Abstract

To improve the sensitivity of the surface plasmon resonance (SPR) sensor based on the specialty optical fiber incorporated with Au nano-particles (NPs) in the cladding region, the effect of heat treatment (800 °C - 1000 °C) of the fiber on sensing capability of refractive index (n = 1.418 - 1.448) was investigated. The SPR appeared at a particular wavelength around 390 nm for the corresponding refractive indices regardless of the heat treatment temperature and the SPR wavelength increased with the increase of the index. The SPR sensitivity was found to increase with the increase of heat treatment temperature, 178 nm/RIU, 299 nm/RIU, and 945 nm/RIU at 800 °C, 900 °C, and 1000 °C for an hour, respectively. On the other hand, the SPR absorption intensity decreased with the increase of heat treatment temperature due to the increase of the propagation loss of the incident light and the SPR band became spread due to the increase of the size distribution of the Au NPs at the various refractive indices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A hydrogen curing effect on surface plasmon resonance fiber optic hydrogen sensors using an annealed Au/Ta2O5/Pd multi-layers film

Ai Hosoki, Michiko Nishiyama, Hirotaka Igawa, Atsushi Seki, and Kazuhiro Watanabe
Opt. Express 22(15) 18556-18563 (2014)

Effect of heat treatments on the performance of polymer optical fiber sensor

Nianbing Zhong, Mingfu Zhao, Qiang Liao, Xun Zhu, Yishan Li, and Zhonggang Xiong
Opt. Express 24(12) 13394-13409 (2016)

Effective modes investigation of transmitted and reflective heterocore optical fiber surface plasmon resonance sensors

Zhexuan Zheng, Zhikun Wang, Hongyun Gao, Jiafu Wang, and Min Li
Appl. Opt. 58(25) 6975-6982 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
    [Crossref]
  2. R. Slavík, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
    [Crossref]
  3. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
    [Crossref]
  4. B. D. Gupta and R. K. Verma, “Review article: Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
    [Crossref]
  5. C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126(39), 12669–12676 (2004).
    [Crossref] [PubMed]
  6. M. Mitsushio, S. Higashi, and M. Higo, “Construction and evaluation of a gold-deposited optical fiber sensor system for measurements of refractive indices of alcohols,” Sens. Actuators A Phys. 111(2–3), 252–259 (2004).
    [Crossref]
  7. S. Ju, S. Jeong, Y. Kim, P. Jeon, M.-S. Park, H. Jeong, S. Boo, J.-H. Jang, and W.-T. Han, “Experimental demonstration of surface plasmon resonance enhancement of the tapered optical fiber coated with Au/Ti thin film,” J. Non-Cryst. Solids 383(1), 146–152 (2013).
  8. S. Singh, R. K. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor with symmetric and asymmetric metallic coatings: a comparative study,” Sensors and Transducers J. 100(1), 116–124 (2009).
  9. S. Ju, S. Jeong, Y. Kim, P. Jeon, S. Boo, and W.-T. Han, “Development of specialty optical fiber incorporated with Au nano-particles in cladding for surface plasmon resonance sensors,” Sensors and Transducers J. 18, 76–83 (2013).
  10. H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, and S.-K. Lee, “Analysis of fiber-optic localized surface plasmon resonance sensor by controlling formation of gold nanoparticles and its bio-application,” J. Nanosci. Nanotechnol. 12(10), 7815–7821 (2012).
    [Crossref] [PubMed]
  11. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
    [Crossref] [PubMed]
  12. F. Yu, S. Ahl, A.-M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
    [Crossref] [PubMed]
  13. S. Singh and B. D. Gupta, “Simulation of a surface plasmon resonance-based fiber-optic sensor for gas sensing in visible range using films of nanocomposites,” Meas. Sci. Technol. 21(11), 115202 (2010).
    [Crossref]
  14. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
    [Crossref]
  15. K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27(6), 1160–1163 (1988).
    [Crossref] [PubMed]
  16. B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
    [Crossref]
  17. S. K. Srivastava and B. D. Gupta, “Simulation of a localized surface-plasmon-resonance-based fiber optic temperature sensor,” J. Opt. Soc. Am. A 27(7), 1743–1749 (2010).
    [Crossref] [PubMed]
  18. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
    [Crossref] [PubMed]
  19. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [Crossref] [PubMed]
  20. A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease,” Nano Lett. 4(6), 1029–1034 (2004).
    [Crossref]
  21. Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomed. Opt. Express 2(3), 478–484 (2011).
    [Crossref] [PubMed]
  22. T. Itoh, T. Uwada, T. Asahi, Y. Ozaki, and H. Masuhara, “Analysis of localized surface plasmon resonance by elastic light-scattering spectroscopy of individual Au nanoparticles for surface-enhanced Raman scattering,” Can. J. Anal. Sci. Spectrosc. 52, 130–141 (2007).
  23. A. S. Yeri, L. Gao, and D. Gao, “Mutation screening based on the mechanical properties of DNA molecules tethered to a solid surface,” J. Phys. Chem. B 114(2), 1064–1068 (2010).
    [Crossref] [PubMed]
  24. N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem. 76(18), 5370–5378 (2004).
    [Crossref] [PubMed]
  25. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
    [Crossref]
  26. K. T. Kim, H. S. Song, J. P. Mah, K. B. Hong, K. Im, S.-J. Baik, and Y.-I. Yoon, “Hydrogen sensor based on palladium coated side-polished single-mode fiber,” IEEE Sens. J. 7(12), 1767–1771 (2007).
    [Crossref]
  27. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
    [Crossref] [PubMed]
  28. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14(12), 5664–5670 (2006).
    [Crossref] [PubMed]
  29. H. Reather, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag: Berlin, 1988).
  30. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  31. K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
    [Crossref] [PubMed]
  32. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science 25 (Spronger, Berlin, 1995).
  33. P.-Y. Chung, T.-H. Lin, G. Schultz, C. Batich, and P. Jiang, “Nanopyramid surface plasmon resonance sensors,” Appl. Phys. Lett. 96(26), 261108 (2010).
    [Crossref] [PubMed]
  34. L. S. Live, O. R. Bolduc, and J.-F. Masson, “Propagating surface plasmon resonance on microhole arrays,” Anal. Chem. 82(9), 3780–3787 (2010).
    [Crossref] [PubMed]
  35. Y. Zhang, A. H. Yuwono, J. Li, and J. Wang, “Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration,” Microporous Mesoporous Mater. 110(2–3), 242–249 (2008).
    [Crossref]
  36. T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B 103(13), 2394–2401 (1999).
    [Crossref]
  37. S. H. Chang, S. Gray, and G. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
    [Crossref] [PubMed]
  38. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
    [Crossref] [PubMed]
  39. J. Fu, B. Park, and Y. Zhao, “Nanorod-mediated surface plasmon resonance sensor based on effective medium theory,” Appl. Opt. 48(23), 4637–4649 (2009).
    [Crossref] [PubMed]
  40. J. Kim, G. L. Liu, Y. Lu, and L. P. Lee, “Spectral tuning of localised surface plasmon-polariton resonance in metallic nano-crescents,” IEE Proc., Nanobiotechnol. 153(3), 42–46 (2006).
    [Crossref] [PubMed]
  41. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
    [Crossref] [PubMed]
  42. N. Halas, “Playing with plasmons. Tuning the optical resonant properties of metallic nanoshells,” MRS Bull. 30(05), 362–367 (2005).
    [Crossref]
  43. G. P. Anderson, J. P. Golden, L. K. Cao, D. Wijesuriya, L. C. Shriver-Lake, and F. S. Ligler, “Development of an evanescent wave fiber optic biosensor,” IEEE Eng. Med. Biol. Mag. 13(3), 358–363 (1994).
    [Crossref]
  44. T.-C. Peng, W.-C. Lin, C.-W. Chen, D. P. Tsai, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles,” Plasmonics 6(1), 29–34 (2011).
    [Crossref]
  45. S. Ju, P. R. Watekar, C. Kim, and W.-T. Han, “Particle size control of PbTe quantum dots incorporated in the germano-silicate glass optical fiber by heat treatment,” J. Non-Cryst. Solids 356(43), 2273–2276 (2010).
    [Crossref]
  46. S. Ju, P. R. Watekar, D. H. Son, T. Hwang, and W.-T. Han, “Fabrication and estimation of diffusion coefficient of Pb in PbO/GeO2-dodoped optical fiber with thermally expanded core,” Processing, Properties and Applications of Glass and Optical Materials: Ceramic transactions 231, 219–225 (John Wiley, 2012).
  47. N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic Press, Orlando Fla. 1986).
  48. J. Matsuoka, R. Mizutani, S. Kaneko, H. Nasu, K. Kamiya, K. Kadono, T. Sakaguchi, and M. Miya, “Sol-Gel processing and optical nonlinearity of gold colloid-doped silica glass,” J. Ceram. Soc. Jpn. 101(1169), 53–58 (1993).
    [Crossref]
  49. S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol. 6(11), 3555–3558 (2006).
    [Crossref] [PubMed]
  50. H. Shi, L. Zhang, and W. Cai, “Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica,” Mater. Res. Bull. 35(10), 1689–1695 (2000).
    [Crossref]
  51. J. E. Roman and K. A. Winick, “Photowritten gratings in ion-exchanged glass waveguides,” Opt. Lett. 18(10), 808–810 (1993).
    [Crossref] [PubMed]
  52. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007).
    [Crossref] [PubMed]
  53. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
    [Crossref]
  54. Y. Sun and Y. Xia, “Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm,” Analyst (Lond.) 128(6), 686–691 (2003).
    [Crossref] [PubMed]
  55. S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
    [Crossref] [PubMed]
  56. W. Cai, H. Hofmeister, T. Rainer, and W. Chen, “Optical properties of Ag and Au nanoparticles dispersed within the pores of monolithic mesoporous silica,” J. Nanopart. Res. 3(5–6), 443–453 (2001).
  57. A. E. Badger, W. Weyl, and H. Rudow, “Effect of heat-treatment on color of gold-ruby glass,” Glass Ind. 20, 407–414 (1939).
  58. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [Crossref] [PubMed]
  59. S. Pandey, G. K. Goswami, and K. K. Nanda, “Green synthesis of polysaccharide/gold nanoparticle nanocomposite: An efficient ammonia sensor,” Carbohydr. Polym. 94(1), 229–234 (2013).
    [Crossref] [PubMed]
  60. Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Mater. 7(7), 5169–5201 (2014).
    [Crossref]
  61. J. Conde, J. T. Dias, V. Grazú, M. Moros, P. V. Baptista, and J. M. de la Fuente, “Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine,” Front Chem 2(48), 48 (2014).
    [PubMed]
  62. S. O. Pereira, A. Barros-Timmons, and T. Trindade, “Biofunctionalisation of colloidal gold nanoparticles via polyelectrolytes assemblies,” Colloid Polym. Sci. 292(1), 33–50 (2014).
    [Crossref]
  63. M. Lee, L. Chae, and K. C. Lee, “Microstructure and surface plasmon absorption of sol-gel-prepared Au nanoclusters in TiO2 thin films,” Nanostruct. Mater. 11(2), 195–201 (1999).
    [Crossref]

