Abstract

We have synthesized gyroidal TiN metamaterials, studied their optical properties, and compared them with the optical properties of the TiN thin films fabricated using reactive magnetron sputtering. The plasma frequency, ωp, and the corresponding free carrier concentration, N, in the gyroid samples were found to be much lower than those in thin films. Furthermore, the plasma frequency in TiN gyroids was comparable to or smaller than the damping rate, γD. This makes the studied TiN gyroid a poor plasmonic material. At the same time, TiN gyroidal samples have demonstrated bright rainbow pattern in the optical microscopy reflectance study. This phenomenon is tentatively explained by different orientations of the gyroid domains.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications

Christine M. Zgrabik and Evelyn L. Hu
Opt. Mater. Express 5(12) 2786-2797 (2015)

Titanium nitride as a plasmonic material for visible and near-infrared wavelengths

Gururaj V. Naik, Jeremy L. Schroeder, Xingjie Ni, Alexander V. Kildishev, Timothy D. Sands, and Alexandra Boltasseva
Opt. Mater. Express 2(4) 478-489 (2012)

Room temperature fabrication of titanium nitride thin films as plasmonic materials by high-power impulse magnetron sputtering

Zih-Ying Yang, Yi-Hsun Chen, Bo-Huei Liao, and Kuo-Ping Chen
Opt. Mater. Express 6(2) 540-551 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Noginov and V. A. Podolskiy, eds., Tutorials in Metamaterials, Series in Nano-optics and Nanophotonics (CRC Press, 2011), p.293.
  2. P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
    [Crossref]
  3. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref] [PubMed]
  4. G. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
  5. U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied physics. Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
    [Crossref] [PubMed]
  6. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  7. K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks,” Angew. Chem. Int. Ed. Engl. 50(50), 11985–11989 (2011).
    [Crossref] [PubMed]
  8. S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, O. Hess, and U. Steiner, “Tunable 3D Extended Self-Assembled Gold Metamaterials with Enhanced Light Transmission,” Adv. Mater. 25(19), 2713–2716 (2013).
    [Crossref] [PubMed]
  9. M. Stefik, S. Wang, R. Hovden, H. Sai, M. W. Tate, D. A. Muller, U. Steiner, S. M. Gruner, and U. Wiesner, “Networked and chiral nanocomposites from ABC triblock terpolymer coassembly with transition metal oxide nanoparticles,” J. Mater. Chem. 22(3), 1078–1087 (2011).
    [Crossref]
  10. S. W. Robbins, Materials Science and Engineering Department, Cornell University, Ithaca, New York 14850, and H. Sai, K. W. Tan, J. Kim, F. J. DiSalvo, S. M. Gruner, U. Wiesner, are preparing a manuscript to be called “Mesoporous TiN, Ti1-xNbxN, and NbN Gyroids from Block Copolymer Self-Assembly and Nitridation.”
  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, Berlin, 1988).
  12. S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
    [Crossref] [PubMed]
  13. P. Farah, A. Demetriadou, S. Salvatore, S. Vignolini, M. Stefik, U. Wiesner, O. Hess, U. Steiner, V. K. Valev, and J. J. Baumberg, “Ultrafast Nonlinear Response of Gold Gyroid Three-Dimensional Metamaterials,” Phys. Rev. A 2(4), 044002 (2014).
    [Crossref]
  14. J. S. Chawla, X. Y. Zhang, D. Gall, “Effective electron mean free path in TiN (001),” J. Appl. Phys. 113, 063704 (2013).
    [Crossref]

2014 (2)

U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied physics. Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

P. Farah, A. Demetriadou, S. Salvatore, S. Vignolini, M. Stefik, U. Wiesner, O. Hess, U. Steiner, V. K. Valev, and J. J. Baumberg, “Ultrafast Nonlinear Response of Gold Gyroid Three-Dimensional Metamaterials,” Phys. Rev. A 2(4), 044002 (2014).
[Crossref]

2013 (2)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, O. Hess, and U. Steiner, “Tunable 3D Extended Self-Assembled Gold Metamaterials with Enhanced Light Transmission,” Adv. Mater. 25(19), 2713–2716 (2013).
[Crossref] [PubMed]

