]
  19. R. Xu, L. Xu, L. Hu, and J. Zhang, “Structural origin and laser performance of thulium-doped germanate glasses,” J. Phys. Chem. A 115(49), 14163–14167 (2011).
    [Crossref] [PubMed]
  20. K. F. Li, Q. Zhang, G. X. Bai, S. J. Fan, J. J. Zhang, and L. L. Hu, “Energy transfer and 1.8 μm emission in Tm3+/Yb3+ codoped lanthanum tungsten tellurite glasses,” J. Alloys Compd. 504(2), 573–578 (2010).
    [Crossref]
  21. B. D. O. Richards, T. Teddy-Fernandez, G. Jose, D. Binks, and A. Jha, “Mid-IR (3–4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10(8), 085802 (2013).
    [Crossref]
  22. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
    [Crossref] [PubMed]
  23. Y. Fujimoto, “Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass,” J. Am. Ceram. Soc. 93(2), 581–589 (2010).
    [Crossref]
  24. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
    [Crossref] [PubMed]
  25. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
    [Crossref] [PubMed]
  26. Y. Li, Z. J. Ma, K. Sharafudeen, G. P. Dong, and J. R. Qiu, “Bidirectional energy transfer in Bi-Tm-codoped glasses,” Int. J. Appl. Glass Sci. 5(1), 26–30 (2014).
    [Crossref]
  27. H. Tang, H. P. Xia, Y. P. Zhang, H. Y. Hu, and H. C. Jiang, “Spectral properties of and energy transfer in Bi/Tm co-doped silicate glasses,” J. Opt. 14(12), 125402 (2012).
    [Crossref]
  28. R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+,Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
    [Crossref]
  29. W. J. Zhang, Q. J. Chen, J. P. Zhang, Q. Qian, Q. Y. Zhang, and L. Wondraczek, “Enhanced NIR emission from nanocrystalline LaF3:Ho3+ germanate glass ceramics for E-band optical amplification,” J. Alloys Compd. 541, 323–327 (2012).
    [Crossref]
  30. A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, and S. W. Harun, “Quantitative analysis of energy transfer processes in thulium-bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
    [Crossref]

2014 (7)

Q. Wang, J. H. Geng, and S. B. Jiang, “2-μm fiber laser sources for sensing,” Opt. Eng. 53(6), 061609 (2014).
[Crossref]

L. Shah, C. Gaida, M. Gebhardt, A. Sincore, J. B. Bradford, N. Gerlich, I. Mingareev, and M. Richardson, “Thulium fiber laser and application development,” Proc. SPIE 9081, 9081H (2014).

M. Guney, B. Tunc, and M. Gulsoy, “Investigating the ablation efficiency of a 1940-nm thulium fibre laser for intraoral surgery,” Int. J. Oral Maxillofac. Surg. 43(8), 1015–1021 (2014).
[Crossref] [PubMed]

H. T. Sun, J. J. Zhou, and J. R. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 64, 1–72 (2014).
[Crossref]

B. B. Xu, J. H. Hao, Q. B. Guo, J. C. Wang, G. X. Bai, B. Fei, S. F. Zhou, and J. R. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

A. Halder, N. Saidin, D. I. M. Zen, S. S. A. Damanhuri, S. W. Hurun, H. Ahmad, K. Dimyati, M. C. Paul, S. Das, and S. K. Bhadra, “Thulium-bismuth co-doped fiber lasers at 1901 nm by 802 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902106 (2014).
[Crossref]

Y. Li, Z. J. Ma, K. Sharafudeen, G. P. Dong, and J. R. Qiu, “Bidirectional energy transfer in Bi-Tm-codoped glasses,” Int. J. Appl. Glass Sci. 5(1), 26–30 (2014).
[Crossref]

2013 (1)

B. D. O. Richards, T. Teddy-Fernandez, G. Jose, D. Binks, and A. Jha, “Mid-IR (3–4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10(8), 085802 (2013).
[Crossref]

2012 (7)

H. Tang, H. P. Xia, Y. P. Zhang, H. Y. Hu, and H. C. Jiang, “Spectral properties of and energy transfer in Bi/Tm co-doped silicate glasses,” J. Opt. 14(12), 125402 (2012).
[Crossref]

W. J. Zhang, Q. J. Chen, J. P. Zhang, Q. Qian, Q. Y. Zhang, and L. Wondraczek, “Enhanced NIR emission from nanocrystalline LaF3:Ho3+ germanate glass ceramics for E-band optical amplification,” J. Alloys Compd. 541, 323–327 (2012).
[Crossref]

A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, and S. W. Harun, “Quantitative analysis of energy transfer processes in thulium-bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
[Crossref]

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, and J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[Crossref]

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, and S. W. Harun, “Analytical model for broadband thulium-bismuth doped fiber amplifier,” IEEE Quantum Electron. 48(8), 1052–1058 (2012).
[Crossref]

