Abstract

The thermal expansion coefficient α and the thermo-optic coefficient dn/dT were measured using a He-Ne laser (λ = 632.8 nm) between 300 K and 500 K for ceramic and single-crystal terbium gallium garnet (TGG). For ceramic TGG, the experimental values of α and dn/dT at 300 K were 7.0×10−6 K−1 and 17.5×10−6 K−1, respectively. We proposed fitting relations regarding the temperature dependence of α and dn/dT. Both α and dn/dT increased with temperature, and the temperature dependencies for ceramic TGG were in agreement with those of single-crystal TGG with <111> orientation. We then evaluated thermally induced depolarization for an average laser power of 1 kW. The depolarization was evaluated to be larger than 0.01 at room temperature. Moreover, we simulated the thermal lens focal length and found that the temperature dependence is very slight compared to its dependence on the beam radius.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG

Ryo Yasuhara, Hoshiteru Nozawa, Takagimi Yanagitani, Shinji Motokoshi, and Junji Kawanaka
Opt. Express 21(25) 31443-31452 (2013)

Thermo-optic properties of ceramic YAG at high temperatures

Hiroaki Furuse, Ryo Yasuhara, and Keijiro Hiraga
Opt. Mater. Express 4(9) 1794-1799 (2014)

Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator

Hidetsugu Yoshida, Koji Tsubakimoto, Yasushi Fujimoto, Katsuhiro Mikami, Hisanori Fujita, Noriaki Miyanaga, Hoshiteru Nozawa, Hideki Yagi, Takagimi Yanagitani, Yutaka Nagata, and Hiroo Kinoshita
Opt. Express 19(16) 15181-15187 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett. 37(12), 2175–2177 (2012).
    [Crossref] [PubMed]
  2. T. Gonçalvès-Novo, D. Albach, B. Vincent, M. Arzakantsyan, and J.-C. Chanteloup, “14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain,” Opt. Express 21(1), 855–866 (2013).
    [Crossref] [PubMed]
  3. S. Tokita, M. Divoky, H. Furuse, K. Matsumoto, Y. Nakamura, M. Yoshida, T. Kawashima, and J. Kawanaka, “Generation of 500-mJ nanosecond pulses from a diode-pumped Yb:YAG TRAM laser amplifier,” Opt. Mater. Express 4(10), 2122–2126 (2014).
    [Crossref]
  4. H. Furuse, J. Kawanaka, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, K. Takeshita, S. Ishii, and Y. Izawa, “Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics,” Opt. Express 19(3), 2448–2455 (2011).
    [Crossref] [PubMed]
  5. M. Y. A. Raja, D. Allen, and W. Sisk, “Room-temperature inverse Faraday effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995).
    [Crossref]
  6. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
    [Crossref] [PubMed]
  7. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Measurement of magneto-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35(12), 806–810 (2007).
    [Crossref]
  8. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
    [Crossref] [PubMed]
  9. M. A. Kagan and E. A. Khazanov, “Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics,” Appl. Opt. 43(32), 6030–6039 (2004).
    [Crossref] [PubMed]
  10. H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, and H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express 19(16), 15181–15187 (2011).
    [Crossref] [PubMed]
  11. R. Yasuhara and H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013).
    [Crossref] [PubMed]
  12. I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
    [Crossref] [PubMed]
  13. A. Starobor, D. Zheleznov, O. Palashov, C. Chen, S. Zhou, and R. Yasuhara, “Study of the properties and prospects of Ce:TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average power,” Opt. Mater. Express 4(10), 2127–2132 (2014).
    [Crossref]
  14. R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
    [Crossref] [PubMed]
  15. R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
    [Crossref]
  16. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [Crossref]
  17. J. D. Foster and L. M. Osterink, “Index of Refraction and Expansion Thermal Coefficients of Nd:YAG,” Appl. Opt. 7(12), 2428–2429 (1968).
    [Crossref] [PubMed]
  18. R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
    [Crossref] [PubMed]
  19. H. Furuse, R. Yasuhara, and K. Hiraga, “Thermo-optic properties of ceramic YAG at high temperatures,” Opt. Mater. Express 4(9), 1794–1799 (2014).
    [Crossref]
  20. Y. Sato and T. Taira, “Highly accurate interferometric evaluation of thermal expansion and dn/dT of optical materials,” Opt. Mater. Express 4(5), 876–888 (2014).
    [Crossref]
  21. I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, and K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234–236 (2002).
    [Crossref] [PubMed]
  22. I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
    [Crossref]
  23. I. Mukhin, O. Palashov, and E. Khazanov, “Reduction of thermally induced depolarization of laser radiation in [110] oriented cubic crystals,” Opt. Express 17(7), 5496–5501 (2009).
    [Crossref] [PubMed]
  24. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of Self-Induced Depolarization of Laser Radiation in Terbium Gallium Garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
    [Crossref]
  25. A. A. Soloviev and E. A. Khazanov, “Optical isolation in the LIGO gravitational wave laser detector in transient states,” Quantum Electron. 42(4), 367–371 (2012).
    [Crossref]
  26. A. V. Starobor, R. Yasuhara, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator based on TGG ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
    [Crossref]
  27. I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Study of the thermo-optical constants of Yb doped Y2O3, Lu2O3 and Sc2O3 ceramic materials,” Opt. Express 21(18), 21254–21263 (2013).
    [Crossref] [PubMed]
  28. I. Snetkov, I. Mukhin, O. Palashov, and E. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011).
    [Crossref] [PubMed]

