Abstract

We present the spectroscopic characterization and continuous-wave laser operation of a new Yb doped Y3Ga2A13O12 (Yb:YGAG) ceramic material at cryogenic temperatures. The peak absorption is centered at 942 nm, zero phonon line at 970 nm and the peak emission at 1028 nm. The emission bandwidth is as much as three times larger than Yb:YAG at cryogenic temperatures which makes this material very promising for sub-picosecond pulse generation. At cryogenic continuous-wave laser operation, a maximum output of 2.92W with a slope efficiency of 20.3% at 60K is achieved.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cryogenic Yb:YGAG ceramic laser pumped at 940 nm and zero-phonon-line: a comparative study

Venkatesan Jambunathan, Petr Navratil, Taisuke Miura, Fangxin Yue, Akira Endo, Antonio Lucianetti, and Tomas Mocek
Opt. Mater. Express 7(2) 477-483 (2017)

Cryogenically-cooled Yb:YGAG ceramic mode-locked laser

J. Mužík, M. Jelínek, V. Jambunathan, T. Miura, M. Smrž, A. Endo, T. Mocek, and V. Kubeček
Opt. Express 24(2) 1402-1408 (2016)

Femtosecond Yb:YGAG ceramic slab regenerative amplifier

Jaroslav Huynh, Martin Smrž, Taisuke Miura, Ondřej Slezák, David Vojna, Miroslav Čech, Akira Endo, and Tomáš Mocek
Opt. Mater. Express 8(3) 615-621 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett. 37(12), 2175–2177 (2012).
    [Crossref] [PubMed]
  2. M. Hornung, S. Keppler, R. Bödefeld, A. Kessler, H. Liebetrau, J. Körner, M. Hellwing, F. Schorcht, O. Jäckel, A. Sävert, J. Polz, A. K. Arunachalam, J. Hein, and M. C. Kaluza, “High-intensity, high-contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS,” Opt. Lett. 38(5), 718–720 (2013).
    [Crossref] [PubMed]
  3. M. Siebold, J. Hein, M. Hornung, S. Podleska, M. C. Kaluza, S. Bock, and R. Sauerbrey, “Diode-pumped lasers for ultra-high peak power,” Appl. Phys B 90(3-4), 431–437 (2008).
    [Crossref]
  4. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [Crossref]
  5. D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
    [Crossref]
  6. V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” High-Power, High-Energy, and High-Intensity Laser Technology; and Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers 8780 (2013).
    [Crossref]
  7. J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
    [Crossref]
  8. Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
    [Crossref]
  9. Y. Sato, J. Saikawa, I. Shoji, T. Taira, and A. Ikesue, “Spectroscopic Properties and Laser Operation of Nd:Y3ScAl4O12 Polycrystalline Gain Media, Solid-Solution of Nd: Y3Al5O12 and Nd: Y3Sc2Al3O12 Ceramics,” J. Ceram. Soc. Jpn. 112(Supplement), S313–S316 (2004).
  10. B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, and B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl(5-x)O12 materials: application toward a compositionally tuned 0.94-µm laser,” J. Opt. Soc. Am. B 15(11), 2794–2801 (1998).
    [Crossref]
  11. Y. Oishi, K. Okamura, K. Miyazaki, N. Saito, M. Iwasaki, and S. Wada, “Amplifying high energy pulses at 1062.78 nm with diode pumped Nd:YGAG ceramic,” in Advanced Solid-State Lasers Congress, G. Huber and P. Moulton, eds., OSA Technical Digest (Optical Society of America, 2013), paper ATu3A.40.
    [Crossref]
  12. J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85(11), 1898–1900 (2004).
    [Crossref]
  13. B.-T. Zhang, J.-L. He, Z.-T. Jia, Y.-B. Li, S.-D. Liu, Z.-W. Wang, R.-H. Wang, X.-M. Liu, and X.-T. Tao, “Spectroscopy and laser properties of Yb-doped Gd3AlxGa5-xO12 crystal,” Appl. Phys. Express 6(8), 082702 (2013).
    [Crossref]
  14. J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 degrees C and 200 degrees C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B 29(9), 2493–2502 (2012).
    [Crossref]
  15. W. Koechner, “Solid-state laser engineering,” (Springer, 2006).
  16. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A Gen. Phys. 136(4A), A954–A957 (1964).
    [Crossref]
  17. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
    [Crossref]

2014 (1)

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

2013 (2)

2012 (2)

2008 (1)