Q. C. Sheng, X. L. Wang, and D. P. Chen, “Enhanced broadband 2.0 μm emission and energy transfer mechanism in Ho-Bi co-doped borophosphate glass,” J. Am. Ceram. Soc. 95(10), 3019–3021 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

2011 (3)

2010 (4)

K. F. Li, Q. Zhang, G. X. Bai, S. J. Fan, J. J. Zhang, and L. L. Hu, “Energy transfer and 1.8 μm emission in Tm3+/Yb3+ codoped lanthanum tungsten tellurite glasses,” J. Alloys Compd. 504(2), 573–578 (2010).
[Crossref]

Q. Q. Yan, C. Shen, W. Wang, S. F. Wang, G. R. Chen, and Z. Xing, “Near infrared emission and energy transfer of bismuth-thulium co-doped chalcohalide glasses,” J. Am. Ceram. Soc. 93(11), 3539–3541 (2010).
[Crossref]

Y. Fujimoto, “Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass,” J. Am. Ceram. Soc. 93(2), 581–589 (2010).
[Crossref]

B. Richards, A. Jia, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbert, “Tellurite glass lasers operating close to 2.0 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

2009 (3)

2008 (2)

2007 (1)

2005 (1)

2004 (1)

Ahmad, H.

A. Halder, N. Saidin, D. I. M. Zen, S. S. A. Damanhuri, S. W. Hurun, H. Ahmad, K. Dimyati, M. C. Paul, S. Das, and S. K. Bhadra, “Thulium-bismuth co-doped fiber lasers at 1901 nm by 802 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902106 (2014).
[Crossref]

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, and S. W. Harun, “Analytical model for broadband thulium-bismuth doped fiber amplifier,” IEEE Quantum Electron. 48(8), 1052–1058 (2012).
[Crossref]

A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, and S. W. Harun, “Quantitative analysis of energy transfer processes in thulium-bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
[Crossref]

Akada, T.

Bai, G. X.

B. B. Xu, J. H. Hao, Q. B. Guo, J. C. Wang, G. X. Bai, B. Fei, S. F. Zhou, and J. R. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

K. F. Li, Q. Zhang, G. X. Bai, S. J. Fan, J. J. Zhang, and L. L. Hu, “Energy transfer and 1.8 μm emission in Tm3+/Yb3+ codoped lanthanum tungsten tellurite glasses,” J. Alloys Compd. 504(2), 573–578 (2010).
[Crossref]

Baxter, G. W.

Bhadra, S. K.

A. Halder, N. Saidin, D. I. M. Zen, S. S. A. Damanhuri, S. W. Hurun, H. Ahmad, K. Dimyati, M. C. Paul, S. Das, and S. K. Bhadra, “Thulium-bismuth co-doped fiber lasers at 1901 nm by 802 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902106 (2014).
[Crossref]

Binks, D.

B. D. O. Richards, T. Teddy-Fernandez, G. Jose, D. Binks, and A. Jha, “Mid-IR (3–4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10(8), 085802 (2013).
[Crossref]

B. Richards, A. Jia, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbert, “Tellurite glass lasers operating close to 2.0 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, “Infrared emission and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre,” Opt. Express 15(11), 6546–6551 (2007).
[Crossref] [PubMed]

Blanc, W.

Bradford, J. B.

L. Shah, C. Gaida, M. Gebhardt, A. Sincore, J. B. Bradford, N. Gerlich, I. Mingareev, and M. Richardson, “Thulium fiber laser and application development,” Proc. SPIE 9081, 9081H (2014).

Brown, C.

B. Richards, A. Jia, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbert, “Tellurite glass lasers operating close to 2.0 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Chen, B.

Chen, D.

Chen, D. P.

Q. C. Sheng, X. L. Wang, and D. P. Chen, “Enhanced broadband 2.0 μm emission and energy transfer mechanism in Ho-Bi co-doped borophosphate glass,” J. Am. Ceram. Soc. 95(10), 3019–3021 (2012).
[Crossref]

Chen, G. R.

Q. Q. Yan, C. Shen, W. Wang, S. F. Wang, G. R. Chen, and Z. Xing, “Near infrared emission and energy transfer of bismuth-thulium co-doped chalcohalide glasses,” J. Am. Ceram. Soc. 93(11), 3539–3541 (2010).
[Crossref]

Chen, Q. J.

W. J. Zhang, Q. J. Chen, J. P. Zhang, Q. Qian, Q. Y. Zhang, and L. Wondraczek, “Enhanced NIR emission from nanocrystalline LaF3:Ho3+ germanate glass ceramics for E-band optical amplification,” J. Alloys Compd. 541, 323–327 (2012).
[Crossref]

Collins, S. F.

Damanhuri, S. S. A.

A. Halder, N. Saidin, D. I. M. Zen, S. S. A. Damanhuri, S. W. Hurun, H. Ahmad, K. Dimyati, M. C. Paul, S. Das, and S. K. Bhadra, “Thulium-bismuth co-doped fiber lasers at 1901 nm by 802 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902106 (2014).
[Crossref]

Das, S.

