Abstract

A new epoxy-based azo polymer (BP-AZ-CSMB), which contained chiral-substituted push-pull azo chromophores, was synthesized by the post-polymerization azo-coupling reaction. This newly synthesized polymer was characterized by 1H NMR, FTIR, GPC, UV-Vis, DSC and TGA. When exposed to interference patterns of laser beam (532 nm, 100 mW cm−2), BP-AZ-CSMB showed ability to quickly form surface-relief-gratings. Due to this property, quasi-crystal surface relief structures were feasibly fabricated on the BP-AZ-CSMB films by using the dual-beam multiple exposure technique. The quasi-crystal structures with 6-, 8-, 10-, 12-, 36-, and 72-fold rotation symmetry were successfully photofabricated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Superimposed surface-relief diffraction grating holographic lenses on azo-polymer films

Ribal Georges Sabat
Opt. Express 21(7) 8711-8723 (2013)

Surface-relief formation in azo-polyelectrolyte layers with a protective polymer coating

Francesca Frascella, Angelo Angelini, Serena Ricciardi, Fabrizio Pirri, and Emiliano Descrovi
Opt. Mater. Express 6(2) 444-450 (2016)

Distributed feedback sol-gel zirconia waveguide lasers based on surface relief gratings

Chao Ye, K. Y. Wong, Yaning He, and Xiaogong Wang
Opt. Express 15(3) 936-944 (2007)

References

  • View by:
  • |
  • |
  • |

  1. Z. M. Stadnik, Physical Properties of Quasicrystals (Springer, 1999).
  2. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
    [Crossref]
  3. K. Hayashida, T. Dotera, A. Takano, and Y. Matsushita, “Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers,” Phys. Rev. Lett. 98(19), 195502 (2007).
    [Crossref] [PubMed]
  4. I. Bita, T. Choi, M. E. Walsh, H. I. Smith, and E. L. Thomas, “Large-area 3D nanostructures with octagonal quasicrystalline,” Adv. Mater. 19(10), 1403–1407 (2007).
    [Crossref]
  5. Y. Sheng, K. Koynov, J. H. Dou, B. Q. Ma, J. J. Li, and D. Z. Zhang, “Collinear second harmonic generations in a nonlinear photonic quasicrystal,” Appl. Phys. Lett. 92(20), 201113 (2008).
    [Crossref]
  6. A. Singh, C. Dickinson, and K. M. Ryan, “Insight into the 3D architecture and quasicrystal symmetry of multilayer nanorod assemblies from Moiré interference patterns,” ACS Nano 6(4), 3339–3345 (2012).
    [Crossref] [PubMed]
  7. H. R. Sharma, K. Nozawa, J. A. Smerdon, P. J. Nugent, I. McLeod, V. R. Dhanak, M. Shimoda, Y. Ishii, A. P. Tsai, and R. McGrath, “Templated three-dimensional growth of quasicrystalline lead,” Nat. Commun. 4, 2715 (2013).
    [Crossref] [PubMed]
  8. M. Rippa, R. Capasso, L. Petti, G. Nenna, A. De Girolamo Del Mauro, M. G. Maglione, and C. Minarini, “Nanostructured PEDOT: PSS film with two-dimensional photonic quasi crystals for efficient white OLED devices,” J. Mater. Chem. C 3(1), 147–152 (2015).
    [Crossref]
  9. W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, “Experimental measurement of the photonic properties of icosahedral quasicrystals,” Nature 436(7053), 993–996 (2005).
    [Crossref] [PubMed]
  10. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404(6779), 740–743 (2000).
    [Crossref] [PubMed]
  11. X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15(18), 1526–1528 (2003).
    [Crossref]
  12. S. P. Gorkhali, J. Qi, and G. P. Crawford, “Switchable quasi-crystal structures with five-, seven-, and ninefold symmetries,” J. Opt. Soc. Am. B 23(1), 149–158 (2006).
    [Crossref]
  13. R. Gauthier and A. Ivanov, “Production of quasi-crystal template patterns using a dual beam multiple exposure technique,” Opt. Express 12(6), 990–1003 (2004).
    [Crossref] [PubMed]
  14. A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
    [Crossref] [PubMed]
  15. J. A. Delaire and K. Nakatani, “Linear and nonlinear optical properties of photochromic molecules and materials,” Chem. Rev. 100(5), 1817–1846 (2000).
    [Crossref] [PubMed]
  16. H. Yu and T. Ikeda, “Photocontrollable Liquid-Crystalline Actuators,” Adv. Mater. 23(19), 2149–2180 (2011).
    [Crossref] [PubMed]
  17. S. Lee, H. S. Kang, and J. K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
    [Crossref] [PubMed]
  18. D. R. Wang and X. G. Wang, “Amphiphilic azo polymers: molecular engineering, self-assembly and photoresponsive properties,” Prog. Polym. Sci. 38(2), 271–301 (2013).
    [Crossref]
  19. P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
    [Crossref]
  20. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
    [Crossref]
  21. H. Nakano, T. Takahashi, T. Kadota, and Y. Shirota, “Formation of a surface relief grating using a novel azobenzene-based photochromic amorphous molecular material,” Adv. Mater. 14(16), 1157–1160 (2002).
    [Crossref]
  22. H. Nakano, T. Tanino, T. Takahashi, H. Ando, and Y. Shirota, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem. 18(2), 242–246 (2008).
    [Crossref]
  23. M. J. Kim, E. M. Seo, D. Vak, and D. Y. Kim, “Photodynamic Properties of Azobenzene Molecular Films with Triphenylamines,” Chem. Mater. 15(21), 4021–4027 (2003).
    [Crossref]
  24. M. Guo, Z. Xu, and X. Wang, “Photofabrication of two-dimensional quasi-crystal patterns on UV-curable molecular azo glass films,” Langmuir 24(6), 2740–2745 (2008).
    [Crossref] [PubMed]
  25. X. G. Wang, S. Balasubramanian, J. Kumar, S. K. Tripathy, and L. Li, “Azochromophore-functionalized polyelectrolytes. 1. Synthesis, characterization, and photoprocessing,” Chem. Mater. 10(6), 1546–1553 (1998).
    [Crossref]
  26. Y. N. He, X. G. Wang, and Q. X. Zhou, “Epoxy-based azo polymers: synthesis, characterization and photoinduced surface-relief-gratings,” Polymer (Guildf.) 43(26), 7325–7333 (2002).
    [Crossref]