2014 (3)

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Mater. 7(7), 5169–5201 (2014).
[Crossref]

J. Conde, J. T. Dias, V. Grazú, M. Moros, P. V. Baptista, and J. M. de la Fuente, “Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine,” Front Chem 2(48), 48 (2014).
[PubMed]

S. O. Pereira, A. Barros-Timmons, and T. Trindade, “Biofunctionalisation of colloidal gold nanoparticles via polyelectrolytes assemblies,” Colloid Polym. Sci. 292(1), 33–50 (2014).
[Crossref]

2013 (3)

S. Pandey, G. K. Goswami, and K. K. Nanda, “Green synthesis of polysaccharide/gold nanoparticle nanocomposite: An efficient ammonia sensor,” Carbohydr. Polym. 94(1), 229–234 (2013).
[Crossref] [PubMed]

S. Ju, S. Jeong, Y. Kim, P. Jeon, S. Boo, and W.-T. Han, “Development of specialty optical fiber incorporated with Au nano-particles in cladding for surface plasmon resonance sensors,” Sensors and Transducers J. 18, 76–83 (2013).

S. Ju, S. Jeong, Y. Kim, P. Jeon, M.-S. Park, H. Jeong, S. Boo, J.-H. Jang, and W.-T. Han, “Experimental demonstration of surface plasmon resonance enhancement of the tapered optical fiber coated with Au/Ti thin film,” J. Non-Cryst. Solids 383(1), 146–152 (2013).

2012 (1)

H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, and S.-K. Lee, “Analysis of fiber-optic localized surface plasmon resonance sensor by controlling formation of gold nanoparticles and its bio-application,” J. Nanosci. Nanotechnol. 12(10), 7815–7821 (2012).
[Crossref] [PubMed]

2011 (3)

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

T.-C. Peng, W.-C. Lin, C.-W. Chen, D. P. Tsai, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles,” Plasmonics 6(1), 29–34 (2011).
[Crossref]

Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomed. Opt. Express 2(3), 478–484 (2011).
[Crossref] [PubMed]

2010 (6)

S. K. Srivastava and B. D. Gupta, “Simulation of a localized surface-plasmon-resonance-based fiber optic temperature sensor,” J. Opt. Soc. Am. A 27(7), 1743–1749 (2010).
[Crossref] [PubMed]

S. Ju, P. R. Watekar, C. Kim, and W.-T. Han, “Particle size control of PbTe quantum dots incorporated in the germano-silicate glass optical fiber by heat treatment,” J. Non-Cryst. Solids 356(43), 2273–2276 (2010).
[Crossref]

S. Singh and B. D. Gupta, “Simulation of a surface plasmon resonance-based fiber-optic sensor for gas sensing in visible range using films of nanocomposites,” Meas. Sci. Technol. 21(11), 115202 (2010).
[Crossref]

A. S. Yeri, L. Gao, and D. Gao, “Mutation screening based on the mechanical properties of DNA molecules tethered to a solid surface,” J. Phys. Chem. B 114(2), 1064–1068 (2010).
[Crossref] [PubMed]

P.-Y. Chung, T.-H. Lin, G. Schultz, C. Batich, and P. Jiang, “Nanopyramid surface plasmon resonance sensors,” Appl. Phys. Lett. 96(26), 261108 (2010).
[Crossref] [PubMed]

L. S. Live, O. R. Bolduc, and J.-F. Masson, “Propagating surface plasmon resonance on microhole arrays,” Anal. Chem. 82(9), 3780–3787 (2010).
[Crossref] [PubMed]

2009 (4)

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

S. Singh, R. K. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor with symmetric and asymmetric metallic coatings: a comparative study,” Sensors and Transducers J. 100(1), 116–124 (2009).

B. D. Gupta and R. K. Verma, “Review article: Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]

J. Fu, B. Park, and Y. Zhao, “Nanorod-mediated surface plasmon resonance sensor based on effective medium theory,” Appl. Opt. 48(23), 4637–4649 (2009).
[Crossref] [PubMed]

2008 (3)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Y. Zhang, A. H. Yuwono, J. Li, and J. Wang, “Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration,” Microporous Mesoporous Mater. 110(2–3), 242–249 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

2007 (7)

T. Itoh, T. Uwada, T. Asahi, Y. Ozaki, and H. Masuhara, “Analysis of localized surface plasmon resonance by elastic light-scattering spectroscopy of individual Au nanoparticles for surface-enhanced Raman scattering,” Can. J. Anal. Sci. Spectrosc. 52, 130–141 (2007).