A. Halder, N. Saidin, D. I. M. Zen, S. S. A. Damanhuri, S. W. Hurun, H. Ahmad, K. Dimyati, M. C. Paul, S. Das, and S. K. Bhadra, “Thulium-bismuth co-doped fiber lasers at 1901 nm by 802 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902106 (2014).
[Crossref]

Dimyati, K.

A. Halder, N. Saidin, D. I. M. Zen, S. S. A. Damanhuri, S. W. Hurun, H. Ahmad, K. Dimyati, M. C. Paul, S. Das, and S. K. Bhadra, “Thulium-bismuth co-doped fiber lasers at 1901 nm by 802 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902106 (2014).
[Crossref]

Dong, G.

Dong, G. P.

Y. Li, Z. J. Ma, K. Sharafudeen, G. P. Dong, and J. R. Qiu, “Bidirectional energy transfer in Bi-Tm-codoped glasses,” Int. J. Appl. Glass Sci. 5(1), 26–30 (2014).
[Crossref]

Dussardier, B.

Emami, S. D.

A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, and S. W. Harun, “Quantitative analysis of energy transfer processes in thulium-bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
[Crossref]

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, and S. W. Harun, “Analytical model for broadband thulium-bismuth doped fiber amplifier,” IEEE Quantum Electron. 48(8), 1052–1058 (2012).
[Crossref]

Fan, S. J.

K. F. Li, Q. Zhang, G. X. Bai, S. J. Fan, J. J. Zhang, and L. L. Hu, “Energy transfer and 1.8 μm emission in Tm3+/Yb3+ codoped lanthanum tungsten tellurite glasses,” J. Alloys Compd. 504(2), 573–578 (2010).
[Crossref]

Fatehi, H.

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, and S. W. Harun, “Analytical model for broadband thulium-bismuth doped fiber amplifier,” IEEE Quantum Electron. 48(8), 1052–1058 (2012).
[Crossref]

A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, and S. W. Harun, “Quantitative analysis of energy transfer processes in thulium-bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
[Crossref]

Fei, B.

B. B. Xu, J. H. Hao, Q. B. Guo, J. C. Wang, G. X. Bai, B. Fei, S. F. Zhou, and J. R. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

Fujimoto, Y.

Y. Fujimoto, “Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass,” J. Am. Ceram. Soc. 93(2), 581–589 (2010).
[Crossref]

Fusari, F.

B. Richards, A. Jia, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbert, “Tellurite glass lasers operating close to 2.0 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Gaida, C.

L. Shah, C. Gaida, M. Gebhardt, A. Sincore, J. B. Bradford, N. Gerlich, I. Mingareev, and M. Richardson, “Thulium fiber laser and application development,” Proc. SPIE 9081, 9081H (2014).

Gebhardt, M.

L. Shah, C. Gaida, M. Gebhardt, A. Sincore, J. B. Bradford, N. Gerlich, I. Mingareev, and M. Richardson, “Thulium fiber laser and application development,” Proc. SPIE 9081, 9081H (2014).

Geng, J. H.

Q. Wang, J. H. Geng, and S. B. Jiang, “2-μm fiber laser sources for sensing,” Opt. Eng. 53(6), 061609 (2014).
[Crossref]

Gerlich, N.

L. Shah, C. Gaida, M. Gebhardt, A. Sincore, J. B. Bradford, N. Gerlich, I. Mingareev, and M. Richardson, “Thulium fiber laser and application development,” Proc. SPIE 9081, 9081H (2014).

Gibbs, W. E. K.

Gulsoy, M.

M. Guney, B. Tunc, and M. Gulsoy, “Investigating the ablation efficiency of a 1940-nm thulium fibre laser for intraoral surgery,” Int. J. Oral Maxillofac. Surg. 43(8), 1015–1021 (2014).
[Crossref] [PubMed]

Guney, M.

M. Guney, B. Tunc, and M. Gulsoy, “Investigating the ablation efficiency of a 1940-nm thulium fibre laser for intraoral surgery,” Int. J. Oral Maxillofac. Surg. 43(8), 1015–1021 (2014).
[Crossref] [PubMed]

Guo, Q. B.

B. B. Xu, J. H. Hao, Q. B. Guo, J. C. Wang, G. X. Bai, B. Fei, S. F. Zhou, and J. R. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

Halder, A.

A. Halder, N. Saidin, D. I. M. Zen, S. S. A. Damanhuri, S. W. Hurun, H. Ahmad, K. Dimyati, M. C. Paul, S. Das, and S. K. Bhadra, “Thulium-bismuth co-doped fiber lasers at 1901 nm by 802 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902106 (2014).
[Crossref]

Hao, J. H.

B. B. Xu, J. H. Hao, Q. B. Guo, J. C. Wang, G. X. Bai, B. Fei, S. F. Zhou, and J. R. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

Harun, S. W.