2015 (1)

M. Rippa, R. Capasso, L. Petti, G. Nenna, A. De Girolamo Del Mauro, M. G. Maglione, and C. Minarini, “Nanostructured PEDOT: PSS film with two-dimensional photonic quasi crystals for efficient white OLED devices,” J. Mater. Chem. C 3(1), 147–152 (2015).
[Crossref]

2013 (2)

H. R. Sharma, K. Nozawa, J. A. Smerdon, P. J. Nugent, I. McLeod, V. R. Dhanak, M. Shimoda, Y. Ishii, A. P. Tsai, and R. McGrath, “Templated three-dimensional growth of quasicrystalline lead,” Nat. Commun. 4, 2715 (2013).
[Crossref] [PubMed]

D. R. Wang and X. G. Wang, “Amphiphilic azo polymers: molecular engineering, self-assembly and photoresponsive properties,” Prog. Polym. Sci. 38(2), 271–301 (2013).
[Crossref]

2012 (2)

A. Singh, C. Dickinson, and K. M. Ryan, “Insight into the 3D architecture and quasicrystal symmetry of multilayer nanorod assemblies from Moiré interference patterns,” ACS Nano 6(4), 3339–3345 (2012).
[Crossref] [PubMed]

S. Lee, H. S. Kang, and J. K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref] [PubMed]

2011 (1)

H. Yu and T. Ikeda, “Photocontrollable Liquid-Crystalline Actuators,” Adv. Mater. 23(19), 2149–2180 (2011).
[Crossref] [PubMed]

2008 (3)

Y. Sheng, K. Koynov, J. H. Dou, B. Q. Ma, J. J. Li, and D. Z. Zhang, “Collinear second harmonic generations in a nonlinear photonic quasicrystal,” Appl. Phys. Lett. 92(20), 201113 (2008).
[Crossref]

H. Nakano, T. Tanino, T. Takahashi, H. Ando, and Y. Shirota, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem. 18(2), 242–246 (2008).
[Crossref]

M. Guo, Z. Xu, and X. Wang, “Photofabrication of two-dimensional quasi-crystal patterns on UV-curable molecular azo glass films,” Langmuir 24(6), 2740–2745 (2008).
[Crossref] [PubMed]

2007 (2)

K. Hayashida, T. Dotera, A. Takano, and Y. Matsushita, “Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers,” Phys. Rev. Lett. 98(19), 195502 (2007).
[Crossref] [PubMed]

I. Bita, T. Choi, M. E. Walsh, H. I. Smith, and E. L. Thomas, “Large-area 3D nanostructures with octagonal quasicrystalline,” Adv. Mater. 19(10), 1403–1407 (2007).
[Crossref]

2006 (1)

2005 (1)

W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, “Experimental measurement of the photonic properties of icosahedral quasicrystals,” Nature 436(7053), 993–996 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (2)

