Abstract

The plasma etching process was originally developed to produce antireflective (AR) nanostructures on polymer substrates. A common vacuum coating system equipped with a plasma source was used. The technique is now applied to deposit and etch organic films on glass. The resulting organic nanostructured layers exhibit a low effective refractive index that can be tuned down to approximately 1.1. Broadband AR coatings were developed by combining inorganic materials and organic nanostructured layers in such a way that the effective index decreases in a stepwise manner or gradually from the index of the substrate to that of the ambient medium. They exhibit AR properties from 400 nm to 1200 nm at normal and oblique light incidence.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasma-etched organic layers for antireflection purposes

Ulrike Schulz, Christiane Präfke, Christoph Gödeker, Norbert Kaiser, and Andreas Tünnermann
Appl. Opt. 50(9) C31-C35 (2011)

Application of uracil for the preparation of low-index nanostructured layers

Ulrike Schulz, Heiko Knopf, Friedrich Rickelt, Tina Seifert, and Peter Munzert
Opt. Mater. Express 8(8) 2182-2189 (2018)

Formation of antireflective nanostructures on melamine and N,N´-di (1-naphthyl)-N,N´-diphenyl benzidine (NPB)

U. Schulz, C. Präfke, P. Munzert, C. Gödeker, and N. Kaiser
Opt. Mater. Express 1(1) 101-107 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Macleod, Thin-Film Optical Filters, 3rd edition (Institute of Physics Publishing, 2001).
  2. P. G. Verly, J. A. Dobrowolski, and R. R. Willey, “Fourier-transform method for the design of wideband antireflection coatings,” Appl. Opt. 31(19), 3836–3846 (1992).
    [Crossref] [PubMed]
  3. R. R. Willey, “Predicting achievable design performance of broadband antireflection coatings,” Appl. Opt. 32(28), 5447–5451 (1993).
    [Crossref] [PubMed]
  4. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47(13), C124–C130 (2008).
    [Crossref] [PubMed]
  5. U. Schulz, C. Präfke, C. Gödeker, N. Kaiser, and A. Tünnermann, “Plasma-etched organic layers for antireflection purposes,” Appl. Opt. 50(9), C31–C35 (2011).
    [Crossref] [PubMed]
  6. M. Minot, “The angular reflectance of single-layer gradient refractive-index films,” J. Opt. Soc. Am. 67(8), 1046–1050 (1977).
    [Crossref]
  7. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983).
    [Crossref] [PubMed]
  8. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: Numerical investigation,” Appl. Opt. 41(16), 3075–3083 (2002).
    [Crossref] [PubMed]
  9. S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010).
    [Crossref]
  10. R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photon. Rev. 5, 1–19 (2011).
  11. K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
    [Crossref]
  12. A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
    [Crossref]
  13. I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating Anti-Reflective Nanostructures on Polymers by Initial Layer Deposition before Plasma Etching,” Plasma Process. Polym. 6(S1), 716–721 (2009).
    [Crossref]
  14. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  15. W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir 26(7), 5110–5114 (2010).
    [Crossref] [PubMed]
  16. U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser, “A double nanostructure for wide-angle antireflection on optical polymers,” Opt. Mater. Express 4(3), 568–574 (2014).
    [Crossref]
  17. S. Pongratz and A. Zöller, “Plasma ion assisted deposition: a promising technique for optical coatings,” J. Vac. Sci. Technol. A 10(4), 1897–1904 (1992).
    [Crossref]
  18. S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47(13), C49–C54 (2008).
    [Crossref] [PubMed]
  19. Optilayer software, http://www.optilayer.com
  20. U. Schulz, C. Präfke, P. Munzert, C. Gödeker, and N. Kaiser, “Formation of antireflective nanostructures on melamine and N,N´-di (1-naphthyl)-N,N´-diphenyl benzidine (NPB),” Opt. Mater. Express 1(1), 101–107 (2011).
    [Crossref]
  21. U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser, “Breakthroughs in Photonics 2013: Organic Nanostructures for Antireflection,” IEEE Photonics Journal 6(2), 700505 (2014).
    [Crossref]
  22. H. Yanagi, T. Morikawa, S. Hotta, and K. Yase, “Epitaxial Growth of Thiophene/p-Phenylene Co-oligomers for Highly Polarized Light-Emitting Crystals,” Adv. Mater. 13(5), 313–317 (2001).
    [Crossref]

