Abstract

We present a kind of “one-step strategy” to produce black silicon film where the antireflection/light-trapping structures and the silicon film itself are fabricated simultaneously and directly from a silicon wafer. We first demonstrate that the macroporous black silicon has better light harvesting capability and longer lifetime of minority carriers than silicon nanowires of the same thickness, leading to higher efficiency when assembled into liquid junction photoelectrochemical solar cells. A free-standing macroporous black silicon film is further detached from the substrate and the measured absorption in the near infrared region is close to the theoretical limit without the help of back reflectors. FDTD simulations reveal that the modulation on the micrometer scale can scatter strongly and thus enhance the absorption of the originally weakly absorbed light.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quasicrystalline-structured light harvesting nanophotonic silicon films on nanoimprinted glass for ultra-thin photovoltaics

Jolly Xavier, Jürgen Probst, Franziska Back, Philippe Wyss, David Eisenhauer, Bernd Löchel, Eveline Rudigier-Voigt, and Christiane Becker
Opt. Mater. Express 4(11) 2290-2299 (2014)

Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics

Kwang-Tae Park, Zhongyi Guo, Han-Don Um, Jin-Young Jung, Jun Mo Yang, Sung Kyu Lim, Young Su Kim, and Jung-Ho Lee
Opt. Express 19(S1) A41-A50 (2011)

Nanopyramids and rear-located Ag nanoparticles for broad spectrum absorption enhancement in thin-film solar cells

Yanpeng Shi, Xiaodong Wang, Wen Liu, Tianshu Yang, Jing Ma, and Fuhua Yang
Opt. Express 22(17) 20473-20480 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
    [Crossref]
  2. Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5(10), 8002–8012 (2011).
    [Crossref] [PubMed]
  3. K. Q. Peng and S. T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater. 23(2), 198–215 (2011).
    [Crossref] [PubMed]
  4. S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
    [Crossref]
  5. H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
    [Crossref]
  6. M. Otto, M. Kroll, T. Käsebier, S. M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
    [Crossref] [PubMed]
  7. J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
    [Crossref] [PubMed]
  8. L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Non-Reflecting Silicon and Polymer Surfaces by Plasma Etching and Replication,” Adv. Mater. 23(1), 122–126 (2011).
    [Crossref] [PubMed]
  9. M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra-black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
    [Crossref]
  10. M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
    [Crossref]
  11. X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
    [Crossref]
  12. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
    [Crossref] [PubMed]
  13. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
    [Crossref] [PubMed]
  14. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
    [Crossref] [PubMed]
  15. Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
    [Crossref]
  16. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [Crossref] [PubMed]
  17. F. Wang, H. Yu, J. Li, X. Sun, X. Wang, and H. Zheng, “Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application,” Opt. Lett. 35(1), 40–42 (2010).
    [Crossref] [PubMed]
  18. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
    [Crossref] [PubMed]
  19. S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13(9), 4393–4398 (2013).
    [Crossref] [PubMed]
  20. S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
    [Crossref] [PubMed]
  21. M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10 μm Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures,” Adv. Mater. 27, 849–855 (2015).
    [PubMed]
  22. V. Lehmann, R. Stengl, H. Wendt, W. Hoenlein, and J. Willer, “Method for manufacturing a solar cell from a substrate wafer,” US Patent 5306647 (1994).
  23. M. Ernst and R. Brendel, “Macroporous silicon solar cells with an epitaxial emitter,” IEEE J. Photovolt. 3, 723–729 (2013).
  24. M. Ernst, R. Brendel, R. Ferré, and N. P. Harder, “Thin macroporous silicon heterojunction solar cells,” Phys. Status Solidi Rapid Res. Lett. 6(5), 187–189 (2012).
    [Crossref]
  25. X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
    [Crossref]
  26. K. Q. Peng, A. Lu, R. Zhang, and S. T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18(19), 3026–3035 (2008).
    [Crossref]
  27. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial pn junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
    [Crossref]
  28. K. Q. Peng, X. Wang, X. L. Wu, and S. T. Lee, “Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion,” Nano Lett. 9(11), 3704–3709 (2009).
    [Crossref] [PubMed]
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  30. M. Ernst and R. Brendel, “Lambertian light trapping in thin crystalline macroporous Si layers,” Phys. Status Solidi Rapid Res. Lett. 8(3), 235–238 (2014).
    [Crossref]
  31. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]

2015 (2)

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
[Crossref]

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10 μm Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures,” Adv. Mater. 27, 849–855 (2015).
[PubMed]

2014 (3)

M. Ernst and R. Brendel, “Lambertian light trapping in thin crystalline macroporous Si layers,” Phys. Status Solidi Rapid Res. Lett. 8(3), 235–238 (2014).
[Crossref]

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra-black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
[Crossref]

2013 (3)

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13(9), 4393–4398 (2013).
[Crossref] [PubMed]

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

M. Ernst and R. Brendel, “Macroporous silicon solar cells with an epitaxial emitter,” IEEE J. Photovolt. 3, 723–729 (2013).