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, and S. W. Harun, “Analytical model for broadband thulium-bismuth doped fiber amplifier,” IEEE Quantum Electron. 48(8), 1052–1058 (2012).
[Crossref]

A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, and S. W. Harun, “Quantitative analysis of energy transfer processes in thulium-bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
[Crossref]

Hau, T. M.

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, and J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[Crossref]

He, X. J.

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, and J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[Crossref]

Hewak, D. W.

Hu, H. Y.

H. Tang, H. P. Xia, Y. P. Zhang, H. Y. Hu, and H. C. Jiang, “Spectral properties of and energy transfer in Bi/Tm co-doped silicate glasses,” J. Opt. 14(12), 125402 (2012).
[Crossref]

Hu, L.

R. Xu, L. Xu, L. Hu, and J. Zhang, “Structural origin and laser performance of thulium-doped germanate glasses,” J. Phys. Chem. A 115(49), 14163–14167 (2011).
[Crossref] [PubMed]

Hu, L. L.

K. F. Li, Q. Zhang, G. X. Bai, S. J. Fan, J. J. Zhang, and L. L. Hu, “Energy transfer and 1.8 μm emission in Tm3+/Yb3+ codoped lanthanum tungsten tellurite glasses,” J. Alloys Compd. 504(2), 573–578 (2010).
[Crossref]

Hughes, M.

Hughes, M. A.

Hurun, S. W.

A. Halder, N. Saidin, D. I. M. Zen, S. S. A. Damanhuri, S. W. Hurun, H. Ahmad, K. Dimyati, M. C. Paul, S. Das, and S. K. Bhadra, “Thulium-bismuth co-doped fiber lasers at 1901 nm by 802 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902106 (2014).
[Crossref]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jha, A.

B. D. O. Richards, T. Teddy-Fernandez, G. Jose, D. Binks, and A. Jha, “Mid-IR (3–4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10(8), 085802 (2013).
[Crossref]

B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, “Infrared emission and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre,” Opt. Express 15(11), 6546–6551 (2007).
[Crossref] [PubMed]

Jia, A.

B. Richards, A. Jia, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbert, “Tellurite glass lasers operating close to 2.0 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Jiang, H. C.

H. Tang, H. P. Xia, Y. P. Zhang, H. Y. Hu, and H. C. Jiang, “Spectral properties of and energy transfer in Bi/Tm co-doped silicate glasses,” J. Opt. 14(12), 125402 (2012).
[Crossref]

Jiang, S. B.

Q. Wang, J. H. Geng, and S. B. Jiang, “2-μm fiber laser sources for sensing,” Opt. Eng. 53(6), 061609 (2014).
[Crossref]

Jiang, X.

Jose, G.

B. D. O. Richards, T. Teddy-Fernandez, G. Jose, D. Binks, and A. Jha, “Mid-IR (3–4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10(8), 085802 (2013).
[Crossref]

Lagatsky, A.

B. Richards, A. Jia, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbert, “Tellurite glass lasers operating close to 2.0 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Li, C. Y.

R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+,Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
[Crossref]

Li, K. F.

K. F. Li, Q. Zhang, G. X. Bai, S. J. Fan, J. J. Zhang, and L. L. Hu, “Energy transfer and 1.8 μm emission in Tm3+/Yb3+ codoped lanthanum tungsten tellurite glasses,” J. Alloys Compd. 504(2), 573–578 (2010).
[Crossref]

Li, Y.

Y. Li, Z. J. Ma, K. Sharafudeen, G. P. Dong, and J. R. Qiu, “Bidirectional energy transfer in Bi-Tm-codoped glasses,” Int. J. Appl. Glass Sci. 5(1), 26–30 (2014).
[Crossref]

Lin, H.

Liu, X.

Lousteau, J.

B. Richards, A. Jia, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbert, “Tellurite glass lasers operating close to 2.0 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Ma, Z. J.

Y. Li, Z. J. Ma, K. Sharafudeen, G. P. Dong, and J. R. Qiu, “Bidirectional energy transfer in Bi-Tm-codoped glasses,” Int. J. Appl. Glass Sci. 5(1), 26–30 (2014).
[Crossref]

Meng, X.

Mingareev, I.

L. Shah, C. Gaida, M. Gebhardt, A. Sincore, J. B. Bradford, N. Gerlich, I. Mingareev, and M. Richardson, “Thulium fiber laser and application development,” Proc. SPIE 9081, 9081H (2014).

Mirnia, S. E.

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, and S. W. Harun, “Analytical model for broadband thulium-bismuth doped fiber amplifier,” IEEE Quantum Electron. 48(8), 1052–1058 (2012).
[Crossref]

A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, and S. W. Harun, “Quantitative analysis of energy transfer processes in thulium-bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
[Crossref]

Monnom, G.

Ohishi, Y.

Pang, R.

R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+,Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
[Crossref]

Paul, M. C.