K. T. Kim, H. S. Song, J. P. Mah, K. B. Hong, K. Im, S.-J. Baik, and Y.-I. Yoon, “Hydrogen sensor based on palladium coated side-polished single-mode fiber,” IEEE Sens. J. 7(12), 1767–1771 (2007).
[Crossref]

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref] [PubMed]

Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
[Crossref] [PubMed]

R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007).
[Crossref] [PubMed]

2006 (5)

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol. 6(11), 3555–3558 (2006).
[Crossref] [PubMed]

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14(12), 5664–5670 (2006).
[Crossref] [PubMed]

F. Yu, S. Ahl, A.-M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[Crossref] [PubMed]

J. Kim, G. L. Liu, Y. Lu, and L. P. Lee, “Spectral tuning of localised surface plasmon-polariton resonance in metallic nano-crescents,” IEE Proc., Nanobiotechnol. 153(3), 42–46 (2006).
[Crossref] [PubMed]

2005 (4)

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

N. Halas, “Playing with plasmons. Tuning the optical resonant properties of metallic nanoshells,” MRS Bull. 30(05), 362–367 (2005).
[Crossref]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
[Crossref] [PubMed]

S. H. Chang, S. Gray, and G. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
[Crossref] [PubMed]

2004 (4)

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease,” Nano Lett. 4(6), 1029–1034 (2004).
[Crossref]

C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126(39), 12669–12676 (2004).
[Crossref] [PubMed]

M. Mitsushio, S. Higashi, and M. Higo, “Construction and evaluation of a gold-deposited optical fiber sensor system for measurements of refractive indices of alcohols,” Sens. Actuators A Phys. 111(2–3), 252–259 (2004).
[Crossref]

N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem. 76(18), 5370–5378 (2004).
[Crossref] [PubMed]

2003 (3)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Y. Sun and Y. Xia, “Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm,” Analyst (Lond.) 128(6), 686–691 (2003).
[Crossref] [PubMed]

2001 (2)

W. Cai, H. Hofmeister, T. Rainer, and W. Chen, “Optical properties of Ag and Au nanoparticles dispersed within the pores of monolithic mesoporous silica,” J. Nanopart. Res. 3(5–6), 443–453 (2001).

R. Slavík, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
[Crossref]

2000 (1)

H. Shi, L. Zhang, and W. Cai, “Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica,” Mater. Res. Bull. 35(10), 1689–1695 (2000).
[Crossref]

1999 (3)

M. Lee, L. Chae, and K. C. Lee, “Microstructure and surface plasmon absorption of sol-gel-prepared Au nanoclusters in TiO2 thin films,” Nanostruct. Mater. 11(2), 195–201 (1999).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B 103(13), 2394–2401 (1999).
[Crossref]

1994 (1)

G. P. Anderson, J. P. Golden, L. K. Cao, D. Wijesuriya, L. C. Shriver-Lake, and F. S. Ligler, “Development of an evanescent wave fiber optic biosensor,” IEEE Eng. Med. Biol. Mag. 13(3), 358–363 (1994).
[Crossref]

1993 (3)

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

J. E. Roman and K. A. Winick, “Photowritten gratings in ion-exchanged glass waveguides,” Opt. Lett. 18(10), 808–810 (1993).
[Crossref] [PubMed]

J. Matsuoka, R. Mizutani, S. Kaneko, H. Nasu, K. Kamiya, K. Kadono, T. Sakaguchi, and M. Miya, “Sol-Gel processing and optical nonlinearity of gold colloid-doped silica glass,” J. Ceram. Soc. Jpn. 101(1169), 53–58 (1993).
[Crossref]

1988 (1)

1983 (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

1939 (1)

A. E. Badger, W. Weyl, and H. Rudow, “Effect of heat-treatment on color of gold-ruby glass,” Glass Ind. 20, 407–414 (1939).

Ahl, S.

F. Yu, S. Ahl, A.-M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Aizpurua, J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Albert, J.

Alivisatos, A. P.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
[Crossref] [PubMed]

Anderson, G. P.

G. P. Anderson, J. P. Golden, L. K. Cao, D. Wijesuriya, L. C. Shriver-Lake, and F. S. Ligler, “Development of an evanescent wave fiber optic biosensor,” IEEE Eng. Med. Biol. Mag. 13(3), 358–363 (1994).
[Crossref]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Asahi, T.

T. Itoh, T. Uwada, T. Asahi, Y. Ozaki, and H. Masuhara, “Analysis of localized surface plasmon resonance by elastic light-scattering spectroscopy of individual Au nanoparticles for surface-enhanced Raman scattering,” Can. J. Anal. Sci. Spectrosc. 52, 130–141 (2007).

Badger, A. E.

A. E. Badger, W. Weyl, and H. Rudow, “Effect of heat-treatment on color of gold-ruby glass,” Glass Ind. 20, 407–414 (1939).

Baik, S.-J.

K. T. Kim, H. S. Song, J. P. Mah, K. B. Hong, K. Im, S.-J. Baik, and Y.-I. Yoon, “Hydrogen sensor based on palladium coated side-polished single-mode fiber,” IEEE Sens. J. 7(12), 1767–1771 (2007).
[Crossref]

Baptista, P. V.

J. Conde, J. T. Dias, V. Grazú, M. Moros, P. V. Baptista, and J. M. de la Fuente, “Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine,” Front Chem 2(48), 48 (2014).
[PubMed]

Barros-Timmons, A.

S. O. Pereira, A. Barros-Timmons, and T. Trindade, “Biofunctionalisation of colloidal gold nanoparticles via polyelectrolytes assemblies,” Colloid Polym. Sci. 292(1), 33–50 (2014).
[Crossref]

Barrow, C. J.

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Mater. 7(7), 5169–5201 (2014).
[Crossref]

Batich, C.

P.-Y. Chung, T.-H. Lin, G. Schultz, C. Batich, and P. Jiang, “Nanopyramid surface plasmon resonance sensors,” Appl. Phys. Lett. 96(26), 261108 (2010).
[Crossref] [PubMed]

Bolduc, O. R.

L. S. Live, O. R. Bolduc, and J.-F. Masson, “Propagating surface plasmon resonance on microhole arrays,” Anal. Chem. 82(9), 3780–3787 (2010).
[Crossref] [PubMed]

Boo, S.

S. Ju, S. Jeong, Y. Kim, P. Jeon, S. Boo, and W.-T. Han, “Development of specialty optical fiber incorporated with Au nano-particles in cladding for surface plasmon resonance sensors,” Sensors and Transducers J. 18, 76–83 (2013).

S. Ju, S. Jeong, Y. Kim, P. Jeon, M.-S. Park, H. Jeong, S. Boo, J.-H. Jang, and W.-T. Han, “Experimental demonstration of surface plasmon resonance enhancement of the tapered optical fiber coated with Au/Ti thin film,” J. Non-Cryst. Solids 383(1), 146–152 (2013).

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol. 6(11), 3555–3558 (2006).
[Crossref] [PubMed]

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Brynda, E.

R. Slavík, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
[Crossref]

Cai, W.

W. Cai, H. Hofmeister, T. Rainer, and W. Chen, “Optical properties of Ag and Au nanoparticles dispersed within the pores of monolithic mesoporous silica,” J. Nanopart. Res. 3(5–6), 443–453 (2001).

H. Shi, L. Zhang, and W. Cai, “Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica,” Mater. Res. Bull. 35(10), 1689–1695 (2000).
[Crossref]

Caminade, A.-M.

F. Yu, S. Ahl, A.-M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Cao, L. K.

G. P. Anderson, J. P. Golden, L. K. Cao, D. Wijesuriya, L. C. Shriver-Lake, and F. S. Ligler, “Development of an evanescent wave fiber optic biosensor,” IEEE Eng. Med. Biol. Mag. 13(3), 358–363 (1994).
[Crossref]

Chae, L.

M. Lee, L. Chae, and K. C. Lee, “Microstructure and surface plasmon absorption of sol-gel-prepared Au nanoclusters in TiO2 thin films,” Nanostruct. Mater. 11(2), 195–201 (1999).
[Crossref]

Chang, L.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease,” Nano Lett. 4(6), 1029–1034 (2004).
[Crossref]

Chang, S. H.

Chen, C.-W.

T.-C. Peng, W.-C. Lin, C.-W. Chen, D. P. Tsai, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles,” Plasmonics 6(1), 29–34 (2011).
[Crossref]

Chen, W.

W. Cai, H. Hofmeister, T. Rainer, and W. Chen, “Optical properties of Ag and Au nanoparticles dispersed within the pores of monolithic mesoporous silica,” J. Nanopart. Res. 3(5–6), 443–453 (2001).

Chiang, H.-P.

T.-C. Peng, W.-C. Lin, C.-W. Chen, D. P. Tsai, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles,” Plasmonics 6(1), 29–34 (2011).
[Crossref]

Chilkoti, A.