2014 (8)

S. Tokita, M. Divoky, H. Furuse, K. Matsumoto, Y. Nakamura, M. Yoshida, T. Kawashima, and J. Kawanaka, “Generation of 500-mJ nanosecond pulses from a diode-pumped Yb:YAG TRAM laser amplifier,” Opt. Mater. Express 4(10), 2122–2126 (2014).
[Crossref]

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
[Crossref] [PubMed]

A. Starobor, D. Zheleznov, O. Palashov, C. Chen, S. Zhou, and R. Yasuhara, “Study of the properties and prospects of Ce:TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average power,” Opt. Mater. Express 4(10), 2127–2132 (2014).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

H. Furuse, R. Yasuhara, and K. Hiraga, “Thermo-optic properties of ceramic YAG at high temperatures,” Opt. Mater. Express 4(9), 1794–1799 (2014).
[Crossref]

Y. Sato and T. Taira, “Highly accurate interferometric evaluation of thermal expansion and dn/dT of optical materials,” Opt. Mater. Express 4(5), 876–888 (2014).
[Crossref]

A. V. Starobor, R. Yasuhara, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator based on TGG ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

2013 (4)

2012 (2)

2011 (3)

2010 (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

2009 (1)

2007 (2)

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[Crossref] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Measurement of magneto-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35(12), 806–810 (2007).
[Crossref]

2004 (1)

2002 (3)

1999 (1)

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of Self-Induced Depolarization of Laser Radiation in Terbium Gallium Garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

1995 (1)

M. Y. A. Raja, D. Allen, and W. Sisk, “Room-temperature inverse Faraday effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995).
[Crossref]

1968 (1)

Albach, D.

Allen, D.

M. Y. A. Raja, D. Allen, and W. Sisk, “Room-temperature inverse Faraday effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995).
[Crossref]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Andreev, N.

Arzakantsyan, M.

Banerjee, S.

Chanteloup, J.-C.

Chen, C.

Collier, J. L.

Divoky, M.

Ertel, K.

Foster, J. D.

Fujimoto, Y.

Fujita, H.

Fujita, M.

Furuse, H.

Gonçalvès-Novo, T.

Hernandez-Gomez, C.

Hiraga, K.

Ikesue, A.

Imasaki, K.

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Ishii, S.

Izawa, Y.

Kagan, M. A.

Kaminskii, A. A.

Kan, H.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[Crossref] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Measurement of magneto-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35(12), 806–810 (2007).
[Crossref]

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kawanaka, J.

Kawashima, T.

Khazanov, E.

Khazanov, E. A.