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15(18), 1526–1528 (2003).
[Crossref]

M. J. Kim, E. M. Seo, D. Vak, and D. Y. Kim, “Photodynamic Properties of Azobenzene Molecular Films with Triphenylamines,” Chem. Mater. 15(21), 4021–4027 (2003).
[Crossref]

2002 (3)

H. Nakano, T. Takahashi, T. Kadota, and Y. Shirota, “Formation of a surface relief grating using a novel azobenzene-based photochromic amorphous molecular material,” Adv. Mater. 14(16), 1157–1160 (2002).
[Crossref]

Y. N. He, X. G. Wang, and Q. X. Zhou, “Epoxy-based azo polymers: synthesis, characterization and photoinduced surface-relief-gratings,” Polymer (Guildf.) 43(26), 7325–7333 (2002).
[Crossref]

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[Crossref] [PubMed]

2000 (2)

J. A. Delaire and K. Nakatani, “Linear and nonlinear optical properties of photochromic molecules and materials,” Chem. Rev. 100(5), 1817–1846 (2000).
[Crossref] [PubMed]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404(6779), 740–743 (2000).
[Crossref] [PubMed]

1998 (1)

X. G. Wang, S. Balasubramanian, J. Kumar, S. K. Tripathy, and L. Li, “Azochromophore-functionalized polyelectrolytes. 1. Synthesis, characterization, and photoprocessing,” Chem. Mater. 10(6), 1546–1553 (1998).
[Crossref]

1995 (2)

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

1984 (1)

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

Ando, H.

H. Nakano, T. Tanino, T. Takahashi, H. Ando, and Y. Shirota, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem. 18(2), 242–246 (2008).
[Crossref]

Balasubramanian, S.

X. G. Wang, S. Balasubramanian, J. Kumar, S. K. Tripathy, and L. Li, “Azochromophore-functionalized polyelectrolytes. 1. Synthesis, characterization, and photoprocessing,” Chem. Mater. 10(6), 1546–1553 (1998).
[Crossref]

Batalla, E.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Baumberg, J. J.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404(6779), 740–743 (2000).
[Crossref] [PubMed]

Bita, I.

I. Bita, T. Choi, M. E. Walsh, H. I. Smith, and E. L. Thomas, “Large-area 3D nanostructures with octagonal quasicrystalline,” Adv. Mater. 19(10), 1403–1407 (2007).
[Crossref]

Blech, I.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

Cahn, J. W.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

Capasso, R.

M. Rippa, R. Capasso, L. Petti, G. Nenna, A. De Girolamo Del Mauro, M. G. Maglione, and C. Minarini, “Nanostructured PEDOT: PSS film with two-dimensional photonic quasi crystals for efficient white OLED devices,” J. Mater. Chem. C 3(1), 147–152 (2015).
[Crossref]

Chaikin, P. M.

W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, “Experimental measurement of the photonic properties of icosahedral quasicrystals,” Nature 436(7053), 993–996 (2005).
[Crossref] [PubMed]

Chan, C. T.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15(18), 1526–1528 (2003).
[Crossref]

Charlton, M. D. B.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404(6779), 740–743 (2000).
[Crossref] [PubMed]

Choi, T.

I. Bita, T. Choi, M. E. Walsh, H. I. Smith, and E. L. Thomas, “Large-area 3D nanostructures with octagonal quasicrystalline,” Adv. Mater. 19(10), 1403–1407 (2007).
[Crossref]

Crawford, G. P.

De Girolamo Del Mauro, A.

M. Rippa, R. Capasso, L. Petti, G. Nenna, A. De Girolamo Del Mauro, M. G. Maglione, and C. Minarini, “Nanostructured PEDOT: PSS film with two-dimensional photonic quasi crystals for efficient white OLED devices,” J. Mater. Chem. C 3(1), 147–152 (2015).
[Crossref]

Delaire, J. A.

J. A. Delaire and K. Nakatani, “Linear and nonlinear optical properties of photochromic molecules and materials,” Chem. Rev. 100(5), 1817–1846 (2000).
[Crossref] [PubMed]

Dhanak, V. R.

H. R. Sharma, K. Nozawa, J. A. Smerdon, P. J. Nugent, I. McLeod, V. R. Dhanak, M. Shimoda, Y. Ishii, A. P. Tsai, and R. McGrath, “Templated three-dimensional growth of quasicrystalline lead,” Nat. Commun. 4, 2715 (2013).
[Crossref] [PubMed]

Dickinson, C.

A. Singh, C. Dickinson, and K. M. Ryan, “Insight into the 3D architecture and quasicrystal symmetry of multilayer nanorod assemblies from Moiré interference patterns,” ACS Nano 6(4), 3339–3345 (2012).
[Crossref] [PubMed]

Dotera, T.