N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem. 76(18), 5370–5378 (2004).
[Crossref] [PubMed]

Chu, W.

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Mater. 7(7), 5169–5201 (2014).
[Crossref]

Chung, P.-Y.

P.-Y. Chung, T.-H. Lin, G. Schultz, C. Batich, and P. Jiang, “Nanopyramid surface plasmon resonance sensors,” Appl. Phys. Lett. 96(26), 261108 (2010).
[Crossref] [PubMed]

Conde, J.

J. Conde, J. T. Dias, V. Grazú, M. Moros, P. V. Baptista, and J. M. de la Fuente, “Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine,” Front Chem 2(48), 48 (2014).
[PubMed]

Ctyroký, J.

R. Slavík, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
[Crossref]

de la Fuente, J. M.

J. Conde, J. T. Dias, V. Grazú, M. Moros, P. V. Baptista, and J. M. de la Fuente, “Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine,” Front Chem 2(48), 48 (2014).
[PubMed]

Dias, J. T.

J. Conde, J. T. Dias, V. Grazú, M. Moros, P. V. Baptista, and J. M. de la Fuente, “Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine,” Front Chem 2(48), 48 (2014).
[PubMed]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[Crossref] [PubMed]

Erdene, N.

H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, and S.-K. Lee, “Analysis of fiber-optic localized surface plasmon resonance sensor by controlling formation of gold nanoparticles and its bio-application,” J. Nanosci. Nanotechnol. 12(10), 7815–7821 (2012).
[Crossref] [PubMed]

Erlebacher, J.

F. Yu, S. Ahl, A.-M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Ewers, T.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Foroushani, A. D.

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Mater. 7(7), 5169–5201 (2014).
[Crossref]

Fu, J.

Gao, D.

A. S. Yeri, L. Gao, and D. Gao, “Mutation screening based on the mechanical properties of DNA molecules tethered to a solid surface,” J. Phys. Chem. B 114(2), 1064–1068 (2010).
[Crossref] [PubMed]

Gao, L.

A. S. Yeri, L. Gao, and D. Gao, “Mutation screening based on the mechanical properties of DNA molecules tethered to a solid surface,” J. Phys. Chem. B 114(2), 1064–1068 (2010).
[Crossref] [PubMed]

García de Abajo, F. J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Ghosh, S. K.

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref] [PubMed]

Golden, J. P.

G. P. Anderson, J. P. Golden, L. K. Cao, D. Wijesuriya, L. C. Shriver-Lake, and F. S. Ligler, “Development of an evanescent wave fiber optic biosensor,” IEEE Eng. Med. Biol. Mag. 13(3), 358–363 (1994).
[Crossref]

Goswami, G. K.

S. Pandey, G. K. Goswami, and K. K. Nanda, “Green synthesis of polysaccharide/gold nanoparticle nanocomposite: An efficient ammonia sensor,” Carbohydr. Polym. 94(1), 229–234 (2013).
[Crossref] [PubMed]

Gray, S.

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Grazú, V.

J. Conde, J. T. Dias, V. Grazú, M. Moros, P. V. Baptista, and J. M. de la Fuente, “Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine,” Front Chem 2(48), 48 (2014).
[PubMed]

Gupta, B. D.

S. K. Srivastava and B. D. Gupta, “Simulation of a localized surface-plasmon-resonance-based fiber optic temperature sensor,” J. Opt. Soc. Am. A 27(7), 1743–1749 (2010).
[Crossref] [PubMed]

S. Singh and B. D. Gupta, “Simulation of a surface plasmon resonance-based fiber-optic sensor for gas sensing in visible range using films of nanocomposites,” Meas. Sci. Technol. 21(11), 115202 (2010).
[Crossref]

B. D. Gupta and R. K. Verma, “Review article: Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]

S. Singh, R. K. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor with symmetric and asymmetric metallic coatings: a comparative study,” Sensors and Transducers J. 100(1), 116–124 (2009).

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Haes, A. J.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease,” Nano Lett. 4(6), 1029–1034 (2004).
[Crossref]

Halas, N.

N. Halas, “Playing with plasmons. Tuning the optical resonant properties of metallic nanoshells,” MRS Bull. 30(05), 362–367 (2005).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease,” Nano Lett. 4(6), 1029–1034 (2004).
[Crossref]

Han, W.-T.

S. Ju, S. Jeong, Y. Kim, P. Jeon, M.-S. Park, H. Jeong, S. Boo, J.-H. Jang, and W.-T. Han, “Experimental demonstration of surface plasmon resonance enhancement of the tapered optical fiber coated with Au/Ti thin film,” J. Non-Cryst. Solids 383(1), 146–152 (2013).

S. Ju, S. Jeong, Y. Kim, P. Jeon, S. Boo, and W.-T. Han, “Development of specialty optical fiber incorporated with Au nano-particles in cladding for surface plasmon resonance sensors,” Sensors and Transducers J. 18, 76–83 (2013).

S. Ju, P. R. Watekar, C. Kim, and W.-T. Han, “Particle size control of PbTe quantum dots incorporated in the germano-silicate glass optical fiber by heat treatment,” J. Non-Cryst. Solids 356(43), 2273–2276 (2010).
[Crossref]

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol. 6(11), 3555–3558 (2006).
[Crossref] [PubMed]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Higashi, S.

M. Mitsushio, S. Higashi, and M. Higo, “Construction and evaluation of a gold-deposited optical fiber sensor system for measurements of refractive indices of alcohols,” Sens. Actuators A Phys. 111(2–3), 252–259 (2004).
[Crossref]

Higo, M.

M. Mitsushio, S. Higashi, and M. Higo, “Construction and evaluation of a gold-deposited optical fiber sensor system for measurements of refractive indices of alcohols,” Sens. Actuators A Phys. 111(2–3), 252–259 (2004).
[Crossref]

Hofmeister, H.

W. Cai, H. Hofmeister, T. Rainer, and W. Chen, “Optical properties of Ag and Au nanoparticles dispersed within the pores of monolithic mesoporous silica,” J. Nanopart. Res. 3(5–6), 443–453 (2001).

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

R. Slavík, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Hong, K. B.

K. T. Kim, H. S. Song, J. P. Mah, K. B. Hong, K. Im, S.-J. Baik, and Y.-I. Yoon, “Hydrogen sensor based on palladium coated side-polished single-mode fiber,” IEEE Sens. J. 7(12), 1767–1771 (2007).
[Crossref]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

Im, K.

K. T. Kim, H. S. Song, J. P. Mah, K. B. Hong, K. Im, S.-J. Baik, and Y.-I. Yoon, “Hydrogen sensor based on palladium coated side-polished single-mode fiber,” IEEE Sens. J. 7(12), 1767–1771 (2007).
[Crossref]

Itoh, T.

T. Itoh, T. Uwada, T. Asahi, Y. Ozaki, and H. Masuhara, “Analysis of localized surface plasmon resonance by elastic light-scattering spectroscopy of individual Au nanoparticles for surface-enhanced Raman scattering,” Can. J. Anal. Sci. Spectrosc. 52, 130–141 (2007).

Jain, P. K.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

Jang, J.-H.

S. Ju, S. Jeong, Y. Kim, P. Jeon, M.-S. Park, H. Jeong, S. Boo, J.-H. Jang, and W.-T. Han, “Experimental demonstration of surface plasmon resonance enhancement of the tapered optical fiber coated with Au/Ti thin film,” J. Non-Cryst. Solids 383(1), 146–152 (2013).

Jensen, T. R.

T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B 103(13), 2394–2401 (1999).
[Crossref]

Jeon, P.

S. Ju, S. Jeong, Y. Kim, P. Jeon, M.-S. Park, H. Jeong, S. Boo, J.-H. Jang, and W.-T. Han, “Experimental demonstration of surface plasmon resonance enhancement of the tapered optical fiber coated with Au/Ti thin film,” J. Non-Cryst. Solids 383(1), 146–152 (2013).

S. Ju, S. Jeong, Y. Kim, P. Jeon, S. Boo, and W.-T. Han, “Development of specialty optical fiber incorporated with Au nano-particles in cladding for surface plasmon resonance sensors,” Sensors and Transducers J. 18, 76–83 (2013).

Jeong, C.