2012 (4)

M. Ernst, R. Brendel, R. Ferré, and N. P. Harder, “Thin macroporous silicon heterojunction solar cells,” Phys. Status Solidi Rapid Res. Lett. 6(5), 187–189 (2012).
[Crossref]

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

2011 (3)

L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Non-Reflecting Silicon and Polymer Surfaces by Plasma Etching and Replication,” Adv. Mater. 23(1), 122–126 (2011).
[Crossref] [PubMed]

Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5(10), 8002–8012 (2011).
[Crossref] [PubMed]

K. Q. Peng and S. T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater. 23(2), 198–215 (2011).
[Crossref] [PubMed]

2010 (6)

M. Otto, M. Kroll, T. Käsebier, S. M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
[Crossref]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

F. Wang, H. Yu, J. Li, X. Sun, X. Wang, and H. Zheng, “Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application,” Opt. Lett. 35(1), 40–42 (2010).
[Crossref] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

2009 (3)

K. Q. Peng, X. Wang, X. L. Wu, and S. T. Lee, “Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion,” Nano Lett. 9(11), 3704–3709 (2009).
[Crossref] [PubMed]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
[Crossref] [PubMed]

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

2008 (1)

K. Q. Peng, A. Lu, R. Zhang, and S. T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18(19), 3026–3035 (2008).
[Crossref]

2007 (1)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

2006 (1)

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

2005 (1)

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial pn junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Algasinger, M.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
[Crossref]

Ao, X.

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

Atwater, H. A.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial pn junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

Aura, S.

L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Non-Reflecting Silicon and Polymer Surfaces by Plasma Etching and Replication,” Adv. Mater. 23(1), 122–126 (2011).
[Crossref] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Boriskina, S. V.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10 μm Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures,” Adv. Mater. 27, 849–855 (2015).
[PubMed]

Brandt, M. S.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

Branham, M. S.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10 μm Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures,” Adv. Mater. 27, 849–855 (2015).
[PubMed]

Branz, H.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
[Crossref]

Branz, H. M.

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[Crossref] [PubMed]

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Brendel, R.

M. Ernst and R. Brendel, “Lambertian light trapping in thin crystalline macroporous Si layers,” Phys. Status Solidi Rapid Res. Lett. 8(3), 235–238 (2014).
[Crossref]

M. Ernst and R. Brendel, “Macroporous silicon solar cells with an epitaxial emitter,” IEEE J. Photovolt. 3, 723–729 (2013).

M. Ernst, R. Brendel, R. Ferré, and N. P. Harder, “Thin macroporous silicon heterojunction solar cells,” Phys. Status Solidi Rapid Res. Lett. 6(5), 187–189 (2012).
[Crossref]

Campbell, P.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Chen, G.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10 μm Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures,” Adv. Mater. 27, 849–855 (2015).
[PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5(10), 8002–8012 (2011).
[Crossref] [PubMed]

Cole, J. M.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Coxon, P. R.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Cui, Y.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13(9), 4393–4398 (2013).
[Crossref] [PubMed]

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Ernst, M.

M. Ernst and R. Brendel, “Lambertian light trapping in thin crystalline macroporous Si layers,” Phys. Status Solidi Rapid Res. Lett. 8(3), 235–238 (2014).
[Crossref]

M. Ernst and R. Brendel, “Macroporous silicon solar cells with an epitaxial emitter,” IEEE J. Photovolt. 3, 723–729 (2013).

M. Ernst, R. Brendel, R. Ferré, and N. P. Harder, “Thin macroporous silicon heterojunction solar cells,” Phys. Status Solidi Rapid Res. Lett. 6(5), 187–189 (2012).
[Crossref]

Fan, S.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13(9), 4393–4398 (2013).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Ferré, R.

M. Ernst, R. Brendel, R. Ferré, and N. P. Harder, “Thin macroporous silicon heterojunction solar cells,” Phys. Status Solidi Rapid Res. Lett. 6(5), 187–189 (2012).
[Crossref]

Franssila, S.

L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Non-Reflecting Silicon and Polymer Surfaces by Plasma Etching and Replication,” Adv. Mater. 23(1), 122–126 (2011).
[Crossref] [PubMed]

Fray, D. J.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Füchsel, K.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
[Crossref]

Garnett, E.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13(9), 4393–4398 (2013).
[Crossref] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Gartia, M. R.

Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5(10), 8002–8012 (2011).
[Crossref] [PubMed]

Gesemann, B.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
[Crossref]

Gimpel, T.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
[Crossref]

Green, M. A.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Han, S. E.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10 μm Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures,” Adv. Mater. 27, 849–855 (2015).
[PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Harder, N. P.

M. Ernst, R. Brendel, R. Ferré, and N. P. Harder, “Thin macroporous silicon heterojunction solar cells,” Phys. Status Solidi Rapid Res. Lett. 6(5), 187–189 (2012).
[Crossref]

He, S.

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

Hoard, B. R.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10 μm Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures,” Adv. Mater. 27, 849–855 (2015).
[PubMed]

Hoex, B.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Hsu, W. C.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10 μm Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures,” Adv. Mater. 27, 849–855 (2015).
[PubMed]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Hu, X.

Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Jeong, S.

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Jokinen, V.

L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Non-Reflecting Silicon and Polymer Surfaces by Plasma Etching and Replication,” Adv. Mater. 23(1), 122–126 (2011).
[Crossref] [PubMed]

Jones, K. M.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Käsebier, T.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
[Crossref]

M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra-black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, S. M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

Kayes, B. M.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial pn junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

Kim, D. S.

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

Kley, E.-B.

M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra-black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
[Crossref]

Knez, M.

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

Kontermann, S.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
[Crossref]

Koynov, S.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
[Crossref]

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

Kroll, M.

M. Otto, M. Kroll, T. Käsebier, S. M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

Lee, S. M.

M. Otto, M. Kroll, T. Käsebier, S. M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

Lee, S. T.

K. Q. Peng and S. T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater. 23(2), 198–215 (2011).
[Crossref] [PubMed]

K. Q. Peng, X. Wang, X. L. Wu, and S. T. Lee, “Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion,” Nano Lett. 9(11), 3704–3709 (2009).
[Crossref] [PubMed]

K. Q. Peng, A. Lu, R. Zhang, and S. T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18(19), 3026–3035 (2008).
[Crossref]

Lehr, D.

M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra-black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
[Crossref]

Lewis, N. S.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial pn junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

Li, J.

Li, X.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
[Crossref]

Li, Y.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13(9), 4393–4398 (2013).
[Crossref] [PubMed]

Lian, Y.

Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5(10), 8002–8012 (2011).
[Crossref] [PubMed]

Lin, C.

Liu, G. L.

Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5(10), 8002–8012 (2011).
[Crossref] [PubMed]

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Liu, X.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Loomis, J.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10 μm Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures,” Adv. Mater. 27, 849–855 (2015).
[PubMed]

Lu, A.

K. Q. Peng, A. Lu, R. Zhang, and S. T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18(19), 3026–3035 (2008).
[Crossref]

McGehee, M. D.

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

Miclea, P. T.

M. Otto, M. Kroll, T. Käsebier, S. M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

Müller, F.

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

Naumann, V.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
[Crossref]

Oh, J.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
[Crossref]

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[Crossref] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Otto, M.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, S. M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

Peng, K. Q.

K. Q. Peng and S. T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater. 23(2), 198–215 (2011).
[Crossref] [PubMed]

K. Q. Peng, X. Wang, X. L. Wu, and S. T. Lee, “Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion,” Nano Lett. 9(11), 3704–3709 (2009).
[Crossref] [PubMed]

K. Q. Peng, A. Lu, R. Zhang, and S. T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18(19), 3026–3035 (2008).
[Crossref]

Peters, M.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Povinelli, M. L.

Putkonen, M.

M. Otto, M. Kroll, T. Käsebier, S. M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

Ratzsch, S.

M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra-black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Sainiemi, L.

L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Non-Reflecting Silicon and Polymer Surfaces by Plasma Etching and Replication,” Adv. Mater. 23(1), 122–126 (2011).
[Crossref] [PubMed]

Salzer, R.

M. Otto, M. Kroll, T. Käsebier, S. M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

Schmidt, V.

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

Schrempel, F.

M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra-black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
[Crossref]

Shah, A.

L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Non-Reflecting Silicon and Polymer Surfaces by Plasma Etching and Replication,” Adv. Mater. 23(1), 122–126 (2011).
[Crossref] [PubMed]

Shpak, M.

L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Non-Reflecting Silicon and Polymer Surfaces by Plasma Etching and Replication,” Adv. Mater. 23(1), 122–126 (2011).
[Crossref] [PubMed]

Sprafke, A. N.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
[Crossref]

Steglich, M.

M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra-black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
[Crossref]

Stradins, P.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Stutzmann, M.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

Sun, X.

Suvanto, P.