M. Siebold, J. Hein, M. Hornung, S. Podleska, M. C. Kaluza, S. Bock, and R. Sauerbrey, “Diode-pumped lasers for ultra-high peak power,” Appl. Phys B 90(3-4), 431–437 (2008).
[Crossref]

2007 (2)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
[Crossref]

2005 (1)

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

2004 (2)

Y. Sato, J. Saikawa, I. Shoji, T. Taira, and A. Ikesue, “Spectroscopic Properties and Laser Operation of Nd:Y3ScAl4O12 Polycrystalline Gain Media, Solid-Solution of Nd: Y3Al5O12 and Nd: Y3Sc2Al3O12 Ceramics,” J. Ceram. Soc. Jpn. 112(Supplement), S313–S316 (2004).

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85(11), 1898–1900 (2004).
[Crossref]

1998 (1)

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A Gen. Phys. 136(4A), A954–A957 (1964).
[Crossref]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Arunachalam, A. K.

Banerjee, S.

Barnes, N. P.

Bock, S.

M. Siebold, J. Hein, M. Hornung, S. Podleska, M. C. Kaluza, S. Bock, and R. Sauerbrey, “Diode-pumped lasers for ultra-high peak power,” Appl. Phys B 90(3-4), 431–437 (2008).
[Crossref]

Bödefeld, R.

Brown, D. C.

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Collier, J. L.

Cone, R. L.

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Di Bartolo, B.

Equall, R. W.

Ertel, K.

Fan, T. Y.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

He, J.-L.

B.-T. Zhang, J.-L. He, Z.-T. Jia, Y.-B. Li, S.-D. Liu, Z.-W. Wang, R.-H. Wang, X.-M. Liu, and X.-T. Tao, “Spectroscopy and laser properties of Yb-doped Gd3AlxGa5-xO12 crystal,” Appl. Phys. Express 6(8), 082702 (2013).
[Crossref]

Hein, J.

Hellwing, M.

Hernandez-Gomez, C.

Hornung, M.

Hutcheson, R. L.

Ikesue, A.

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
[Crossref]

Y. Sato, J. Saikawa, I. Shoji, T. Taira, and A. Ikesue, “Spectroscopic Properties and Laser Operation of Nd:Y3ScAl4O12 Polycrystalline Gain Media, Solid-Solution of Nd: Y3Al5O12 and Nd: Y3Sc2Al3O12 Ceramics,” J. Ceram. Soc. Jpn. 112(Supplement), S313–S316 (2004).

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85(11), 1898–1900 (2004).
[Crossref]

Jäckel, O.

Jambunathan, V.

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Jia, Z.-T.

B.-T. Zhang, J.-L. He, Z.-T. Jia, Y.-B. Li, S.-D. Liu, Z.-W. Wang, R.-H. Wang, X.-M. Liu, and X.-T. Tao, “Spectroscopy and laser properties of Yb-doped Gd3AlxGa5-xO12 crystal,” Appl. Phys. Express 6(8), 082702 (2013).
[Crossref]

Kahle, M.

Kaluza, M. C.

Keppler, S.

Kessler, A.

Kloepfel, D.

Koerner, J.

Korner, J.

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Körner, J.

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Li, Y.-B.

B.-T. Zhang, J.-L. He, Z.-T. Jia, Y.-B. Li, S.-D. Liu, Z.-W. Wang, R.-H. Wang, X.-M. Liu, and X.-T. Tao, “Spectroscopy and laser properties of Yb-doped Gd3AlxGa5-xO12 crystal,” Appl. Phys. Express 6(8), 082702 (2013).
[Crossref]

Liebetrau, H.

Liu, S.-D.

B.-T. Zhang, J.-L. He, Z.-T. Jia, Y.-B. Li, S.-D. Liu, Z.-W. Wang, R.-H. Wang, X.-M. Liu, and X.-T. Tao, “Spectroscopy and laser properties of Yb-doped Gd3AlxGa5-xO12 crystal,” Appl. Phys. Express 6(8), 082702 (2013).
[Crossref]

Liu, X.-M.

B.-T. Zhang, J.-L. He, Z.-T. Jia, Y.-B. Li, S.-D. Liu, Z.-W. Wang, R.-H. Wang, X.-M. Liu, and X.-T. Tao, “Spectroscopy and laser properties of Yb-doped Gd3AlxGa5-xO12 crystal,” Appl. Phys. Express 6(8), 082702 (2013).
[Crossref]

Loeser, M.