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol. 6(11), 3555–3558 (2006).
[Crossref] [PubMed]

Jeong, D.-H.

H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, and S.-K. Lee, “Analysis of fiber-optic localized surface plasmon resonance sensor by controlling formation of gold nanoparticles and its bio-application,” J. Nanosci. Nanotechnol. 12(10), 7815–7821 (2012).
[Crossref] [PubMed]

Jeong, H.

S. Ju, S. Jeong, Y. Kim, P. Jeon, M.-S. Park, H. Jeong, S. Boo, J.-H. Jang, and W.-T. Han, “Experimental demonstration of surface plasmon resonance enhancement of the tapered optical fiber coated with Au/Ti thin film,” J. Non-Cryst. Solids 383(1), 146–152 (2013).

Jeong, H.-H.

H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, and S.-K. Lee, “Analysis of fiber-optic localized surface plasmon resonance sensor by controlling formation of gold nanoparticles and its bio-application,” J. Nanosci. Nanotechnol. 12(10), 7815–7821 (2012).
[Crossref] [PubMed]

Jeong, S.

S. Ju, S. Jeong, Y. Kim, P. Jeon, M.-S. Park, H. Jeong, S. Boo, J.-H. Jang, and W.-T. Han, “Experimental demonstration of surface plasmon resonance enhancement of the tapered optical fiber coated with Au/Ti thin film,” J. Non-Cryst. Solids 383(1), 146–152 (2013).

S. Ju, S. Jeong, Y. Kim, P. Jeon, S. Boo, and W.-T. Han, “Development of specialty optical fiber incorporated with Au nano-particles in cladding for surface plasmon resonance sensors,” Sensors and Transducers J. 18, 76–83 (2013).

Jeoung, E.

C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126(39), 12669–12676 (2004).
[Crossref] [PubMed]

Jha, R.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Jiang, P.

P.-Y. Chung, T.-H. Lin, G. Schultz, C. Batich, and P. Jiang, “Nanopyramid surface plasmon resonance sensors,” Appl. Phys. Lett. 96(26), 261108 (2010).
[Crossref] [PubMed]

Jonasz, M.

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

Ju, S.

S. Ju, S. Jeong, Y. Kim, P. Jeon, S. Boo, and W.-T. Han, “Development of specialty optical fiber incorporated with Au nano-particles in cladding for surface plasmon resonance sensors,” Sensors and Transducers J. 18, 76–83 (2013).

S. Ju, S. Jeong, Y. Kim, P. Jeon, M.-S. Park, H. Jeong, S. Boo, J.-H. Jang, and W.-T. Han, “Experimental demonstration of surface plasmon resonance enhancement of the tapered optical fiber coated with Au/Ti thin film,” J. Non-Cryst. Solids 383(1), 146–152 (2013).

S. Ju, P. R. Watekar, C. Kim, and W.-T. Han, “Particle size control of PbTe quantum dots incorporated in the germano-silicate glass optical fiber by heat treatment,” J. Non-Cryst. Solids 356(43), 2273–2276 (2010).
[Crossref]

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol. 6(11), 3555–3558 (2006).
[Crossref] [PubMed]

Kadono, K.

J. Matsuoka, R. Mizutani, S. Kaneko, H. Nasu, K. Kamiya, K. Kadono, T. Sakaguchi, and M. Miya, “Sol-Gel processing and optical nonlinearity of gold colloid-doped silica glass,” J. Ceram. Soc. Jpn. 101(1169), 53–58 (1993).
[Crossref]

Käll, M.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Kamiya, K.

J. Matsuoka, R. Mizutani, S. Kaneko, H. Nasu, K. Kamiya, K. Kadono, T. Sakaguchi, and M. Miya, “Sol-Gel processing and optical nonlinearity of gold colloid-doped silica glass,” J. Ceram. Soc. Jpn. 101(1169), 53–58 (1993).
[Crossref]

Kaneko, S.

J. Matsuoka, R. Mizutani, S. Kaneko, H. Nasu, K. Kamiya, K. Kadono, T. Sakaguchi, and M. Miya, “Sol-Gel processing and optical nonlinearity of gold colloid-doped silica glass,” J. Ceram. Soc. Jpn. 101(1169), 53–58 (1993).
[Crossref]

Kawata, S.

Kim, B. H.

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol. 6(11), 3555–3558 (2006).
[Crossref] [PubMed]

Kim, C.

S. Ju, P. R. Watekar, C. Kim, and W.-T. Han, “Particle size control of PbTe quantum dots incorporated in the germano-silicate glass optical fiber by heat treatment,” J. Non-Cryst. Solids 356(43), 2273–2276 (2010).
[Crossref]

Kim, C. J.

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol. 6(11), 3555–3558 (2006).
[Crossref] [PubMed]

Kim, J.

J. Kim, G. L. Liu, Y. Lu, and L. P. Lee, “Spectral tuning of localised surface plasmon-polariton resonance in metallic nano-crescents,” IEE Proc., Nanobiotechnol. 153(3), 42–46 (2006).
[Crossref] [PubMed]

Kim, K. T.

K. T. Kim, H. S. Song, J. P. Mah, K. B. Hong, K. Im, S.-J. Baik, and Y.-I. Yoon, “Hydrogen sensor based on palladium coated side-polished single-mode fiber,” IEEE Sens. J. 7(12), 1767–1771 (2007).
[Crossref]

Kim, Y.

S. Ju, S. Jeong, Y. Kim, P. Jeon, M.-S. Park, H. Jeong, S. Boo, J.-H. Jang, and W.-T. Han, “Experimental demonstration of surface plasmon resonance enhancement of the tapered optical fiber coated with Au/Ti thin film,” J. Non-Cryst. Solids 383(1), 146–152 (2013).

S. Ju, S. Jeong, Y. Kim, P. Jeon, S. Boo, and W.-T. Han, “Development of specialty optical fiber incorporated with Au nano-particles in cladding for surface plasmon resonance sensors,” Sensors and Transducers J. 18, 76–83 (2013).

Kitamura, R.

Klein, W. L.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease,” Nano Lett. 4(6), 1029–1034 (2004).
[Crossref]

Knoll, W.

F. Yu, S. Ahl, A.-M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Lee, B.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Lee, K. C.

M. Lee, L. Chae, and K. C. Lee, “Microstructure and surface plasmon absorption of sol-gel-prepared Au nanoclusters in TiO2 thin films,” Nanostruct. Mater. 11(2), 195–201 (1999).
[Crossref]

Lee, K.-S.

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[Crossref] [PubMed]

Lee, L. P.

J. Kim, G. L. Liu, Y. Lu, and L. P. Lee, “Spectral tuning of localised surface plasmon-polariton resonance in metallic nano-crescents,” IEE Proc., Nanobiotechnol. 153(3), 42–46 (2006).
[Crossref] [PubMed]

Lee, M.

M. Lee, L. Chae, and K. C. Lee, “Microstructure and surface plasmon absorption of sol-gel-prepared Au nanoclusters in TiO2 thin films,” Nanostruct. Mater. 11(2), 195–201 (1999).
[Crossref]

Lee, S.-K.

H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, and S.-K. Lee, “Analysis of fiber-optic localized surface plasmon resonance sensor by controlling formation of gold nanoparticles and its bio-application,” J. Nanosci. Nanotechnol. 12(10), 7815–7821 (2012).
[Crossref] [PubMed]

Li, D.

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Mater. 7(7), 5169–5201 (2014).
[Crossref]

Li, J.

Y. Zhang, A. H. Yuwono, J. Li, and J. Wang, “Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration,” Microporous Mesoporous Mater. 110(2–3), 242–249 (2008).
[Crossref]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Ligler, F. S.

G. P. Anderson, J. P. Golden, L. K. Cao, D. Wijesuriya, L. C. Shriver-Lake, and F. S. Ligler, “Development of an evanescent wave fiber optic biosensor,” IEEE Eng. Med. Biol. Mag. 13(3), 358–363 (1994).
[Crossref]

Lin, T.-H.

P.-Y. Chung, T.-H. Lin, G. Schultz, C. Batich, and P. Jiang, “Nanopyramid surface plasmon resonance sensors,” Appl. Phys. Lett. 96(26), 261108 (2010).
[Crossref] [PubMed]

Lin, W.-C.