A. Halder, N. Saidin, D. I. M. Zen, S. S. A. Damanhuri, S. W. Hurun, H. Ahmad, K. Dimyati, M. C. Paul, S. Das, and S. K. Bhadra, “Thulium-bismuth co-doped fiber lasers at 1901 nm by 802 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902106 (2014).
[Crossref]

Peng, M.

Peterka, P.

Pun, E. Y.

Qian, Q.

W. J. Zhang, Q. J. Chen, J. P. Zhang, Q. Qian, Q. Y. Zhang, and L. Wondraczek, “Enhanced NIR emission from nanocrystalline LaF3:Ho3+ germanate glass ceramics for E-band optical amplification,” J. Alloys Compd. 541, 323–327 (2012).
[Crossref]

Qiu, J.

Qiu, J. B.

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, and J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[Crossref]

Qiu, J. R.

H. T. Sun, J. J. Zhou, and J. R. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 64, 1–72 (2014).
[Crossref]

B. B. Xu, J. H. Hao, Q. B. Guo, J. C. Wang, G. X. Bai, B. Fei, S. F. Zhou, and J. R. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

Y. Li, Z. J. Ma, K. Sharafudeen, G. P. Dong, and J. R. Qiu, “Bidirectional energy transfer in Bi-Tm-codoped glasses,” Int. J. Appl. Glass Sci. 5(1), 26–30 (2014).
[Crossref]

Richards, B.

B. Richards, A. Jia, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbert, “Tellurite glass lasers operating close to 2.0 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, “Infrared emission and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre,” Opt. Express 15(11), 6546–6551 (2007).
[Crossref] [PubMed]

Richards, B. D. O.

B. D. O. Richards, T. Teddy-Fernandez, G. Jose, D. Binks, and A. Jha, “Mid-IR (3–4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10(8), 085802 (2013).
[Crossref]

Richardson, M.

L. Shah, C. Gaida, M. Gebhardt, A. Sincore, J. B. Bradford, N. Gerlich, I. Mingareev, and M. Richardson, “Thulium fiber laser and application development,” Proc. SPIE 9081, 9081H (2014).

Ruan, J.

Saidin, N.

A. Halder, N. Saidin, D. I. M. Zen, S. S. A. Damanhuri, S. W. Hurun, H. Ahmad, K. Dimyati, M. C. Paul, S. Das, and S. K. Bhadra, “Thulium-bismuth co-doped fiber lasers at 1901 nm by 802 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902106 (2014).
[Crossref]

Shah, L.

L. Shah, C. Gaida, M. Gebhardt, A. Sincore, J. B. Bradford, N. Gerlich, I. Mingareev, and M. Richardson, “Thulium fiber laser and application development,” Proc. SPIE 9081, 9081H (2014).

Sharafudeen, K.

Y. Li, Z. J. Ma, K. Sharafudeen, G. P. Dong, and J. R. Qiu, “Bidirectional energy transfer in Bi-Tm-codoped glasses,” Int. J. Appl. Glass Sci. 5(1), 26–30 (2014).
[Crossref]

Shen, C.

Q. Q. Yan, C. Shen, W. Wang, S. F. Wang, G. R. Chen, and Z. Xing, “Near infrared emission and energy transfer of bismuth-thulium co-doped chalcohalide glasses,” J. Am. Ceram. Soc. 93(11), 3539–3541 (2010).
[Crossref]

Shen, S.

Sheng, Q. C.

Q. C. Sheng, X. L. Wang, and D. P. Chen, “Enhanced broadband 2.0 μm emission and energy transfer mechanism in Ho-Bi co-doped borophosphate glass,” J. Am. Ceram. Soc. 95(10), 3019–3021 (2012).
[Crossref]

Shi, L. L.

R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+,Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
[Crossref]

Sibbert, W.

B. Richards, A. Jia, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbert, “Tellurite glass lasers operating close to 2.0 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Simpson, D. A.

Sincore, A.

L. Shah, C. Gaida, M. Gebhardt, A. Sincore, J. B. Bradford, N. Gerlich, I. Mingareev, and M. Richardson, “Thulium fiber laser and application development,” Proc. SPIE 9081, 9081H (2014).

Song, Z. G.

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, and J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[Crossref]

Su, Q.

R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+,Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
[Crossref]

Sun, H. T.

H. T. Sun, J. J. Zhou, and J. R. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 64, 1–72 (2014).
[Crossref]

Suzuki, T.

Tang, H.

H. Tang, H. P. Xia, Y. P. Zhang, H. Y. Hu, and H. C. Jiang, “Spectral properties of and energy transfer in Bi/Tm co-doped silicate glasses,” J. Opt. 14(12), 125402 (2012).
[Crossref]

Teddy-Fernandez, T.

B. D. O. Richards, T. Teddy-Fernandez, G. Jose, D. Binks, and A. Jha, “Mid-IR (3–4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10(8), 085802 (2013).
[Crossref]

Tsang, Y.