K. Hayashida, T. Dotera, A. Takano, and Y. Matsushita, “Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers,” Phys. Rev. Lett. 98(19), 195502 (2007).
[Crossref] [PubMed]

Dou, J. H.

Y. Sheng, K. Koynov, J. H. Dou, B. Q. Ma, J. J. Li, and D. Z. Zhang, “Collinear second harmonic generations in a nonlinear photonic quasicrystal,” Appl. Phys. Lett. 92(20), 201113 (2008).
[Crossref]

Gauthier, R.

Gorkhali, S. P.

Gratias, D.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

Guo, M.

M. Guo, Z. Xu, and X. Wang, “Photofabrication of two-dimensional quasi-crystal patterns on UV-curable molecular azo glass films,” Langmuir 24(6), 2740–2745 (2008).
[Crossref] [PubMed]

Hayashida, K.

K. Hayashida, T. Dotera, A. Takano, and Y. Matsushita, “Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers,” Phys. Rev. Lett. 98(19), 195502 (2007).
[Crossref] [PubMed]

He, Y. N.

Y. N. He, X. G. Wang, and Q. X. Zhou, “Epoxy-based azo polymers: synthesis, characterization and photoinduced surface-relief-gratings,” Polymer (Guildf.) 43(26), 7325–7333 (2002).
[Crossref]

Ikeda, T.

H. Yu and T. Ikeda, “Photocontrollable Liquid-Crystalline Actuators,” Adv. Mater. 23(19), 2149–2180 (2011).
[Crossref] [PubMed]

Ishii, Y.

H. R. Sharma, K. Nozawa, J. A. Smerdon, P. J. Nugent, I. McLeod, V. R. Dhanak, M. Shimoda, Y. Ishii, A. P. Tsai, and R. McGrath, “Templated three-dimensional growth of quasicrystalline lead,” Nat. Commun. 4, 2715 (2013).
[Crossref] [PubMed]

Ivanov, A.

Kadota, T.

H. Nakano, T. Takahashi, T. Kadota, and Y. Shirota, “Formation of a surface relief grating using a novel azobenzene-based photochromic amorphous molecular material,” Adv. Mater. 14(16), 1157–1160 (2002).
[Crossref]

Kang, H. S.

S. Lee, H. S. Kang, and J. K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref] [PubMed]

Kim, D. Y.

M. J. Kim, E. M. Seo, D. Vak, and D. Y. Kim, “Photodynamic Properties of Azobenzene Molecular Films with Triphenylamines,” Chem. Mater. 15(21), 4021–4027 (2003).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Kim, M. J.

M. J. Kim, E. M. Seo, D. Vak, and D. Y. Kim, “Photodynamic Properties of Azobenzene Molecular Films with Triphenylamines,” Chem. Mater. 15(21), 4021–4027 (2003).
[Crossref]

Koynov, K.

Y. Sheng, K. Koynov, J. H. Dou, B. Q. Ma, J. J. Li, and D. Z. Zhang, “Collinear second harmonic generations in a nonlinear photonic quasicrystal,” Appl. Phys. Lett. 92(20), 201113 (2008).
[Crossref]

Kumar, J.

X. G. Wang, S. Balasubramanian, J. Kumar, S. K. Tripathy, and L. Li, “Azochromophore-functionalized polyelectrolytes. 1. Synthesis, characterization, and photoprocessing,” Chem. Mater. 10(6), 1546–1553 (1998).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Lee, S.

S. Lee, H. S. Kang, and J. K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref] [PubMed]

Li, J. J.

Y. Sheng, K. Koynov, J. H. Dou, B. Q. Ma, J. J. Li, and D. Z. Zhang, “Collinear second harmonic generations in a nonlinear photonic quasicrystal,” Appl. Phys. Lett. 92(20), 201113 (2008).
[Crossref]

Li, L.

X. G. Wang, S. Balasubramanian, J. Kumar, S. K. Tripathy, and L. Li, “Azochromophore-functionalized polyelectrolytes. 1. Synthesis, characterization, and photoprocessing,” Chem. Mater. 10(6), 1546–1553 (1998).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Ma, B. Q.

Y. Sheng, K. Koynov, J. H. Dou, B. Q. Ma, J. J. Li, and D. Z. Zhang, “Collinear second harmonic generations in a nonlinear photonic quasicrystal,” Appl. Phys. Lett. 92(20), 201113 (2008).
[Crossref]

Maglione, M. G.