2014 (2)

U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser, “Breakthroughs in Photonics 2013: Organic Nanostructures for Antireflection,” IEEE Photonics Journal 6(2), 700505 (2014).
[Crossref]

U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser, “A double nanostructure for wide-angle antireflection on optical polymers,” Opt. Mater. Express 4(3), 568–574 (2014).
[Crossref]

2013 (1)

K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
[Crossref]

2011 (3)

2010 (2)

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010).
[Crossref]

W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir 26(7), 5110–5114 (2010).
[Crossref] [PubMed]

2009 (1)

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating Anti-Reflective Nanostructures on Polymers by Initial Layer Deposition before Plasma Etching,” Plasma Process. Polym. 6(S1), 716–721 (2009).
[Crossref]

2008 (2)

2007 (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

2005 (1)

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
[Crossref]

2002 (1)

2001 (1)

H. Yanagi, T. Morikawa, S. Hotta, and K. Yase, “Epitaxial Growth of Thiophene/p-Phenylene Co-oligomers for Highly Polarized Light-Emitting Crystals,” Adv. Mater. 13(5), 313–317 (2001).
[Crossref]

1993 (1)

1992 (2)

P. G. Verly, J. A. Dobrowolski, and R. R. Willey, “Fourier-transform method for the design of wideband antireflection coatings,” Appl. Opt. 31(19), 3836–3846 (1992).
[Crossref] [PubMed]

S. Pongratz and A. Zöller, “Plasma ion assisted deposition: a promising technique for optical coatings,” J. Vac. Sci. Technol. A 10(4), 1897–1904 (1992).
[Crossref]

1983 (1)

1977 (1)

Acree, M.

Amotchkina, T. V.

Askar, K.

K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
[Crossref]

Brunner, R.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photon. Rev. 5, 1–19 (2011).

Chattopadhyay, S.

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010).
[Crossref]

Chen, K.-H.

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010).
[Crossref]

Chen, L.-C.

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010).
[Crossref]

Chen, M.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Choia, B.

K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
[Crossref]

Dobrowolski, J. A.

Fanga, Y.

K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
[Crossref]

Ganguly, A.

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010).
[Crossref]

Gödeker, C.

Gozubenlia, N.

K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
[Crossref]

Hotta, S.

H. Yanagi, T. Morikawa, S. Hotta, and K. Yase, “Epitaxial Growth of Thiophene/p-Phenylene Co-oligomers for Highly Polarized Light-Emitting Crystals,” Adv. Mater. 13(5), 313–317 (2001).
[Crossref]

Huang, Y.-F.

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010).
[Crossref]

Jen, Y.-J.

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010).
[Crossref]

Jiang, B.

K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
[Crossref]

Jiang, P.

K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
[Crossref]

Joo, W.

W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir 26(7), 5110–5114 (2010).
[Crossref] [PubMed]

Kaiser, N.

U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser, “Breakthroughs in Photonics 2013: Organic Nanostructures for Antireflection,” IEEE Photonics Journal 6(2), 700505 (2014).
[Crossref]

U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser, “A double nanostructure for wide-angle antireflection on optical polymers,” Opt. Mater. Express 4(3), 568–574 (2014).
[Crossref]

U. Schulz, C. Präfke, P. Munzert, C. Gödeker, and N. Kaiser, “Formation of antireflective nanostructures on melamine and N,N´-di (1-naphthyl)-N,N´-diphenyl benzidine (NPB),” Opt. Mater. Express 1(1), 101–107 (2011).
[Crossref]

U. Schulz, C. Präfke, C. Gödeker, N. Kaiser, and A. Tünnermann, “Plasma-etched organic layers for antireflection purposes,” Appl. Opt. 50(9), C31–C35 (2011).
[Crossref] [PubMed]

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating Anti-Reflective Nanostructures on Polymers by Initial Layer Deposition before Plasma Etching,” Plasma Process. Polym. 6(S1), 716–721 (2009).
[Crossref]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47(13), C49–C54 (2008).
[Crossref] [PubMed]

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
[Crossref]

Kaless, A.