2012 (2)

G. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

2011 (3)

M. Stefik, S. Wang, R. Hovden, H. Sai, M. W. Tate, D. A. Muller, U. Steiner, S. M. Gruner, and U. Wiesner, “Networked and chiral nanocomposites from ABC triblock terpolymer coassembly with transition metal oxide nanoparticles,” J. Mater. Chem. 22(3), 1078–1087 (2011).
[Crossref]

K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks,” Angew. Chem. Int. Ed. Engl. 50(50), 11985–11989 (2011).
[Crossref] [PubMed]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

2010 (1)

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Baumberg, J. J.

P. Farah, A. Demetriadou, S. Salvatore, S. Vignolini, M. Stefik, U. Wiesner, O. Hess, U. Steiner, V. K. Valev, and J. J. Baumberg, “Ultrafast Nonlinear Response of Gold Gyroid Three-Dimensional Metamaterials,” Phys. Rev. A 2(4), 044002 (2014).
[Crossref]

S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, O. Hess, and U. Steiner, “Tunable 3D Extended Self-Assembled Gold Metamaterials with Enhanced Light Transmission,” Adv. Mater. 25(19), 2713–2716 (2013).
[Crossref] [PubMed]

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

Boltasseva, A.

U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied physics. Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Cunha, P. S.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

Demetriadou, A.

P. Farah, A. Demetriadou, S. Salvatore, S. Vignolini, M. Stefik, U. Wiesner, O. Hess, U. Steiner, V. K. Valev, and J. J. Baumberg, “Ultrafast Nonlinear Response of Gold Gyroid Three-Dimensional Metamaterials,” Phys. Rev. A 2(4), 044002 (2014).
[Crossref]

S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, O. Hess, and U. Steiner, “Tunable 3D Extended Self-Assembled Gold Metamaterials with Enhanced Light Transmission,” Adv. Mater. 25(19), 2713–2716 (2013).
[Crossref] [PubMed]

Emani, N.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Farah, P.

P. Farah, A. Demetriadou, S. Salvatore, S. Vignolini, M. Stefik, U. Wiesner, O. Hess, U. Steiner, V. K. Valev, and J. J. Baumberg, “Ultrafast Nonlinear Response of Gold Gyroid Three-Dimensional Metamaterials,” Phys. Rev. A 2(4), 044002 (2014).
[Crossref]

Francescato, Y.

K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks,” Angew. Chem. Int. Ed. Engl. 50(50), 11985–11989 (2011).
[Crossref] [PubMed]

Giannini, V.

K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks,” Angew. Chem. Int. Ed. Engl. 50(50), 11985–11989 (2011).
[Crossref] [PubMed]

Gruner, S. M.

M. Stefik, S. Wang, R. Hovden, H. Sai, M. W. Tate, D. A. Muller, U. Steiner, S. M. Gruner, and U. Wiesner, “Networked and chiral nanocomposites from ABC triblock terpolymer coassembly with transition metal oxide nanoparticles,” J. Mater. Chem. 22(3), 1078–1087 (2011).
[Crossref]

Guldin, S.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

Guler, U.

U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied physics. Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

Hennig, R. G.

K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks,” Angew. Chem. Int. Ed. Engl. 50(50), 11985–11989 (2011).
[Crossref] [PubMed]

Hess, O.

P. Farah, A. Demetriadou, S. Salvatore, S. Vignolini, M. Stefik, U. Wiesner, O. Hess, U. Steiner, V. K. Valev, and J. J. Baumberg, “Ultrafast Nonlinear Response of Gold Gyroid Three-Dimensional Metamaterials,” Phys. Rev. A 2(4), 044002 (2014).
[Crossref]

S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, O. Hess, and U. Steiner, “Tunable 3D Extended Self-Assembled Gold Metamaterials with Enhanced Light Transmission,” Adv. Mater. 25(19), 2713–2716 (2013).
[Crossref] [PubMed]

Hovden, R.