M. Rippa, R. Capasso, L. Petti, G. Nenna, A. De Girolamo Del Mauro, M. G. Maglione, and C. Minarini, “Nanostructured PEDOT: PSS film with two-dimensional photonic quasi crystals for efficient white OLED devices,” J. Mater. Chem. C 3(1), 147–152 (2015).
[Crossref]

Man, W.

W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, “Experimental measurement of the photonic properties of icosahedral quasicrystals,” Nature 436(7053), 993–996 (2005).
[Crossref] [PubMed]

Matsushita, Y.

K. Hayashida, T. Dotera, A. Takano, and Y. Matsushita, “Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers,” Phys. Rev. Lett. 98(19), 195502 (2007).
[Crossref] [PubMed]

McGrath, R.

H. R. Sharma, K. Nozawa, J. A. Smerdon, P. J. Nugent, I. McLeod, V. R. Dhanak, M. Shimoda, Y. Ishii, A. P. Tsai, and R. McGrath, “Templated three-dimensional growth of quasicrystalline lead,” Nat. Commun. 4, 2715 (2013).
[Crossref] [PubMed]

McLeod, I.

H. R. Sharma, K. Nozawa, J. A. Smerdon, P. J. Nugent, I. McLeod, V. R. Dhanak, M. Shimoda, Y. Ishii, A. P. Tsai, and R. McGrath, “Templated three-dimensional growth of quasicrystalline lead,” Nat. Commun. 4, 2715 (2013).
[Crossref] [PubMed]

Megens, M.

W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, “Experimental measurement of the photonic properties of icosahedral quasicrystals,” Nature 436(7053), 993–996 (2005).
[Crossref] [PubMed]

Minarini, C.

M. Rippa, R. Capasso, L. Petti, G. Nenna, A. De Girolamo Del Mauro, M. G. Maglione, and C. Minarini, “Nanostructured PEDOT: PSS film with two-dimensional photonic quasi crystals for efficient white OLED devices,” J. Mater. Chem. C 3(1), 147–152 (2015).
[Crossref]

Nakano, H.

H. Nakano, T. Tanino, T. Takahashi, H. Ando, and Y. Shirota, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem. 18(2), 242–246 (2008).
[Crossref]

H. Nakano, T. Takahashi, T. Kadota, and Y. Shirota, “Formation of a surface relief grating using a novel azobenzene-based photochromic amorphous molecular material,” Adv. Mater. 14(16), 1157–1160 (2002).
[Crossref]

Nakatani, K.

J. A. Delaire and K. Nakatani, “Linear and nonlinear optical properties of photochromic molecules and materials,” Chem. Rev. 100(5), 1817–1846 (2000).
[Crossref] [PubMed]

Natansohn, A.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[Crossref] [PubMed]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Nenna, G.

M. Rippa, R. Capasso, L. Petti, G. Nenna, A. De Girolamo Del Mauro, M. G. Maglione, and C. Minarini, “Nanostructured PEDOT: PSS film with two-dimensional photonic quasi crystals for efficient white OLED devices,” J. Mater. Chem. C 3(1), 147–152 (2015).
[Crossref]

Netti, M. C.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404(6779), 740–743 (2000).
[Crossref] [PubMed]

Ng, C. Y.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15(18), 1526–1528 (2003).
[Crossref]

Nozawa, K.

H. R. Sharma, K. Nozawa, J. A. Smerdon, P. J. Nugent, I. McLeod, V. R. Dhanak, M. Shimoda, Y. Ishii, A. P. Tsai, and R. McGrath, “Templated three-dimensional growth of quasicrystalline lead,” Nat. Commun. 4, 2715 (2013).
[Crossref] [PubMed]

Nugent, P. J.

H. R. Sharma, K. Nozawa, J. A. Smerdon, P. J. Nugent, I. McLeod, V. R. Dhanak, M. Shimoda, Y. Ishii, A. P. Tsai, and R. McGrath, “Templated three-dimensional growth of quasicrystalline lead,” Nat. Commun. 4, 2715 (2013).
[Crossref] [PubMed]

Park, J. K.

S. Lee, H. S. Kang, and J. K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref] [PubMed]

Parker, G. J.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404(6779), 740–743 (2000).
[Crossref] [PubMed]

Petti, L.

M. Rippa, R. Capasso, L. Petti, G. Nenna, A. De Girolamo Del Mauro, M. G. Maglione, and C. Minarini, “Nanostructured PEDOT: PSS film with two-dimensional photonic quasi crystals for efficient white OLED devices,” J. Mater. Chem. C 3(1), 147–152 (2015).
[Crossref]

Qi, J.

Rippa, M.