B. Richards, A. Jia, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbert, “Tellurite glass lasers operating close to 2.0 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, “Infrared emission and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre,” Opt. Express 15(11), 6546–6551 (2007).
[Crossref] [PubMed]

Tunc, B.

M. Guney, B. Tunc, and M. Gulsoy, “Investigating the ablation efficiency of a 1940-nm thulium fibre laser for intraoral surgery,” Int. J. Oral Maxillofac. Surg. 43(8), 1015–1021 (2014).
[Crossref] [PubMed]

Wang, J. C.

B. B. Xu, J. H. Hao, Q. B. Guo, J. C. Wang, G. X. Bai, B. Fei, S. F. Zhou, and J. R. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

Wang, Q.

Q. Wang, J. H. Geng, and S. B. Jiang, “2-μm fiber laser sources for sensing,” Opt. Eng. 53(6), 061609 (2014).
[Crossref]

Wang, R. F.

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, and J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[Crossref]

Wang, S. F.

Q. Q. Yan, C. Shen, W. Wang, S. F. Wang, G. R. Chen, and Z. Xing, “Near infrared emission and energy transfer of bismuth-thulium co-doped chalcohalide glasses,” J. Am. Ceram. Soc. 93(11), 3539–3541 (2010).
[Crossref]

Wang, W.

Q. Q. Yan, C. Shen, W. Wang, S. F. Wang, G. R. Chen, and Z. Xing, “Near infrared emission and energy transfer of bismuth-thulium co-doped chalcohalide glasses,” J. Am. Ceram. Soc. 93(11), 3539–3541 (2010).
[Crossref]

Wang, X. L.

Q. C. Sheng, X. L. Wang, and D. P. Chen, “Enhanced broadband 2.0 μm emission and energy transfer mechanism in Ho-Bi co-doped borophosphate glass,” J. Am. Ceram. Soc. 95(10), 3019–3021 (2012).
[Crossref]

Wondraczek, L.

W. J. Zhang, Q. J. Chen, J. P. Zhang, Q. Qian, Q. Y. Zhang, and L. Wondraczek, “Enhanced NIR emission from nanocrystalline LaF3:Ho3+ germanate glass ceramics for E-band optical amplification,” J. Alloys Compd. 541, 323–327 (2012).
[Crossref]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express 19(21), 20799–20807 (2011).
[Crossref] [PubMed]

Xia, H. P.

H. Tang, H. P. Xia, Y. P. Zhang, H. Y. Hu, and H. C. Jiang, “Spectral properties of and energy transfer in Bi/Tm co-doped silicate glasses,” J. Opt. 14(12), 125402 (2012).
[Crossref]

Xing, Z.

Q. Q. Yan, C. Shen, W. Wang, S. F. Wang, G. R. Chen, and Z. Xing, “Near infrared emission and energy transfer of bismuth-thulium co-doped chalcohalide glasses,” J. Am. Ceram. Soc. 93(11), 3539–3541 (2010).
[Crossref]

Xu, B. B.

B. B. Xu, J. H. Hao, Q. B. Guo, J. C. Wang, G. X. Bai, B. Fei, S. F. Zhou, and J. R. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

Xu, L.

R. Xu, L. Xu, L. Hu, and J. Zhang, “Structural origin and laser performance of thulium-doped germanate glasses,” J. Phys. Chem. A 115(49), 14163–14167 (2011).
[Crossref] [PubMed]

Xu, R.

R. Xu, L. Xu, L. Hu, and J. Zhang, “Structural origin and laser performance of thulium-doped germanate glasses,” J. Phys. Chem. A 115(49), 14163–14167 (2011).
[Crossref] [PubMed]

Yan, Q. Q.

Q. Q. Yan, C. Shen, W. Wang, S. F. Wang, G. R. Chen, and Z. Xing, “Near infrared emission and energy transfer of bismuth-thulium co-doped chalcohalide glasses,” J. Am. Ceram. Soc. 93(11), 3539–3541 (2010).
[Crossref]

Yang, I.

Yang, Y.

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, and J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[Crossref]

Yang, Z.

Yang, Z. W.

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, and J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[Crossref]

Yu, X.

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, and J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[Crossref]

Zahedi, F. Z.

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, and S. W. Harun, “Analytical model for broadband thulium-bismuth doped fiber amplifier,” IEEE Quantum Electron. 48(8), 1052–1058 (2012).
[Crossref]

A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, and S. W. Harun, “Quantitative analysis of energy transfer processes in thulium-bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
[Crossref]

Zarei, A.

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, and S. W. Harun, “Analytical model for broadband thulium-bismuth doped fiber amplifier,” IEEE Quantum Electron. 48(8), 1052–1058 (2012).
[Crossref]

Zarifi, A.

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, and S. W. Harun, “Analytical model for broadband thulium-bismuth doped fiber amplifier,” IEEE Quantum Electron. 48(8), 1052–1058 (2012).
[Crossref]

A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, and S. W. Harun, “Quantitative analysis of energy transfer processes in thulium-bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
[Crossref]

Zen, D. I. M.