M. Stefik, S. Wang, R. Hovden, H. Sai, M. W. Tate, D. A. Muller, U. Steiner, S. M. Gruner, and U. Wiesner, “Networked and chiral nanocomposites from ABC triblock terpolymer coassembly with transition metal oxide nanoparticles,” J. Mater. Chem. 22(3), 1078–1087 (2011).
[Crossref]

Hur, K.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks,” Angew. Chem. Int. Ed. Engl. 50(50), 11985–11989 (2011).
[Crossref] [PubMed]

Ishii, S.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Kildishev, A. V.

Maier, S. A.

K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks,” Angew. Chem. Int. Ed. Engl. 50(50), 11985–11989 (2011).
[Crossref] [PubMed]

Muller, D. A.

M. Stefik, S. Wang, R. Hovden, H. Sai, M. W. Tate, D. A. Muller, U. Steiner, S. M. Gruner, and U. Wiesner, “Networked and chiral nanocomposites from ABC triblock terpolymer coassembly with transition metal oxide nanoparticles,” J. Mater. Chem. 22(3), 1078–1087 (2011).
[Crossref]

Naik, G.

G. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Ni, X.

Oh, S. S.

S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, O. Hess, and U. Steiner, “Tunable 3D Extended Self-Assembled Gold Metamaterials with Enhanced Light Transmission,” Adv. Mater. 25(19), 2713–2716 (2013).
[Crossref] [PubMed]

Rushkin, I.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

Sai, H.

M. Stefik, S. Wang, R. Hovden, H. Sai, M. W. Tate, D. A. Muller, U. Steiner, S. M. Gruner, and U. Wiesner, “Networked and chiral nanocomposites from ABC triblock terpolymer coassembly with transition metal oxide nanoparticles,” J. Mater. Chem. 22(3), 1078–1087 (2011).
[Crossref]

Salvatore, S.

P. Farah, A. Demetriadou, S. Salvatore, S. Vignolini, M. Stefik, U. Wiesner, O. Hess, U. Steiner, V. K. Valev, and J. J. Baumberg, “Ultrafast Nonlinear Response of Gold Gyroid Three-Dimensional Metamaterials,” Phys. Rev. A 2(4), 044002 (2014).
[Crossref]

S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, O. Hess, and U. Steiner, “Tunable 3D Extended Self-Assembled Gold Metamaterials with Enhanced Light Transmission,” Adv. Mater. 25(19), 2713–2716 (2013).
[Crossref] [PubMed]

Sands, T. D.

Schroeder, J. L.

Shalaev, V.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Shalaev, V. M.

U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied physics. Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Stefik, M.

P. Farah, A. Demetriadou, S. Salvatore, S. Vignolini, M. Stefik, U. Wiesner, O. Hess, U. Steiner, V. K. Valev, and J. J. Baumberg, “Ultrafast Nonlinear Response of Gold Gyroid Three-Dimensional Metamaterials,” Phys. Rev. A 2(4), 044002 (2014).
[Crossref]

S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, O. Hess, and U. Steiner, “Tunable 3D Extended Self-Assembled Gold Metamaterials with Enhanced Light Transmission,” Adv. Mater. 25(19), 2713–2716 (2013).
[Crossref] [PubMed]

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

M. Stefik, S. Wang, R. Hovden, H. Sai, M. W. Tate, D. A. Muller, U. Steiner, S. M. Gruner, and U. Wiesner, “Networked and chiral nanocomposites from ABC triblock terpolymer coassembly with transition metal oxide nanoparticles,” J. Mater. Chem. 22(3), 1078–1087 (2011).
[Crossref]

Steiner, U.