T.-C. Peng, W.-C. Lin, C.-W. Chen, D. P. Tsai, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles,” Plasmonics 6(1), 29–34 (2011).
[Crossref]

Lin, Y.

Lindquist, R. G.

Liphardt, J.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
[Crossref] [PubMed]

Liu, G. L.

J. Kim, G. L. Liu, Y. Lu, and L. P. Lee, “Spectral tuning of localised surface plasmon-polariton resonance in metallic nano-crescents,” IEE Proc., Nanobiotechnol. 153(3), 42–46 (2006).
[Crossref] [PubMed]

Liu, J.

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Mater. 7(7), 5169–5201 (2014).
[Crossref]

Liu, Z.

Liu, Z. W.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Live, L. S.

L. S. Live, O. R. Bolduc, and J.-F. Masson, “Propagating surface plasmon resonance on microhole arrays,” Anal. Chem. 82(9), 3780–3787 (2010).
[Crossref] [PubMed]

Lu, Y.

J. Kim, G. L. Liu, Y. Lu, and L. P. Lee, “Spectral tuning of localised surface plasmon-polariton resonance in metallic nano-crescents,” IEE Proc., Nanobiotechnol. 153(3), 42–46 (2006).
[Crossref] [PubMed]

Lunström, I.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Luther, J. M.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Mah, J. P.

K. T. Kim, H. S. Song, J. P. Mah, K. B. Hong, K. Im, S.-J. Baik, and Y.-I. Yoon, “Hydrogen sensor based on palladium coated side-polished single-mode fiber,” IEEE Sens. J. 7(12), 1767–1771 (2007).
[Crossref]

Majoral, J. P.

F. Yu, S. Ahl, A.-M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Masson, J.-F.

L. S. Live, O. R. Bolduc, and J.-F. Masson, “Propagating surface plasmon resonance on microhole arrays,” Anal. Chem. 82(9), 3780–3787 (2010).
[Crossref] [PubMed]

Masuhara, H.

T. Itoh, T. Uwada, T. Asahi, Y. Ozaki, and H. Masuhara, “Analysis of localized surface plasmon resonance by elastic light-scattering spectroscopy of individual Au nanoparticles for surface-enhanced Raman scattering,” Can. J. Anal. Sci. Spectrosc. 52, 130–141 (2007).

Matsubara, K.

Matsuoka, J.

J. Matsuoka, R. Mizutani, S. Kaneko, H. Nasu, K. Kamiya, K. Kadono, T. Sakaguchi, and M. Miya, “Sol-Gel processing and optical nonlinearity of gold colloid-doped silica glass,” J. Ceram. Soc. Jpn. 101(1169), 53–58 (1993).
[Crossref]

Minami, S.

Mitsushio, M.

M. Mitsushio, S. Higashi, and M. Higo, “Construction and evaluation of a gold-deposited optical fiber sensor system for measurements of refractive indices of alcohols,” Sens. Actuators A Phys. 111(2–3), 252–259 (2004).
[Crossref]

Miya, M.

J. Matsuoka, R. Mizutani, S. Kaneko, H. Nasu, K. Kamiya, K. Kadono, T. Sakaguchi, and M. Miya, “Sol-Gel processing and optical nonlinearity of gold colloid-doped silica glass,” J. Ceram. Soc. Jpn. 101(1169), 53–58 (1993).
[Crossref]

Mizutani, R.

J. Matsuoka, R. Mizutani, S. Kaneko, H. Nasu, K. Kamiya, K. Kadono, T. Sakaguchi, and M. Miya, “Sol-Gel processing and optical nonlinearity of gold colloid-doped silica glass,” J. Ceram. Soc. Jpn. 101(1169), 53–58 (1993).
[Crossref]

Moros, M.

J. Conde, J. T. Dias, V. Grazú, M. Moros, P. V. Baptista, and J. M. de la Fuente, “Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine,” Front Chem 2(48), 48 (2014).
[PubMed]

Mrksich, M.

C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126(39), 12669–12676 (2004).
[Crossref] [PubMed]

Nanda, K. K.

S. Pandey, G. K. Goswami, and K. K. Nanda, “Green synthesis of polysaccharide/gold nanoparticle nanocomposite: An efficient ammonia sensor,” Carbohydr. Polym. 94(1), 229–234 (2013).
[Crossref] [PubMed]

Nasu, H.

J. Matsuoka, R. Mizutani, S. Kaneko, H. Nasu, K. Kamiya, K. Kadono, T. Sakaguchi, and M. Miya, “Sol-Gel processing and optical nonlinearity of gold colloid-doped silica glass,” J. Ceram. Soc. Jpn. 101(1169), 53–58 (1993).
[Crossref]

Nath, N.

N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem. 76(18), 5370–5378 (2004).
[Crossref] [PubMed]

Nguyen, V. L.

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol. 6(11), 3555–3558 (2006).
[Crossref] [PubMed]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Ozaki, Y.

T. Itoh, T. Uwada, T. Asahi, Y. Ozaki, and H. Masuhara, “Analysis of localized surface plasmon resonance by elastic light-scattering spectroscopy of individual Au nanoparticles for surface-enhanced Raman scattering,” Can. J. Anal. Sci. Spectrosc. 52, 130–141 (2007).

Pal, T.

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref] [PubMed]

Pandey, S.

S. Pandey, G. K. Goswami, and K. K. Nanda, “Green synthesis of polysaccharide/gold nanoparticle nanocomposite: An efficient ammonia sensor,” Carbohydr. Polym. 94(1), 229–234 (2013).
[Crossref] [PubMed]

Park, B.

Park, J.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Park, J.-H.

H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, and S.-K. Lee, “Analysis of fiber-optic localized surface plasmon resonance sensor by controlling formation of gold nanoparticles and its bio-application,” J. Nanosci. Nanotechnol. 12(10), 7815–7821 (2012).
[Crossref] [PubMed]

Park, M.-S.

S. Ju, S. Jeong, Y. Kim, P. Jeon, M.-S. Park, H. Jeong, S. Boo, J.-H. Jang, and W.-T. Han, “Experimental demonstration of surface plasmon resonance enhancement of the tapered optical fiber coated with Au/Ti thin film,” J. Non-Cryst. Solids 383(1), 146–152 (2013).

Peng, T.-C.

T.-C. Peng, W.-C. Lin, C.-W. Chen, D. P. Tsai, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles,” Plasmonics 6(1), 29–34 (2011).
[Crossref]

Pereira, S. O.

S. O. Pereira, A. Barros-Timmons, and T. Trindade, “Biofunctionalisation of colloidal gold nanoparticles via polyelectrolytes assemblies,” Colloid Polym. Sci. 292(1), 33–50 (2014).
[Crossref]

Pilon, L.

Rainer, T.

W. Cai, H. Hofmeister, T. Rainer, and W. Chen, “Optical properties of Ag and Au nanoparticles dispersed within the pores of monolithic mesoporous silica,” J. Nanopart. Res. 3(5–6), 443–453 (2001).

Reinhard, B. M.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
[Crossref] [PubMed]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Roh, S.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Roman, J. E.

Rudow, H.

A. E. Badger, W. Weyl, and H. Rudow, “Effect of heat-treatment on color of gold-ruby glass,” Glass Ind. 20, 407–414 (1939).

Sakaguchi, T.

J. Matsuoka, R. Mizutani, S. Kaneko, H. Nasu, K. Kamiya, K. Kadono, T. Sakaguchi, and M. Miya, “Sol-Gel processing and optical nonlinearity of gold colloid-doped silica glass,” J. Ceram. Soc. Jpn. 101(1169), 53–58 (1993).
[Crossref]

Schatz, G.

Schatz, G. C.

C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126(39), 12669–12676 (2004).
[Crossref] [PubMed]

T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B 103(13), 2394–2401 (1999).
[Crossref]

Schultz, G.

P.-Y. Chung, T.-H. Lin, G. Schultz, C. Batich, and P. Jiang, “Nanopyramid surface plasmon resonance sensors,” Appl. Phys. Lett. 96(26), 261108 (2010).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Sharma, A. K.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Shevchenko, Y. Y.

Shi, H.