M. Rippa, R. Capasso, L. Petti, G. Nenna, A. De Girolamo Del Mauro, M. G. Maglione, and C. Minarini, “Nanostructured PEDOT: PSS film with two-dimensional photonic quasi crystals for efficient white OLED devices,” J. Mater. Chem. C 3(1), 147–152 (2015).
[Crossref]

Rochon, P.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[Crossref] [PubMed]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Ryan, K. M.

A. Singh, C. Dickinson, and K. M. Ryan, “Insight into the 3D architecture and quasicrystal symmetry of multilayer nanorod assemblies from Moiré interference patterns,” ACS Nano 6(4), 3339–3345 (2012).
[Crossref] [PubMed]

Seo, E. M.

M. J. Kim, E. M. Seo, D. Vak, and D. Y. Kim, “Photodynamic Properties of Azobenzene Molecular Films with Triphenylamines,” Chem. Mater. 15(21), 4021–4027 (2003).
[Crossref]

Sharma, H. R.

H. R. Sharma, K. Nozawa, J. A. Smerdon, P. J. Nugent, I. McLeod, V. R. Dhanak, M. Shimoda, Y. Ishii, A. P. Tsai, and R. McGrath, “Templated three-dimensional growth of quasicrystalline lead,” Nat. Commun. 4, 2715 (2013).
[Crossref] [PubMed]

Shechtman, D.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

Sheng, P.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15(18), 1526–1528 (2003).
[Crossref]

Sheng, Y.

Y. Sheng, K. Koynov, J. H. Dou, B. Q. Ma, J. J. Li, and D. Z. Zhang, “Collinear second harmonic generations in a nonlinear photonic quasicrystal,” Appl. Phys. Lett. 92(20), 201113 (2008).
[Crossref]

Shimoda, M.

H. R. Sharma, K. Nozawa, J. A. Smerdon, P. J. Nugent, I. McLeod, V. R. Dhanak, M. Shimoda, Y. Ishii, A. P. Tsai, and R. McGrath, “Templated three-dimensional growth of quasicrystalline lead,” Nat. Commun. 4, 2715 (2013).
[Crossref] [PubMed]

Shirota, Y.

H. Nakano, T. Tanino, T. Takahashi, H. Ando, and Y. Shirota, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem. 18(2), 242–246 (2008).
[Crossref]

H. Nakano, T. Takahashi, T. Kadota, and Y. Shirota, “Formation of a surface relief grating using a novel azobenzene-based photochromic amorphous molecular material,” Adv. Mater. 14(16), 1157–1160 (2002).
[Crossref]

Singh, A.

A. Singh, C. Dickinson, and K. M. Ryan, “Insight into the 3D architecture and quasicrystal symmetry of multilayer nanorod assemblies from Moiré interference patterns,” ACS Nano 6(4), 3339–3345 (2012).
[Crossref] [PubMed]

Smerdon, J. A.

H. R. Sharma, K. Nozawa, J. A. Smerdon, P. J. Nugent, I. McLeod, V. R. Dhanak, M. Shimoda, Y. Ishii, A. P. Tsai, and R. McGrath, “Templated three-dimensional growth of quasicrystalline lead,” Nat. Commun. 4, 2715 (2013).
[Crossref] [PubMed]

Smith, H. I.

I. Bita, T. Choi, M. E. Walsh, H. I. Smith, and E. L. Thomas, “Large-area 3D nanostructures with octagonal quasicrystalline,” Adv. Mater. 19(10), 1403–1407 (2007).
[Crossref]

Steinhardt, P. J.

W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, “Experimental measurement of the photonic properties of icosahedral quasicrystals,” Nature 436(7053), 993–996 (2005).
[Crossref] [PubMed]

Takahashi, T.

H. Nakano, T. Tanino, T. Takahashi, H. Ando, and Y. Shirota, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem. 18(2), 242–246 (2008).
[Crossref]

H. Nakano, T. Takahashi, T. Kadota, and Y. Shirota, “Formation of a surface relief grating using a novel azobenzene-based photochromic amorphous molecular material,” Adv. Mater. 14(16), 1157–1160 (2002).
[Crossref]

Takano, A.

K. Hayashida, T. Dotera, A. Takano, and Y. Matsushita, “Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers,” Phys. Rev. Lett. 98(19), 195502 (2007).
[Crossref] [PubMed]

Tam, W. Y.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15(18), 1526–1528 (2003).
[Crossref]

Tanino, T.

H. Nakano, T. Tanino, T. Takahashi, H. Ando, and Y. Shirota, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem. 18(2), 242–246 (2008).
[Crossref]

Thomas, E. L.

I. Bita, T. Choi, M. E. Walsh, H. I. Smith, and E. L. Thomas, “Large-area 3D nanostructures with octagonal quasicrystalline,” Adv. Mater. 19(10), 1403–1407 (2007).
[Crossref]

Tripathy, S. K.