P. Farah, A. Demetriadou, S. Salvatore, S. Vignolini, M. Stefik, U. Wiesner, O. Hess, U. Steiner, V. K. Valev, and J. J. Baumberg, “Ultrafast Nonlinear Response of Gold Gyroid Three-Dimensional Metamaterials,” Phys. Rev. A 2(4), 044002 (2014).
[Crossref]

S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, O. Hess, and U. Steiner, “Tunable 3D Extended Self-Assembled Gold Metamaterials with Enhanced Light Transmission,” Adv. Mater. 25(19), 2713–2716 (2013).
[Crossref] [PubMed]

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

M. Stefik, S. Wang, R. Hovden, H. Sai, M. W. Tate, D. A. Muller, U. Steiner, S. M. Gruner, and U. Wiesner, “Networked and chiral nanocomposites from ABC triblock terpolymer coassembly with transition metal oxide nanoparticles,” J. Mater. Chem. 22(3), 1078–1087 (2011).
[Crossref]

Tate, M. W.

M. Stefik, S. Wang, R. Hovden, H. Sai, M. W. Tate, D. A. Muller, U. Steiner, S. M. Gruner, and U. Wiesner, “Networked and chiral nanocomposites from ABC triblock terpolymer coassembly with transition metal oxide nanoparticles,” J. Mater. Chem. 22(3), 1078–1087 (2011).
[Crossref]

Valev, V. K.

P. Farah, A. Demetriadou, S. Salvatore, S. Vignolini, M. Stefik, U. Wiesner, O. Hess, U. Steiner, V. K. Valev, and J. J. Baumberg, “Ultrafast Nonlinear Response of Gold Gyroid Three-Dimensional Metamaterials,” Phys. Rev. A 2(4), 044002 (2014).
[Crossref]

Vignolini, S.

P. Farah, A. Demetriadou, S. Salvatore, S. Vignolini, M. Stefik, U. Wiesner, O. Hess, U. Steiner, V. K. Valev, and J. J. Baumberg, “Ultrafast Nonlinear Response of Gold Gyroid Three-Dimensional Metamaterials,” Phys. Rev. A 2(4), 044002 (2014).
[Crossref]

S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, O. Hess, and U. Steiner, “Tunable 3D Extended Self-Assembled Gold Metamaterials with Enhanced Light Transmission,” Adv. Mater. 25(19), 2713–2716 (2013).
[Crossref] [PubMed]

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

Wang, S.

M. Stefik, S. Wang, R. Hovden, H. Sai, M. W. Tate, D. A. Muller, U. Steiner, S. M. Gruner, and U. Wiesner, “Networked and chiral nanocomposites from ABC triblock terpolymer coassembly with transition metal oxide nanoparticles,” J. Mater. Chem. 22(3), 1078–1087 (2011).
[Crossref]

West, P.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Wiesner, U.

P. Farah, A. Demetriadou, S. Salvatore, S. Vignolini, M. Stefik, U. Wiesner, O. Hess, U. Steiner, V. K. Valev, and J. J. Baumberg, “Ultrafast Nonlinear Response of Gold Gyroid Three-Dimensional Metamaterials,” Phys. Rev. A 2(4), 044002 (2014).
[Crossref]

S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, O. Hess, and U. Steiner, “Tunable 3D Extended Self-Assembled Gold Metamaterials with Enhanced Light Transmission,” Adv. Mater. 25(19), 2713–2716 (2013).
[Crossref] [PubMed]

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

M. Stefik, S. Wang, R. Hovden, H. Sai, M. W. Tate, D. A. Muller, U. Steiner, S. M. Gruner, and U. Wiesner, “Networked and chiral nanocomposites from ABC triblock terpolymer coassembly with transition metal oxide nanoparticles,” J. Mater. Chem. 22(3), 1078–1087 (2011).
[Crossref]

K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks,” Angew. Chem. Int. Ed. Engl. 50(50), 11985–11989 (2011).
[Crossref] [PubMed]

Wuestner, S.

S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, O. Hess, and U. Steiner, “Tunable 3D Extended Self-Assembled Gold Metamaterials with Enhanced Light Transmission,” Adv. Mater. 25(19), 2713–2716 (2013).
[Crossref] [PubMed]

Yufa, N. A.