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
[Crossref]

Kim, H. J.

W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir 26(7), 5110–5114 (2010).
[Crossref] [PubMed]

Kim, J. K.

W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir 26(7), 5110–5114 (2010).
[Crossref] [PubMed]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Lin, S.-Y.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Ma, P.

Minot, M.

Morhard, C.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photon. Rev. 5, 1–19 (2011).

Morikawa, T.

H. Yanagi, T. Morikawa, S. Hotta, and K. Yase, “Epitaxial Growth of Thiophene/p-Phenylene Co-oligomers for Highly Polarized Light-Emitting Crystals,” Adv. Mater. 13(5), 313–317 (2001).
[Crossref]

Munzert, P.

U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser, “Breakthroughs in Photonics 2013: Organic Nanostructures for Antireflection,” IEEE Photonics Journal 6(2), 700505 (2014).
[Crossref]

U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser, “A double nanostructure for wide-angle antireflection on optical polymers,” Opt. Mater. Express 4(3), 568–574 (2014).
[Crossref]

U. Schulz, C. Präfke, P. Munzert, C. Gödeker, and N. Kaiser, “Formation of antireflective nanostructures on melamine and N,N´-di (1-naphthyl)-N,N´-diphenyl benzidine (NPB),” Opt. Mater. Express 1(1), 101–107 (2011).
[Crossref]

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating Anti-Reflective Nanostructures on Polymers by Initial Layer Deposition before Plasma Etching,” Plasma Process. Polym. 6(S1), 716–721 (2009).
[Crossref]

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
[Crossref]

Pacholski, C.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photon. Rev. 5, 1–19 (2011).

Phillips, B. M.

K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
[Crossref]

Poitras, D.

Pongratz, S.

S. Pongratz and A. Zöller, “Plasma ion assisted deposition: a promising technique for optical coatings,” J. Vac. Sci. Technol. A 10(4), 1897–1904 (1992).
[Crossref]

Präfke, C.

Rickelt, F.

U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser, “A double nanostructure for wide-angle antireflection on optical polymers,” Opt. Mater. Express 4(3), 568–574 (2014).
[Crossref]

U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser, “Breakthroughs in Photonics 2013: Organic Nanostructures for Antireflection,” IEEE Photonics Journal 6(2), 700505 (2014).
[Crossref]

Sandfuchs, O.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photon. Rev. 5, 1–19 (2011).

Schubert, E. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Schubert, M. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Schulz, U.

U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser, “Breakthroughs in Photonics 2013: Organic Nanostructures for Antireflection,” IEEE Photonics Journal 6(2), 700505 (2014).
[Crossref]

U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser, “A double nanostructure for wide-angle antireflection on optical polymers,” Opt. Mater. Express 4(3), 568–574 (2014).
[Crossref]

U. Schulz, C. Präfke, P. Munzert, C. Gödeker, and N. Kaiser, “Formation of antireflective nanostructures on melamine and N,N´-di (1-naphthyl)-N,N´-diphenyl benzidine (NPB),” Opt. Mater. Express 1(1), 101–107 (2011).
[Crossref]

U. Schulz, C. Präfke, C. Gödeker, N. Kaiser, and A. Tünnermann, “Plasma-etched organic layers for antireflection purposes,” Appl. Opt. 50(9), C31–C35 (2011).
[Crossref] [PubMed]

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating Anti-Reflective Nanostructures on Polymers by Initial Layer Deposition before Plasma Etching,” Plasma Process. Polym. 6(S1), 716–721 (2009).
[Crossref]

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
[Crossref]

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Southwell, W. H.

Spatz, J.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photon. Rev. 5, 1–19 (2011).

Stenzel, O.

Tikhonravov, A. V.

Trubetskov, M. K.

Tünnermann, A.

U. Schulz, C. Präfke, C. Gödeker, N. Kaiser, and A. Tünnermann, “Plasma-etched organic layers for antireflection purposes,” Appl. Opt. 50(9), C31–C35 (2011).
[Crossref] [PubMed]

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating Anti-Reflective Nanostructures on Polymers by Initial Layer Deposition before Plasma Etching,” Plasma Process. Polym. 6(S1), 716–721 (2009).
[Crossref]

Vakil, H.