A. V. Starobor, R. Yasuhara, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator based on TGG ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Study of the thermo-optical constants of Yb doped Y2O3, Lu2O3 and Sc2O3 ceramic materials,” Opt. Express 21(18), 21254–21263 (2013).
[Crossref] [PubMed]

A. A. Soloviev and E. A. Khazanov, “Optical isolation in the LIGO gravitational wave laser detector in transient states,” Quantum Electron. 42(4), 367–371 (2012).
[Crossref]

M. A. Kagan and E. A. Khazanov, “Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics,” Appl. Opt. 43(32), 6030–6039 (2004).
[Crossref] [PubMed]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of Self-Induced Depolarization of Laser Radiation in Terbium Gallium Garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kinoshita, H.

Kulagin, O. V.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of Self-Induced Depolarization of Laser Radiation in Terbium Gallium Garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

Kurimura, S.

Loeser, M.

Lupei, V.

Mason, P. D.

Matsumoto, K.

Mehl, O.

Mikami, K.

Miyanaga, N.

Motokoshi, S.

Mukhin, I.

Nagata, Y.

Nakamura, Y.

Nakatsuka, M.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[Crossref] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Measurement of magneto-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35(12), 806–810 (2007).
[Crossref]

Nozawa, H.

Osterink, L. M.

Palashov, O.

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

A. Starobor, D. Zheleznov, O. Palashov, C. Chen, S. Zhou, and R. Yasuhara, “Study of the properties and prospects of Ce:TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average power,” Opt. Mater. Express 4(10), 2127–2132 (2014).
[Crossref]

I. Snetkov, I. Mukhin, O. Palashov, and E. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011).
[Crossref] [PubMed]

I. Mukhin, O. Palashov, and E. Khazanov, “Reduction of thermally induced depolarization of laser radiation in [110] oriented cubic crystals,” Opt. Express 17(7), 5496–5501 (2009).
[Crossref] [PubMed]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[Crossref] [PubMed]

Palashov, O. V.

Phillips, P. J.

Poteomkin, A.

Raja, M. Y. A.

M. Y. A. Raja, D. Allen, and W. Sisk, “Room-temperature inverse Faraday effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995).
[Crossref]

Reitze, D. H.

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[Crossref] [PubMed]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of Self-Induced Depolarization of Laser Radiation in Terbium Gallium Garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

Saiki, T.

Sato, Y.

Sergeev, A.

Shirakawa, A.

Shoji, I.

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, and K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234–236 (2002).
[Crossref] [PubMed]

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[Crossref]

Siebold, M.

Silin, D. E.

Sisk, W.

M. Y. A. Raja, D. Allen, and W. Sisk, “Room-temperature inverse Faraday effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995).
[Crossref]

Snetkov, I.

Snetkov, I. L.

Soloviev, A. A.

A. A. Soloviev and E. A. Khazanov, “Optical isolation in the LIGO gravitational wave laser detector in transient states,” Quantum Electron. 42(4), 367–371 (2012).
[Crossref]

Starobor, A.

Starobor, A. V.

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
[Crossref] [PubMed]

A. V. Starobor, R. Yasuhara, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator based on TGG ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

Taira, T.

Y. Sato and T. Taira, “Highly accurate interferometric evaluation of thermal expansion and dn/dT of optical materials,” Opt. Mater. Express 4(5), 876–888 (2014).
[Crossref]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[Crossref]

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, and K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234–236 (2002).
[Crossref] [PubMed]

Takeshita, K.

Tanner, D. B.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of Self-Induced Depolarization of Laser Radiation in Terbium Gallium Garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

Tokita, S.

Tsubakimoto, K.

Tsunekane, M.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Ueda, K.

Vincent, B.

Yagi, H.

Yanagitani, T.

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Study of the thermo-optical constants of Yb doped Y2O3, Lu2O3 and Sc2O3 ceramic materials,” Opt. Express 21(18), 21254–21263 (2013).
[Crossref] [PubMed]

R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
[Crossref] [PubMed]

H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, and H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express 19(16), 15181–15187 (2011).
[Crossref] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[Crossref] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Measurement of magneto-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35(12), 806–810 (2007).
[Crossref]

Yasuhara, R.