H. Shi, L. Zhang, and W. Cai, “Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica,” Mater. Res. Bull. 35(10), 1689–1695 (2000).
[Crossref]

Shriver-Lake, L. C.

G. P. Anderson, J. P. Golden, L. K. Cao, D. Wijesuriya, L. C. Shriver-Lake, and F. S. Ligler, “Development of an evanescent wave fiber optic biosensor,” IEEE Eng. Med. Biol. Mag. 13(3), 358–363 (1994).
[Crossref]

Singh, S.

S. Singh and B. D. Gupta, “Simulation of a surface plasmon resonance-based fiber-optic sensor for gas sensing in visible range using films of nanocomposites,” Meas. Sci. Technol. 21(11), 115202 (2010).
[Crossref]

S. Singh, R. K. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor with symmetric and asymmetric metallic coatings: a comparative study,” Sensors and Transducers J. 100(1), 116–124 (2009).

Slavík, R.

R. Slavík, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
[Crossref]

Song, H. S.

K. T. Kim, H. S. Song, J. P. Mah, K. B. Hong, K. Im, S.-J. Baik, and Y.-I. Yoon, “Hydrogen sensor based on palladium coated side-polished single-mode fiber,” IEEE Sens. J. 7(12), 1767–1771 (2007).
[Crossref]

Sönnichsen, C.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
[Crossref] [PubMed]

Srivastava, S. K.

Steele, J. M.

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Sun, Y.

Y. Sun and Y. Xia, “Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm,” Analyst (Lond.) 128(6), 686–691 (2003).
[Crossref] [PubMed]

Sutherland, D. S.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Trindade, T.

S. O. Pereira, A. Barros-Timmons, and T. Trindade, “Biofunctionalisation of colloidal gold nanoparticles via polyelectrolytes assemblies,” Colloid Polym. Sci. 292(1), 33–50 (2014).
[Crossref]

Tsai, D. P.

T.-C. Peng, W.-C. Lin, C.-W. Chen, D. P. Tsai, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles,” Plasmonics 6(1), 29–34 (2011).
[Crossref]

Uwada, T.

T. Itoh, T. Uwada, T. Asahi, Y. Ozaki, and H. Masuhara, “Analysis of localized surface plasmon resonance by elastic light-scattering spectroscopy of individual Au nanoparticles for surface-enhanced Raman scattering,” Can. J. Anal. Sci. Spectrosc. 52, 130–141 (2007).

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126(39), 12669–12676 (2004).
[Crossref] [PubMed]

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease,” Nano Lett. 4(6), 1029–1034 (2004).
[Crossref]

T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B 103(13), 2394–2401 (1999).
[Crossref]

Verma, R. K.

B. D. Gupta and R. K. Verma, “Review article: Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]

S. Singh, R. K. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor with symmetric and asymmetric metallic coatings: a comparative study,” Sensors and Transducers J. 100(1), 116–124 (2009).

Wang, H.

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Mater. 7(7), 5169–5201 (2014).
[Crossref]

Wang, J.

Y. Zhang, A. H. Yuwono, J. Li, and J. Wang, “Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration,” Microporous Mesoporous Mater. 110(2–3), 242–249 (2008).
[Crossref]

Wang, X.

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Mater. 7(7), 5169–5201 (2014).
[Crossref]

Wang, Y.

Watekar, P. R.

S. Ju, P. R. Watekar, C. Kim, and W.-T. Han, “Particle size control of PbTe quantum dots incorporated in the germano-silicate glass optical fiber by heat treatment,” J. Non-Cryst. Solids 356(43), 2273–2276 (2010).
[Crossref]

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol. 6(11), 3555–3558 (2006).
[Crossref] [PubMed]

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Weyl, W.

A. E. Badger, W. Weyl, and H. Rudow, “Effect of heat-treatment on color of gold-ruby glass,” Glass Ind. 20, 407–414 (1939).

Wijesuriya, D.

G. P. Anderson, J. P. Golden, L. K. Cao, D. Wijesuriya, L. C. Shriver-Lake, and F. S. Ligler, “Development of an evanescent wave fiber optic biosensor,” IEEE Eng. Med. Biol. Mag. 13(3), 358–363 (1994).
[Crossref]

Winick, K. A.

Xia, Y.

Y. Sun and Y. Xia, “Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm,” Analyst (Lond.) 128(6), 686–691 (2003).
[Crossref] [PubMed]

Yang, W.

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Mater. 7(7), 5169–5201 (2014).
[Crossref]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

Yeri, A. S.

A. S. Yeri, L. Gao, and D. Gao, “Mutation screening based on the mechanical properties of DNA molecules tethered to a solid surface,” J. Phys. Chem. B 114(2), 1064–1068 (2010).
[Crossref] [PubMed]

Yonzon, C. R.

C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126(39), 12669–12676 (2004).
[Crossref] [PubMed]

Yoon, Y.-I.

K. T. Kim, H. S. Song, J. P. Mah, K. B. Hong, K. Im, S.-J. Baik, and Y.-I. Yoon, “Hydrogen sensor based on palladium coated side-polished single-mode fiber,” IEEE Sens. J. 7(12), 1767–1771 (2007).
[Crossref]

Yu, F.

F. Yu, S. Ahl, A.-M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Yuwono, A. H.

Y. Zhang, A. H. Yuwono, J. Li, and J. Wang, “Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration,” Microporous Mesoporous Mater. 110(2–3), 242–249 (2008).
[Crossref]

Zhang, L.

H. Shi, L. Zhang, and W. Cai, “Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica,” Mater. Res. Bull. 35(10), 1689–1695 (2000).
[Crossref]

Zhang, X.

Zhang, Y.

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Mater. 7(7), 5169–5201 (2014).
[Crossref]

Y. Zhang, A. H. Yuwono, J. Li, and J. Wang, “Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration,” Microporous Mesoporous Mater. 110(2–3), 242–249 (2008).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhao, Y.

Zou, S.

C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126(39), 12669–12676 (2004).
[Crossref] [PubMed]

Zou, Y.

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Anal. Chem. (3)

N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem. 76(18), 5370–5378 (2004).
[Crossref] [PubMed]

L. S. Live, O. R. Bolduc, and J.-F. Masson, “Propagating surface plasmon resonance on microhole arrays,” Anal. Chem. 82(9), 3780–3787 (2010).
[Crossref] [PubMed]

F. Yu, S. Ahl, A.-M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Analyst (Lond.) (1)

Y. Sun and Y. Xia, “Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm,” Analyst (Lond.) 128(6), 686–691 (2003).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

P.-Y. Chung, T.-H. Lin, G. Schultz, C. Batich, and P. Jiang, “Nanopyramid surface plasmon resonance sensors,” Appl. Phys. Lett. 96(26), 261108 (2010).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Can. J. Anal. Sci. Spectrosc. (1)

T. Itoh, T. Uwada, T. Asahi, Y. Ozaki, and H. Masuhara, “Analysis of localized surface plasmon resonance by elastic light-scattering spectroscopy of individual Au nanoparticles for surface-enhanced Raman scattering,” Can. J. Anal. Sci. Spectrosc. 52, 130–141 (2007).

Carbohydr. Polym. (1)

S. Pandey, G. K. Goswami, and K. K. Nanda, “Green synthesis of polysaccharide/gold nanoparticle nanocomposite: An efficient ammonia sensor,” Carbohydr. Polym. 94(1), 229–234 (2013).
[Crossref] [PubMed]

Chem. Rev. (2)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref] [PubMed]

Colloid Polym. Sci. (1)

S. O. Pereira, A. Barros-Timmons, and T. Trindade, “Biofunctionalisation of colloidal gold nanoparticles via polyelectrolytes assemblies,” Colloid Polym. Sci. 292(1), 33–50 (2014).
[Crossref]

Front Chem (1)

J. Conde, J. T. Dias, V. Grazú, M. Moros, P. V. Baptista, and J. M. de la Fuente, “Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine,” Front Chem 2(48), 48 (2014).
[PubMed]

Glass Ind. (1)

A. E. Badger, W. Weyl, and H. Rudow, “Effect of heat-treatment on color of gold-ruby glass,” Glass Ind. 20, 407–414 (1939).