Verly, P. G.

Wendling, I.

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating Anti-Reflective Nanostructures on Polymers by Initial Layer Deposition before Plasma Etching,” Plasma Process. Polym. 6(S1), 716–721 (2009).
[Crossref]

Wilbrandt, S.

Willey, R. R.

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Yanagi, H.

H. Yanagi, T. Morikawa, S. Hotta, and K. Yase, “Epitaxial Growth of Thiophene/p-Phenylene Co-oligomers for Highly Polarized Light-Emitting Crystals,” Adv. Mater. 13(5), 313–317 (2001).
[Crossref]

Yase, K.

H. Yanagi, T. Morikawa, S. Hotta, and K. Yase, “Epitaxial Growth of Thiophene/p-Phenylene Co-oligomers for Highly Polarized Light-Emitting Crystals,” Adv. Mater. 13(5), 313–317 (2001).
[Crossref]

Zöller, A.

S. Pongratz and A. Zöller, “Plasma ion assisted deposition: a promising technique for optical coatings,” J. Vac. Sci. Technol. A 10(4), 1897–1904 (1992).
[Crossref]

Adv. Mater. (1)

H. Yanagi, T. Morikawa, S. Hotta, and K. Yase, “Epitaxial Growth of Thiophene/p-Phenylene Co-oligomers for Highly Polarized Light-Emitting Crystals,” Adv. Mater. 13(5), 313–317 (2001).
[Crossref]

Appl. Opt. (6)

Colloids Surf. A Physicochem. Eng. Asp. (1)

K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
[Crossref]

IEEE Photonics Journal (1)

U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser, “Breakthroughs in Photonics 2013: Organic Nanostructures for Antireflection,” IEEE Photonics Journal 6(2), 700505 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. A (1)

S. Pongratz and A. Zöller, “Plasma ion assisted deposition: a promising technique for optical coatings,” J. Vac. Sci. Technol. A 10(4), 1897–1904 (1992).
[Crossref]

Langmuir (1)

W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir 26(7), 5110–5114 (2010).
[Crossref] [PubMed]

Laser Photon. Rev. (1)

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photon. Rev. 5, 1–19 (2011).

Mater. Sci. Eng. Rep. (1)

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010).
[Crossref]

Nat. Photonics (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Opt. Lett. (1)

Opt. Mater. Express (2)

Plasma Process. Polym. (1)

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating Anti-Reflective Nanostructures on Polymers by Initial Layer Deposition before Plasma Etching,” Plasma Process. Polym. 6(S1), 716–721 (2009).
[Crossref]

Surf. Coat. Tech. (1)

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
[Crossref]

Other (2)

A. Macleod, Thin-Film Optical Filters, 3rd edition (Institute of Physics Publishing, 2001).

Optilayer software, http://www.optilayer.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schemes for advanced broadband AR coatings on glass: (a) Combination of two organic nanostructured layers; (b) Inorganic step-down design combined with an organic nanostructure; (c) Organic nanostructure covered with inorganic material
Fig. 2
Fig. 2 Reflection spectra (without backside reflection) of an etched melamine layer on BK7 glass measured at 0°, 45° and 60° (a); the simulated refractive index profile (b); and an SEM image of the structured melamine at a viewing angle of 45° (c).
Fig. 3
Fig. 3 Reflectance spectra (without backside reflection) of the SiO2/MgF2/melamine coating on B270 glass (n = 1.53) (a), the simulated refractive index profile (b), and an SEM micrograph at a viewing angle of 45° (c).
Fig. 4
Fig. 4 SEM images of a BP2T layer (viewing angle 45°): the naturally grown structure of an evaporated film (a) and the surface after 300 s (b) and after 350 s (c) of plasma etching.
Fig. 5
Fig. 5 Reflectance spectra of the BP2T/SiO2 coating on B270 glass for 0° and 45° light incidence angles (a), the simulated refractive index profile (b), and an SEM micrograph at a viewing angle of 45° (c).
Fig. 6
Fig. 6 Transmission spectra of the SiO2/MgF2/melamine coating (a) and the BP2T/SiO2 coating (b) on B270 glass (both sides coated).

Tables (1)

Tables Icon

Table 1 Optical properties and results of durability tests.

Metrics