A. Halder, N. Saidin, D. I. M. Zen, S. S. A. Damanhuri, S. W. Hurun, H. Ahmad, K. Dimyati, M. C. Paul, S. Das, and S. K. Bhadra, “Thulium-bismuth co-doped fiber lasers at 1901 nm by 802 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902106 (2014).
[Crossref]

Zhang, J.

R. Xu, L. Xu, L. Hu, and J. Zhang, “Structural origin and laser performance of thulium-doped germanate glasses,” J. Phys. Chem. A 115(49), 14163–14167 (2011).
[Crossref] [PubMed]

Zhang, J. J.

K. F. Li, Q. Zhang, G. X. Bai, S. J. Fan, J. J. Zhang, and L. L. Hu, “Energy transfer and 1.8 μm emission in Tm3+/Yb3+ codoped lanthanum tungsten tellurite glasses,” J. Alloys Compd. 504(2), 573–578 (2010).
[Crossref]

Zhang, J. P.

W. J. Zhang, Q. J. Chen, J. P. Zhang, Q. Qian, Q. Y. Zhang, and L. Wondraczek, “Enhanced NIR emission from nanocrystalline LaF3:Ho3+ germanate glass ceramics for E-band optical amplification,” J. Alloys Compd. 541, 323–327 (2012).
[Crossref]

Zhang, N.

Zhang, Q.

Zhang, Q. Y.

W. J. Zhang, Q. J. Chen, J. P. Zhang, Q. Qian, Q. Y. Zhang, and L. Wondraczek, “Enhanced NIR emission from nanocrystalline LaF3:Ho3+ germanate glass ceramics for E-band optical amplification,” J. Alloys Compd. 541, 323–327 (2012).
[Crossref]

Zhang, W. J.

W. J. Zhang, Q. J. Chen, J. P. Zhang, Q. Qian, Q. Y. Zhang, and L. Wondraczek, “Enhanced NIR emission from nanocrystalline LaF3:Ho3+ germanate glass ceramics for E-band optical amplification,” J. Alloys Compd. 541, 323–327 (2012).
[Crossref]

Zhang, Y. P.

H. Tang, H. P. Xia, Y. P. Zhang, H. Y. Hu, and H. C. Jiang, “Spectral properties of and energy transfer in Bi/Tm co-doped silicate glasses,” J. Opt. 14(12), 125402 (2012).
[Crossref]

Zhou, B.

Zhou, D. C.

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, and J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[Crossref]

Zhou, J. J.

H. T. Sun, J. J. Zhou, and J. R. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 64, 1–72 (2014).
[Crossref]

Zhou, S. F.

B. B. Xu, J. H. Hao, Q. B. Guo, J. C. Wang, G. X. Bai, B. Fei, S. F. Zhou, and J. R. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

Zhu, C.

IEEE J. Sel. Top. Quantum Electron. (1)

A. Halder, N. Saidin, D. I. M. Zen, S. S. A. Damanhuri, S. W. Hurun, H. Ahmad, K. Dimyati, M. C. Paul, S. Das, and S. K. Bhadra, “Thulium-bismuth co-doped fiber lasers at 1901 nm by 802 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902106 (2014).
[Crossref]

IEEE Quantum Electron. (1)

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, and S. W. Harun, “Analytical model for broadband thulium-bismuth doped fiber amplifier,” IEEE Quantum Electron. 48(8), 1052–1058 (2012).
[Crossref]

Int. J. Appl. Glass Sci. (1)

Y. Li, Z. J. Ma, K. Sharafudeen, G. P. Dong, and J. R. Qiu, “Bidirectional energy transfer in Bi-Tm-codoped glasses,” Int. J. Appl. Glass Sci. 5(1), 26–30 (2014).
[Crossref]

Int. J. Oral Maxillofac. Surg. (1)

M. Guney, B. Tunc, and M. Gulsoy, “Investigating the ablation efficiency of a 1940-nm thulium fibre laser for intraoral surgery,” Int. J. Oral Maxillofac. Surg. 43(8), 1015–1021 (2014).
[Crossref] [PubMed]

J. Alloys Compd. (2)

W. J. Zhang, Q. J. Chen, J. P. Zhang, Q. Qian, Q. Y. Zhang, and L. Wondraczek, “Enhanced NIR emission from nanocrystalline LaF3:Ho3+ germanate glass ceramics for E-band optical amplification,” J. Alloys Compd. 541, 323–327 (2012).
[Crossref]

K. F. Li, Q. Zhang, G. X. Bai, S. J. Fan, J. J. Zhang, and L. L. Hu, “Energy transfer and 1.8 μm emission in Tm3+/Yb3+ codoped lanthanum tungsten tellurite glasses,” J. Alloys Compd. 504(2), 573–578 (2010).
[Crossref]

J. Am. Ceram. Soc. (3)

Y. Fujimoto, “Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass,” J. Am. Ceram. Soc. 93(2), 581–589 (2010).
[Crossref]