IEE Proc., Nanobiotechnol. (1)

J. Kim, G. L. Liu, Y. Lu, and L. P. Lee, “Spectral tuning of localised surface plasmon-polariton resonance in metallic nano-crescents,” IEE Proc., Nanobiotechnol. 153(3), 42–46 (2006).
[Crossref] [PubMed]

IEEE Eng. Med. Biol. Mag. (1)

G. P. Anderson, J. P. Golden, L. K. Cao, D. Wijesuriya, L. C. Shriver-Lake, and F. S. Ligler, “Development of an evanescent wave fiber optic biosensor,” IEEE Eng. Med. Biol. Mag. 13(3), 358–363 (1994).
[Crossref]

IEEE Sens. J. (2)

K. T. Kim, H. S. Song, J. P. Mah, K. B. Hong, K. Im, S.-J. Baik, and Y.-I. Yoon, “Hydrogen sensor based on palladium coated side-polished single-mode fiber,” IEEE Sens. J. 7(12), 1767–1771 (2007).
[Crossref]

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

J. Am. Chem. Soc. (1)

C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126(39), 12669–12676 (2004).
[Crossref] [PubMed]

J. Ceram. Soc. Jpn. (1)

J. Matsuoka, R. Mizutani, S. Kaneko, H. Nasu, K. Kamiya, K. Kadono, T. Sakaguchi, and M. Miya, “Sol-Gel processing and optical nonlinearity of gold colloid-doped silica glass,” J. Ceram. Soc. Jpn. 101(1169), 53–58 (1993).
[Crossref]

J. Nanopart. Res. (1)

W. Cai, H. Hofmeister, T. Rainer, and W. Chen, “Optical properties of Ag and Au nanoparticles dispersed within the pores of monolithic mesoporous silica,” J. Nanopart. Res. 3(5–6), 443–453 (2001).

J. Nanosci. Nanotechnol. (2)

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol. 6(11), 3555–3558 (2006).
[Crossref] [PubMed]

H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, and S.-K. Lee, “Analysis of fiber-optic localized surface plasmon resonance sensor by controlling formation of gold nanoparticles and its bio-application,” J. Nanosci. Nanotechnol. 12(10), 7815–7821 (2012).
[Crossref] [PubMed]

J. Non-Cryst. Solids (2)

S. Ju, S. Jeong, Y. Kim, P. Jeon, M.-S. Park, H. Jeong, S. Boo, J.-H. Jang, and W.-T. Han, “Experimental demonstration of surface plasmon resonance enhancement of the tapered optical fiber coated with Au/Ti thin film,” J. Non-Cryst. Solids 383(1), 146–152 (2013).

S. Ju, P. R. Watekar, C. Kim, and W.-T. Han, “Particle size control of PbTe quantum dots incorporated in the germano-silicate glass optical fiber by heat treatment,” J. Non-Cryst. Solids 356(43), 2273–2276 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (3)

A. S. Yeri, L. Gao, and D. Gao, “Mutation screening based on the mechanical properties of DNA molecules tethered to a solid surface,” J. Phys. Chem. B 114(2), 1064–1068 (2010).
[Crossref] [PubMed]

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[Crossref] [PubMed]

T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B 103(13), 2394–2401 (1999).
[Crossref]

J. Sens. (1)

B. D. Gupta and R. K. Verma, “Review article: Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]

Mater. (1)

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Mater. 7(7), 5169–5201 (2014).
[Crossref]

Mater. Res. Bull. (1)

H. Shi, L. Zhang, and W. Cai, “Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica,” Mater. Res. Bull. 35(10), 1689–1695 (2000).
[Crossref]

Meas. Sci. Technol. (1)

S. Singh and B. D. Gupta, “Simulation of a surface plasmon resonance-based fiber-optic sensor for gas sensing in visible range using films of nanocomposites,” Meas. Sci. Technol. 21(11), 115202 (2010).
[Crossref]

Microporous Mesoporous Mater. (1)

Y. Zhang, A. H. Yuwono, J. Li, and J. Wang, “Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration,” Microporous Mesoporous Mater. 110(2–3), 242–249 (2008).
[Crossref]

MRS Bull. (1)

N. Halas, “Playing with plasmons. Tuning the optical resonant properties of metallic nanoshells,” MRS Bull. 30(05), 362–367 (2005).
[Crossref]

Nano Lett. (2)

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease,” Nano Lett. 4(6), 1029–1034 (2004).
[Crossref]

Nanostruct. Mater. (1)

M. Lee, L. Chae, and K. C. Lee, “Microstructure and surface plasmon absorption of sol-gel-prepared Au nanoclusters in TiO2 thin films,” Nanostruct. Mater. 11(2), 195–201 (1999).
[Crossref]

Nat. Biotechnol. (1)

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
[Crossref] [PubMed]

Nat. Mater. (2)

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Fiber Technol. (1)

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Plasmonics (2)

T.-C. Peng, W.-C. Lin, C.-W. Chen, D. P. Tsai, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles,” Plasmonics 6(1), 29–34 (2011).
[Crossref]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

Sens. Actuators (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Sens. Actuators A Phys. (1)

M. Mitsushio, S. Higashi, and M. Higo, “Construction and evaluation of a gold-deposited optical fiber sensor system for measurements of refractive indices of alcohols,” Sens. Actuators A Phys. 111(2–3), 252–259 (2004).
[Crossref]

Sens. Actuators B Chem. (3)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

R. Slavík, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
[Crossref]

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

Sensors and Transducers J. (2)

S. Singh, R. K. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor with symmetric and asymmetric metallic coatings: a comparative study,” Sensors and Transducers J. 100(1), 116–124 (2009).

S. Ju, S. Jeong, Y. Kim, P. Jeon, S. Boo, and W.-T. Han, “Development of specialty optical fiber incorporated with Au nano-particles in cladding for surface plasmon resonance sensors,” Sensors and Transducers J. 18, 76–83 (2013).

Other (4)

H. Reather, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag: Berlin, 1988).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science 25 (Spronger, Berlin, 1995).

S. Ju, P. R. Watekar, D. H. Son, T. Hwang, and W.-T. Han, “Fabrication and estimation of diffusion coefficient of Pb in PbO/GeO2-dodoped optical fiber with thermally expanded core,” Processing, Properties and Applications of Glass and Optical Materials: Ceramic transactions 231, 219–225 (John Wiley, 2012).

N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic Press, Orlando Fla. 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic diagram of the optical fiber incorporated with Au NPs in cladding region [9].
Fig. 2
Fig. 2 Schematic diagram of the SPR measurement set-up using the optical fiber incorporated with Au NPs in the cladding region.
Fig. 3
Fig. 3 TEM image and the size distribution of Au NPs incorporated in the cladding region of the optical fiber preform.
Fig. 4
Fig. 4 UV-VIS-NIR spectra of the optical fiber preform incorporated with and without Au NPs in the cladding region.
Fig. 5
Fig. 5 TEM image and the size distribution of the optical fiber incorporated with Au NPs in the cladding region.
Fig. 6
Fig. 6 Absorption spectrum of the optical fiber incorporated with Au NPs in the cladding region.
Fig. 7
Fig. 7 SEM surface images of the Au NPs(cladding)-doped fiber (a) before and (b) after the heat treatment at 1000 °C for 1 hour.
Fig. 8
Fig. 8 The SPR spectra obtained by dropping the matching oils of different refractive indices (a) before and after the heat treatments at (b) 800 °C, (c) 900 °C, and (d) 1000 °C for an hour.
Fig. 9
Fig. 9 Variation of (a) the SPR peak wavelength as a function of refractive index of the matching oils (The lines were linearly-fitted) and (b) the SPR sensitivity of the SPR spectrum before and after the heat treatments at 800 °C, 900 °C, and 1000 °C for an hour (The line was exponentially-fitted for a guideline).
Fig. 10
Fig. 10 Variation of (a) the absorption intensity and (b) the FWHM of the SPR spectrum as a function of refractive index of the matching oils before and after the heat treatments at 800 °C, 900 °C, and 1000 °C for an hour (The lines were exponentially-fitted for a guideline).

Tables (1)

Tables Icon

Table 1 The SPR Sensitivity, the Average Absorption Intensity, and the Average FWHM of the Optical Fiber Incorporated with Au NPs in Cladding Region after the Heat Treatment

Metrics