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

A. V. Starobor, R. Yasuhara, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator based on TGG ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

H. Furuse, R. Yasuhara, and K. Hiraga, “Thermo-optic properties of ceramic YAG at high temperatures,” Opt. Mater. Express 4(9), 1794–1799 (2014).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
[Crossref] [PubMed]

A. Starobor, D. Zheleznov, O. Palashov, C. Chen, S. Zhou, and R. Yasuhara, “Study of the properties and prospects of Ce:TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average power,” Opt. Mater. Express 4(10), 2127–2132 (2014).
[Crossref]

R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
[Crossref] [PubMed]

R. Yasuhara and H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013).
[Crossref] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Measurement of magneto-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35(12), 806–810 (2007).
[Crossref]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[Crossref] [PubMed]

Yoneda, H.

Yoshida, H.

Yoshida, K.

Yoshida, M.

Yoshida, S.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of Self-Induced Depolarization of Laser Radiation in Terbium Gallium Garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

Zheleznov, D.

Zheleznov, D. S.

A. V. Starobor, R. Yasuhara, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator based on TGG ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

Zhou, S.

Appl. Opt. (3)

Appl. Phys. Lett. (3)

M. Y. A. Raja, D. Allen, and W. Sisk, “Room-temperature inverse Faraday effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[Crossref]

IEEE J. Quantum Electron. (3)

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of Self-Induced Depolarization of Laser Radiation in Terbium Gallium Garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

A. V. Starobor, R. Yasuhara, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator based on TGG ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

Opt. Express (9)

I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Study of the thermo-optical constants of Yb doped Y2O3, Lu2O3 and Sc2O3 ceramic materials,” Opt. Express 21(18), 21254–21263 (2013).
[Crossref] [PubMed]

I. Snetkov, I. Mukhin, O. Palashov, and E. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011).
[Crossref] [PubMed]

I. Mukhin, O. Palashov, and E. Khazanov, “Reduction of thermally induced depolarization of laser radiation in [110] oriented cubic crystals,” Opt. Express 17(7), 5496–5501 (2009).
[Crossref] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[Crossref] [PubMed]

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
[Crossref] [PubMed]

R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
[Crossref] [PubMed]

H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, and H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express 19(16), 15181–15187 (2011).
[Crossref] [PubMed]

T. Gonçalvès-Novo, D. Albach, B. Vincent, M. Arzakantsyan, and J.-C. Chanteloup, “14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain,” Opt. Express 21(1), 855–866 (2013).
[Crossref] [PubMed]

H. Furuse, J. Kawanaka, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, K. Takeshita, S. Ishii, and Y. Izawa, “Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics,” Opt. Express 19(3), 2448–2455 (2011).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. Express (4)

Quantum Electron. (1)

A. A. Soloviev and E. A. Khazanov, “Optical isolation in the LIGO gravitational wave laser detector in transient states,” Quantum Electron. 42(4), 367–371 (2012).
[Crossref]

Rev. Laser Eng. (1)

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Measurement of magneto-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35(12), 806–810 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup of the α and dn/dT measurement.
Fig. 2
Fig. 2 Temperature dependence of (a) the thermal expansion coefficient α and (b) the thermo-optic coefficient dn/dT of ceramic and single-crystal terbium gallium garnet (TGG). The dotted lines represent the fit proposed in this work.
Fig. 3
Fig. 3 The temperature dependencies of thermo-optic parameters P and |Q|.
Fig. 4
Fig. 4 (a) Depolarization as a function of temperature, assuming an input laser power of 1 kW. (b) Temperature dependence of the thermal conductivity of ceramic terbium gallium garnet (TGG) reported in [7]. Dotted line represents the fitting curve used for the calculations.
Fig. 5
Fig. 5 Thermal lens focal length at 1 kW of input power as a function of laser beam radius.

Tables (1)

Tables Icon

Table 1 Experimental results of α and dn/dT for ceramic and single-crystal TGG.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Q=α n 0 3 4 1+ν 1ν ( p 11 p 12 ),
P= dn dT α n 0 3 4 1+ν 1ν ( p 11 + p 12 ),
γ p = C 8 sin 2 (φ) φ 2 ( L a 0 P in Q λK ) 2 X 2 ,
γ ν =D ( φ π 4 a 0 P in K 1 V dV dT ) 2 ,
K(T)= C 0 + C 1 T + C 2 T 2 + C 3 T 3 .
1 f = L a 0 P Laser 2π r h 2 K ( PS( 1ξ )Q ),

Metrics