Q. C. Sheng, X. L. Wang, and D. P. Chen, “Enhanced broadband 2.0 μm emission and energy transfer mechanism in Ho-Bi co-doped borophosphate glass,” J. Am. Ceram. Soc. 95(10), 3019–3021 (2012).
[Crossref]

Q. Q. Yan, C. Shen, W. Wang, S. F. Wang, G. R. Chen, and Z. Xing, “Near infrared emission and energy transfer of bismuth-thulium co-doped chalcohalide glasses,” J. Am. Ceram. Soc. 93(11), 3539–3541 (2010).
[Crossref]

J. Lumin. (1)

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, and J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[Crossref]

J. Mater. Chem. C (1)

B. B. Xu, J. H. Hao, Q. B. Guo, J. C. Wang, G. X. Bai, B. Fei, S. F. Zhou, and J. R. Qiu, “Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films,” J. Mater. Chem. C 2(14), 2482–2487 (2014).
[Crossref]

J. Opt. (1)

H. Tang, H. P. Xia, Y. P. Zhang, H. Y. Hu, and H. C. Jiang, “Spectral properties of and energy transfer in Bi/Tm co-doped silicate glasses,” J. Opt. 14(12), 125402 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

R. Xu, L. Xu, L. Hu, and J. Zhang, “Structural origin and laser performance of thulium-doped germanate glasses,” J. Phys. Chem. A 115(49), 14163–14167 (2011).
[Crossref] [PubMed]

J. Phys. Chem. Solids (1)

R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+,Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
[Crossref]

Laser Phys. Lett. (2)

B. D. O. Richards, T. Teddy-Fernandez, G. Jose, D. Binks, and A. Jha, “Mid-IR (3–4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10(8), 085802 (2013).
[Crossref]

B. Richards, A. Jia, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbert, “Tellurite glass lasers operating close to 2.0 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Eng. (1)

Q. Wang, J. H. Geng, and S. B. Jiang, “2-μm fiber laser sources for sensing,” Opt. Eng. 53(6), 061609 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. (1)

A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, and S. W. Harun, “Quantitative analysis of energy transfer processes in thulium-bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
[Crossref]

Proc. SPIE (1)

L. Shah, C. Gaida, M. Gebhardt, A. Sincore, J. B. Bradford, N. Gerlich, I. Mingareev, and M. Richardson, “Thulium fiber laser and application development,” Proc. SPIE 9081, 9081H (2014).

Prog. Mater. Sci. (1)

H. T. Sun, J. J. Zhou, and J. R. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 64, 1–72 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Absorption spectra of Tm3+, Bi, and Bi/Tm3+ co-doped fluorogermanate glasses in the range of 300–2100 nm. Inset: the corresponding photographs of the samples; (b) Raman spectra of the Bi/Tm3+ co-doped fluorogermanate glass.
Fig. 2
Fig. 2 (a) NIR emission spectra of Bi for different excitation wavelengths (300–800 nm); (b) Emission wavelength and FWHM as a function of excitation wavelength; Deconvolution of the (c) broadest and (d) narrowest NIR spectra in Bi doped sample.
Fig. 3
Fig. 3 Emission spectra in the region of (a) 1000–1540 nm, (b) 1400–2200 nm upon excitation of 808 nm LD, and (c) 1280–1410 nm, (d) 1400–2200 nm under 980 nm LD excitation.
Fig. 4
Fig. 4 (a) Excitation (λem = 1160 nm, dash line) and emission (λex = 550 nm, solid line) spectra of Tm3+ and Bi singly doped glasses; (b) Luminescence decay curves with different Bi concentrations upon excitation by 550 nm of Bi doped and Bi/Tm3+ co-doped glasses.
Fig. 5
Fig. 5 Schematic energy level diagrams for Tm3+ and Bi+ ions and the proposed ET mechanism.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I= A 1 exp( t τ 1 )+ A 2 exp( t τ 2 )
τ ¯ = A 1 τ 1 2 + A 2 τ 2 2 A 1 τ 1 + A 2 τ 2
η=1 τ τ 0
    Bi + : 3 P 1 + Tm 3+ : 3 H 6 Bi + : 3 P 0 + Tm 3+ : 3 F 4                 ΔE~1704 cm 1
   Bi + : 3 P 1 + Tm 3+ : 3 H 6 Bi + : 3 P 0 + Tm 3+ : 3 H 5                ΔE~572 cm 1
Bi + : 3 P 1 + Tm 3+ : 3 F 4 Bi + : 3 P 0 + Tm 3+ : 3 H 4                 ΔE~796 cm 1
Tm 3+ : 3 H 4 + Bi + : 3 P 0 Tm 3+ : 3 H 6 + Bi + : 1 D 2                ΔE~0 cm 1
Tm 3+ : 3 H 4 + Tm 3+ : 3 H 6 Tm 3+ : 3 F 4 + Tm 3+ : 3 F 4           ΔE~1340 cm 1

Metrics