S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, O. Hess, and U. Steiner, “Tunable 3D Extended Self-Assembled Gold Metamaterials with Enhanced Light Transmission,” Adv. Mater. 25(19), 2713–2716 (2013).
[Crossref] [PubMed]

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

Adv. Mater. (3)

S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, O. Hess, and U. Steiner, “Tunable 3D Extended Self-Assembled Gold Metamaterials with Enhanced Light Transmission,” Adv. Mater. 25(19), 2713–2716 (2013).
[Crossref] [PubMed]

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks,” Angew. Chem. Int. Ed. Engl. 50(50), 11985–11989 (2011).
[Crossref] [PubMed]

J. Mater. Chem. (1)

M. Stefik, S. Wang, R. Hovden, H. Sai, M. W. Tate, D. A. Muller, U. Steiner, S. M. Gruner, and U. Wiesner, “Networked and chiral nanocomposites from ABC triblock terpolymer coassembly with transition metal oxide nanoparticles,” J. Mater. Chem. 22(3), 1078–1087 (2011).
[Crossref]

Laser Photon. Rev. (1)

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. A (1)

P. Farah, A. Demetriadou, S. Salvatore, S. Vignolini, M. Stefik, U. Wiesner, O. Hess, U. Steiner, V. K. Valev, and J. J. Baumberg, “Ultrafast Nonlinear Response of Gold Gyroid Three-Dimensional Metamaterials,” Phys. Rev. A 2(4), 044002 (2014).
[Crossref]

Science (2)

U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied physics. Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Other (4)

J. S. Chawla, X. Y. Zhang, D. Gall, “Effective electron mean free path in TiN (001),” J. Appl. Phys. 113, 063704 (2013).
[Crossref]

M. A. Noginov and V. A. Podolskiy, eds., Tutorials in Metamaterials, Series in Nano-optics and Nanophotonics (CRC Press, 2011), p.293.

S. W. Robbins, Materials Science and Engineering Department, Cornell University, Ithaca, New York 14850, and H. Sai, K. W. Tan, J. Kim, F. J. DiSalvo, S. M. Gruner, U. Wiesner, are preparing a manuscript to be called “Mesoporous TiN, Ti1-xNbxN, and NbN Gyroids from Block Copolymer Self-Assembly and Nitridation.”

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the gyroid network.
Fig. 2
Fig. 2 (a) Reflectance spectra of gyrodial TiN samples: (1) 98 μm, treated surface, (2) 437 μm, treated surface, and (3) 279 μm, no surface treatment. Inset: Reflectance spectrum of the Au gyroid; adopted and re-plotted from [12]. (b) Real ε’ and imaginary ε” parts of the effective dielectric permittivity of TiN gyroids obtained by fitting trace # 2 of Fig. 2(a) with the Drude model (at 610 nm<λ<2450 nm).
Fig. 3
Fig. 3 (a) Reflectance spectra of TiN thin films on (1) sapphire and (2) glass. (b) Transmittance spectra of TiN thin films on (1) sapphire and (2) glass. (c) Real ε’ and imaginary ε” parts of the dielectric permittivity of TiN thin film on glass obtained from fitting the experimental reflectance and transmittance spectra using the Drude model (solid line); the dielectric permittivity of the same sample obtained using the ellipsometry technique (dashed line).
Fig. 4
Fig. 4 Schematic of collecting reflection spectra of gyroidal TiN.
Fig. 5
Fig. 5 (a) Optical microscopy image of the TiN gyroidal samples illuminated with unpolarized light. (b) Unpolarized reflection spectra collected from different local spots on the sample’s surface.
Fig. 6
Fig. 6 Schematic of reflection and transmission in three layered media.

Tables (1)

Tables Icon

Table 1 Drude model parameters and free carrier density of TiN gyroidal structures and thin films

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N= ω p 2 ε 0 m* e 2
ε( ω )= ε b ω p 2 ω 2 +i γ D ω + f ω 0 2 ω 2 i γ L ω Drude Lorentz
R= | r 12 p + r 23 p exp( 2i k z2 d ) 1+ r 12 p r 23 p exp( 2i k z2 d ) | 2 and T=Re{ | t 12 p + t 23 p exp( i k z2 d ) 1+ t 12 p t 23 p exp( 2i k z2 d ) | 2 k z3 k z1 }.

Metrics