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett. 37(12), 2175–2177 (2012).
[Crossref] [PubMed]

Lucianetti, A.

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Mason, P. D.

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A Gen. Phys. 136(4A), A954–A957 (1964).
[Crossref]

Mocek, T.

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Phillips, P. J.

Podleska, S.

M. Siebold, J. Hein, M. Hornung, S. Podleska, M. C. Kaluza, S. Bock, and R. Sauerbrey, “Diode-pumped lasers for ultra-high peak power,” Appl. Phys B 90(3-4), 431–437 (2008).
[Crossref]

Polz, J.

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Saikawa, J.

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
[Crossref]

Y. Sato, J. Saikawa, I. Shoji, T. Taira, and A. Ikesue, “Spectroscopic Properties and Laser Operation of Nd:Y3ScAl4O12 Polycrystalline Gain Media, Solid-Solution of Nd: Y3Al5O12 and Nd: Y3Sc2Al3O12 Ceramics,” J. Ceram. Soc. Jpn. 112(Supplement), S313–S316 (2004).

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85(11), 1898–1900 (2004).
[Crossref]

Sato, Y.

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
[Crossref]

Y. Sato, J. Saikawa, I. Shoji, T. Taira, and A. Ikesue, “Spectroscopic Properties and Laser Operation of Nd:Y3ScAl4O12 Polycrystalline Gain Media, Solid-Solution of Nd: Y3Al5O12 and Nd: Y3Sc2Al3O12 Ceramics,” J. Ceram. Soc. Jpn. 112(Supplement), S313–S316 (2004).

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85(11), 1898–1900 (2004).
[Crossref]

Sauerbrey, R.

M. Siebold, J. Hein, M. Hornung, S. Podleska, M. C. Kaluza, S. Bock, and R. Sauerbrey, “Diode-pumped lasers for ultra-high peak power,” Appl. Phys B 90(3-4), 431–437 (2008).
[Crossref]

Sävert, A.

Schorcht, F.

Schramm, U.

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Seifert, R.

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 degrees C and 200 degrees C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B 29(9), 2493–2502 (2012).
[Crossref]

Shoji, I.

Y. Sato, J. Saikawa, I. Shoji, T. Taira, and A. Ikesue, “Spectroscopic Properties and Laser Operation of Nd:Y3ScAl4O12 Polycrystalline Gain Media, Solid-Solution of Nd: Y3Al5O12 and Nd: Y3Sc2Al3O12 Ceramics,” J. Ceram. Soc. Jpn. 112(Supplement), S313–S316 (2004).

Siebold, M.

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett. 37(12), 2175–2177 (2012).
[Crossref] [PubMed]

M. Siebold, J. Hein, M. Hornung, S. Podleska, M. C. Kaluza, S. Bock, and R. Sauerbrey, “Diode-pumped lasers for ultra-high peak power,” Appl. Phys B 90(3-4), 431–437 (2008).
[Crossref]

Sikocinski, P.

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Sun, Y. C.

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Taira, T.

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
[Crossref]

Y. Sato, J. Saikawa, I. Shoji, T. Taira, and A. Ikesue, “Spectroscopic Properties and Laser Operation of Nd:Y3ScAl4O12 Polycrystalline Gain Media, Solid-Solution of Nd: Y3Al5O12 and Nd: Y3Sc2Al3O12 Ceramics,” J. Ceram. Soc. Jpn. 112(Supplement), S313–S316 (2004).

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85(11), 1898–1900 (2004).
[Crossref]

Tao, X.-T.

B.-T. Zhang, J.-L. He, Z.-T. Jia, Y.-B. Li, S.-D. Liu, Z.-W. Wang, R.-H. Wang, X.-M. Liu, and X.-T. Tao, “Spectroscopy and laser properties of Yb-doped Gd3AlxGa5-xO12 crystal,” Appl. Phys. Express 6(8), 082702 (2013).
[Crossref]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Vorholt, C.

Walsh, B. M.

Wang, R.-H.

B.-T. Zhang, J.-L. He, Z.-T. Jia, Y.-B. Li, S.-D. Liu, Z.-W. Wang, R.-H. Wang, X.-M. Liu, and X.-T. Tao, “Spectroscopy and laser properties of Yb-doped Gd3AlxGa5-xO12 crystal,” Appl. Phys. Express 6(8), 082702 (2013).
[Crossref]

Wang, Z.-W.