X. G. Wang, S. Balasubramanian, J. Kumar, S. K. Tripathy, and L. Li, “Azochromophore-functionalized polyelectrolytes. 1. Synthesis, characterization, and photoprocessing,” Chem. Mater. 10(6), 1546–1553 (1998).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Tsai, A. P.

H. R. Sharma, K. Nozawa, J. A. Smerdon, P. J. Nugent, I. McLeod, V. R. Dhanak, M. Shimoda, Y. Ishii, A. P. Tsai, and R. McGrath, “Templated three-dimensional growth of quasicrystalline lead,” Nat. Commun. 4, 2715 (2013).
[Crossref] [PubMed]

Vak, D.

M. J. Kim, E. M. Seo, D. Vak, and D. Y. Kim, “Photodynamic Properties of Azobenzene Molecular Films with Triphenylamines,” Chem. Mater. 15(21), 4021–4027 (2003).
[Crossref]

Walsh, M. E.

I. Bita, T. Choi, M. E. Walsh, H. I. Smith, and E. L. Thomas, “Large-area 3D nanostructures with octagonal quasicrystalline,” Adv. Mater. 19(10), 1403–1407 (2007).
[Crossref]

Wang, D. R.

D. R. Wang and X. G. Wang, “Amphiphilic azo polymers: molecular engineering, self-assembly and photoresponsive properties,” Prog. Polym. Sci. 38(2), 271–301 (2013).
[Crossref]

Wang, X.

M. Guo, Z. Xu, and X. Wang, “Photofabrication of two-dimensional quasi-crystal patterns on UV-curable molecular azo glass films,” Langmuir 24(6), 2740–2745 (2008).
[Crossref] [PubMed]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15(18), 1526–1528 (2003).
[Crossref]

Wang, X. G.

D. R. Wang and X. G. Wang, “Amphiphilic azo polymers: molecular engineering, self-assembly and photoresponsive properties,” Prog. Polym. Sci. 38(2), 271–301 (2013).
[Crossref]

Y. N. He, X. G. Wang, and Q. X. Zhou, “Epoxy-based azo polymers: synthesis, characterization and photoinduced surface-relief-gratings,” Polymer (Guildf.) 43(26), 7325–7333 (2002).
[Crossref]

X. G. Wang, S. Balasubramanian, J. Kumar, S. K. Tripathy, and L. Li, “Azochromophore-functionalized polyelectrolytes. 1. Synthesis, characterization, and photoprocessing,” Chem. Mater. 10(6), 1546–1553 (1998).
[Crossref]

Xu, Z.

M. Guo, Z. Xu, and X. Wang, “Photofabrication of two-dimensional quasi-crystal patterns on UV-curable molecular azo glass films,” Langmuir 24(6), 2740–2745 (2008).
[Crossref] [PubMed]

Yu, H.

H. Yu and T. Ikeda, “Photocontrollable Liquid-Crystalline Actuators,” Adv. Mater. 23(19), 2149–2180 (2011).
[Crossref] [PubMed]

Zhang, D. Z.

Y. Sheng, K. Koynov, J. H. Dou, B. Q. Ma, J. J. Li, and D. Z. Zhang, “Collinear second harmonic generations in a nonlinear photonic quasicrystal,” Appl. Phys. Lett. 92(20), 201113 (2008).
[Crossref]

Zhou, Q. X.

Y. N. He, X. G. Wang, and Q. X. Zhou, “Epoxy-based azo polymers: synthesis, characterization and photoinduced surface-relief-gratings,” Polymer (Guildf.) 43(26), 7325–7333 (2002).
[Crossref]

Zoorob, M. E.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404(6779), 740–743 (2000).
[Crossref] [PubMed]

ACS Nano (1)

A. Singh, C. Dickinson, and K. M. Ryan, “Insight into the 3D architecture and quasicrystal symmetry of multilayer nanorod assemblies from Moiré interference patterns,” ACS Nano 6(4), 3339–3345 (2012).
[Crossref] [PubMed]

Adv. Mater. (5)

I. Bita, T. Choi, M. E. Walsh, H. I. Smith, and E. L. Thomas, “Large-area 3D nanostructures with octagonal quasicrystalline,” Adv. Mater. 19(10), 1403–1407 (2007).
[Crossref]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15(18), 1526–1528 (2003).
[Crossref]

H. Yu and T. Ikeda, “Photocontrollable Liquid-Crystalline Actuators,” Adv. Mater. 23(19), 2149–2180 (2011).
[Crossref] [PubMed]