B.-T. Zhang, J.-L. He, Z.-T. Jia, Y.-B. Li, S.-D. Liu, Z.-W. Wang, R.-H. Wang, X.-M. Liu, and X.-T. Tao, “Spectroscopy and laser properties of Yb-doped Gd3AlxGa5-xO12 crystal,” Appl. Phys. Express 6(8), 082702 (2013).
[Crossref]

Zhang, B.-T.

B.-T. Zhang, J.-L. He, Z.-T. Jia, Y.-B. Li, S.-D. Liu, Z.-W. Wang, R.-H. Wang, X.-M. Liu, and X.-T. Tao, “Spectroscopy and laser properties of Yb-doped Gd3AlxGa5-xO12 crystal,” Appl. Phys. Express 6(8), 082702 (2013).
[Crossref]

Appl. Phys B (1)

M. Siebold, J. Hein, M. Hornung, S. Podleska, M. C. Kaluza, S. Bock, and R. Sauerbrey, “Diode-pumped lasers for ultra-high peak power,” Appl. Phys B 90(3-4), 431–437 (2008).
[Crossref]

Appl. Phys. B (1)

J. Korner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Appl. Phys. Express (1)

B.-T. Zhang, J.-L. He, Z.-T. Jia, Y.-B. Li, S.-D. Liu, Z.-W. Wang, R.-H. Wang, X.-M. Liu, and X.-T. Tao, “Spectroscopy and laser properties of Yb-doped Gd3AlxGa5-xO12 crystal,” Appl. Phys. Express 6(8), 082702 (2013).
[Crossref]

Appl. Phys. Lett. (1)

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85(11), 1898–1900 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

J. Ceram. Soc. Jpn. (1)

Y. Sato, J. Saikawa, I. Shoji, T. Taira, and A. Ikesue, “Spectroscopic Properties and Laser Operation of Nd:Y3ScAl4O12 Polycrystalline Gain Media, Solid-Solution of Nd: Y3Al5O12 and Nd: Y3Sc2Al3O12 Ceramics,” J. Ceram. Soc. Jpn. 112(Supplement), S313–S316 (2004).

J. Opt. Soc. Am. B (2)

Opt. Lett. (2)

Opt. Mater. (1)

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
[Crossref]

Phys. Rev. A Gen. Phys. (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A Gen. Phys. 136(4A), A954–A957 (1964).
[Crossref]

Other (3)

W. Koechner, “Solid-state laser engineering,” (Springer, 2006).

Y. Oishi, K. Okamura, K. Miyazaki, N. Saito, M. Iwasaki, and S. Wada, “Amplifying high energy pulses at 1062.78 nm with diode pumped Nd:YGAG ceramic,” in Advanced Solid-State Lasers Congress, G. Huber and P. Moulton, eds., OSA Technical Digest (Optical Society of America, 2013), paper ATu3A.40.
[Crossref]

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” High-Power, High-Energy, and High-Intensity Laser Technology; and Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers 8780 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a). Experimental setup used for absorption and fluorescence spectra measurements. L1, L2 – Achromatic lens. M1, M2 – Silver mirrors. SM1& SM2, Silver coated spherical mirrors. WLS – White light source, FLD – Fiber coupled laser diode centered at 940 nm, High resolution spectrophotometer. Figure 1(b). 10at.% Yb: YGAG ceramic; 2 mm thick.
Fig. 2
Fig. 2 Cryo laser setup: L1, L2 achromatic lens, M1 – concave mirror, M2 – dichroic mirror, L3 – plano convex lens, M3 – plane output coupler mirrors (Toc = 2%, 3%, 5%, 10% and 20%) and 10at.% Yb:YGAG ceramic.
Fig. 3
Fig. 3 (a) Absorption, (b) emission and (c) gain cross-sections (β is inversion rate) of Yb:YGAG ceramic
Fig. 4
Fig. 4 (a) Input-output power characteristics of uncoated Yb:YGAG at different transmission of output couplers, (b) laser emission wavelength and fluorescence emission spectra at 100K and (c) Input-output power characteristics of uncoated Yb:YGAG at various temperatures with 20%Toc
Fig. 5
Fig. 5 (a) Evolution of slope efficiency and laser threshold with respect to incident power for Yb:YGAG at various temperatures and (b) Temperature versus maximum output power for Yb:YGAG laser at a pump power of 15.52W (beam profile shown as inset).

Tables (1)

Tables Icon

Table 1 Comparison of cross-sections and bandwidth’s of Yb:YAG [6, 7] and Yb:YGAG for various temperatures

Metrics