S. Lee, H. S. Kang, and J. K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref] [PubMed]

H. Nakano, T. Takahashi, T. Kadota, and Y. Shirota, “Formation of a surface relief grating using a novel azobenzene-based photochromic amorphous molecular material,” Adv. Mater. 14(16), 1157–1160 (2002).
[Crossref]

Appl. Phys. Lett. (3)

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Y. Sheng, K. Koynov, J. H. Dou, B. Q. Ma, J. J. Li, and D. Z. Zhang, “Collinear second harmonic generations in a nonlinear photonic quasicrystal,” Appl. Phys. Lett. 92(20), 201113 (2008).
[Crossref]

Chem. Mater. (2)

M. J. Kim, E. M. Seo, D. Vak, and D. Y. Kim, “Photodynamic Properties of Azobenzene Molecular Films with Triphenylamines,” Chem. Mater. 15(21), 4021–4027 (2003).
[Crossref]

X. G. Wang, S. Balasubramanian, J. Kumar, S. K. Tripathy, and L. Li, “Azochromophore-functionalized polyelectrolytes. 1. Synthesis, characterization, and photoprocessing,” Chem. Mater. 10(6), 1546–1553 (1998).
[Crossref]

Chem. Rev. (2)

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[Crossref] [PubMed]

J. A. Delaire and K. Nakatani, “Linear and nonlinear optical properties of photochromic molecules and materials,” Chem. Rev. 100(5), 1817–1846 (2000).
[Crossref] [PubMed]

J. Mater. Chem. (1)

H. Nakano, T. Tanino, T. Takahashi, H. Ando, and Y. Shirota, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem. 18(2), 242–246 (2008).
[Crossref]

J. Mater. Chem. C (1)

M. Rippa, R. Capasso, L. Petti, G. Nenna, A. De Girolamo Del Mauro, M. G. Maglione, and C. Minarini, “Nanostructured PEDOT: PSS film with two-dimensional photonic quasi crystals for efficient white OLED devices,” J. Mater. Chem. C 3(1), 147–152 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Langmuir (1)

M. Guo, Z. Xu, and X. Wang, “Photofabrication of two-dimensional quasi-crystal patterns on UV-curable molecular azo glass films,” Langmuir 24(6), 2740–2745 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

H. R. Sharma, K. Nozawa, J. A. Smerdon, P. J. Nugent, I. McLeod, V. R. Dhanak, M. Shimoda, Y. Ishii, A. P. Tsai, and R. McGrath, “Templated three-dimensional growth of quasicrystalline lead,” Nat. Commun. 4, 2715 (2013).
[Crossref] [PubMed]

Nature (2)

W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, “Experimental measurement of the photonic properties of icosahedral quasicrystals,” Nature 436(7053), 993–996 (2005).
[Crossref] [PubMed]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404(6779), 740–743 (2000).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (2)

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

K. Hayashida, T. Dotera, A. Takano, and Y. Matsushita, “Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers,” Phys. Rev. Lett. 98(19), 195502 (2007).
[Crossref] [PubMed]

Polymer (Guildf.) (1)

Y. N. He, X. G. Wang, and Q. X. Zhou, “Epoxy-based azo polymers: synthesis, characterization and photoinduced surface-relief-gratings,” Polymer (Guildf.) 43(26), 7325–7333 (2002).
[Crossref]

Prog. Polym. Sci. (1)

D. R. Wang and X. G. Wang, “Amphiphilic azo polymers: molecular engineering, self-assembly and photoresponsive properties,” Prog. Polym. Sci. 38(2), 271–301 (2013).
[Crossref]

Other (1)

Z. M. Stadnik, Physical Properties of Quasicrystals (Springer, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The chemical structure of BP-AZ-CSMB.
Fig. 2
Fig. 2 AFM images of SRGs on BP-AZ-CSMB films after irradiated with interfering laser beams (532 nm, 100 mW cm−2) for 1000 s, a) 2D-view; b) 3D-view, c) the first order diffraction efficiency as a function of irradiation time for the two azo polymers.
Fig. 3
Fig. 3 10-fold quasi-crystal structures produced with the interference pattern (Λ = 3.0 μm). (a) AFM 2D-view image, (b) AFM 3D-view image, (c) optical micrograph, (d) photograph of the He-Ne laser diffraction pattern.
Fig. 4
Fig. 4 AFM 2D-view images of quasi-crystal surfaces: (a) 6-fold symmetry, (b) 8-fold symmetry, (c) 12-fold symmetry, (d) 36-fold symmetry.
Fig. 5
Fig. 5 The 72-fold quasi-crystal produced with the interference pattern (Λ = 2.0 μm): (a) AFM 3D-view image, (b) optical micrograph, (c) photograph of the He-Ne laser diffraction pattern.

Metrics