L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Non-Reflecting Silicon and Polymer Surfaces by Plasma Etching and Replication,” Adv. Mater. 23(1), 122–126 (2011).
[Crossref] [PubMed]

To, B.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Tong, X.

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

Tünnermann, A.

M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra-black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
[Crossref]

Wang, F.

Wang, K. X.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13(9), 4393–4398 (2013).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Wang, S.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13(9), 4393–4398 (2013).
[Crossref] [PubMed]

Wang, X.

F. Wang, H. Yu, J. Li, X. Sun, X. Wang, and H. Zheng, “Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application,” Opt. Lett. 35(1), 40–42 (2010).
[Crossref] [PubMed]

K. Q. Peng, X. Wang, X. L. Wu, and S. T. Lee, “Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion,” Nano Lett. 9(11), 3704–3709 (2009).
[Crossref] [PubMed]

Ward, S.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Wehrspohn, R. B.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, S. M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

Weil, B. D.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13(9), 4393–4398 (2013).
[Crossref] [PubMed]

Whitlock, D.

Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5(10), 8002–8012 (2011).
[Crossref] [PubMed]

Wu, X. L.

K. Q. Peng, X. Wang, X. L. Wu, and S. T. Lee, “Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion,” Nano Lett. 9(11), 3704–3709 (2009).
[Crossref] [PubMed]

Xiong, Z.

Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
[Crossref]

Xu, Z.

Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5(10), 8002–8012 (2011).
[Crossref] [PubMed]

Yang, J.

Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
[Crossref]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Yerci, S.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10 μm Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures,” Adv. Mater. 27, 849–855 (2015).
[PubMed]

Yost, V. E.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Yu, H.

Yu, Z.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Yuan, H.-C.

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[Crossref] [PubMed]

Zhang, L.

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

Zhang, R.

K. Q. Peng, A. Lu, R. Zhang, and S. T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18(19), 3026–3035 (2008).
[Crossref]

Zhao, F.

Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
[Crossref]

Zheng, H.

Ziegler, J.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
[Crossref]

Zilk, M.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
[Crossref]

ACS Nano (1)

Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5(10), 8002–8012 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

K. Q. Peng, A. Lu, R. Zhang, and S. T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18(19), 3026–3035 (2008).
[Crossref]

Adv. Mater. (4)

K. Q. Peng and S. T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater. 23(2), 198–215 (2011).
[Crossref] [PubMed]

M. Otto, M. Kroll, T. Käsebier, S. M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Non-Reflecting Silicon and Polymer Surfaces by Plasma Etching and Replication,” Adv. Mater. 23(1), 122–126 (2011).
[Crossref] [PubMed]

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10 μm Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures,” Adv. Mater. 27, 849–855 (2015).
[PubMed]

Adv. Optical Mater. (1)

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black Silicon Photovoltaics,” Adv. Optical Mater. 3(2), 147–164 (2015).
[Crossref]

Appl. Phys. Lett. (4)

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Energy Environ. Sci. (1)

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

IEEE J. Photovolt. (1)

M. Ernst and R. Brendel, “Macroporous silicon solar cells with an epitaxial emitter,” IEEE J. Photovolt. 3, 723–729 (2013).

J. Appl. Phys. (2)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial pn junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

Laser Photonics Rev. (1)

M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra-black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
[Crossref]

Nano Lett. (6)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13(9), 4393–4398 (2013).
[Crossref] [PubMed]

K. Q. Peng, X. Wang, X. L. Wu, and S. T. Lee, “Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion,” Nano Lett. 9(11), 3704–3709 (2009).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Status Solidi Rapid Res. Lett. (2)

M. Ernst and R. Brendel, “Lambertian light trapping in thin crystalline macroporous Si layers,” Phys. Status Solidi Rapid Res. Lett. 8(3), 235–238 (2014).
[Crossref]

M. Ernst, R. Brendel, R. Ferré, and N. P. Harder, “Thin macroporous silicon heterojunction solar cells,” Phys. Status Solidi Rapid Res. Lett. 6(5), 187–189 (2012).
[Crossref]

Other (2)

V. Lehmann, R. Stengl, H. Wendt, W. Hoenlein, and J. Willer, “Method for manufacturing a solar cell from a substrate wafer,” US Patent 5306647 (1994).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Cross-sectional SEM images of (a) macroporous black silicon and (b) silicon nanowires. The etch depth is around 17 μm for both cases.
Fig. 2
Fig. 2 (a,b) Reflectance, transmittance, and absorptance (A = 1 - R - T) spectra for a planar silicon, silicon nanowires, and macroporous black silicon. (c) Lifetime of minority carriers of the planar silicon, silicon nanowires, and macroporous black silicon.
Fig. 3
Fig. 3 (a) Photocurrent densities versus voltage (J - V curves) for PEC cells of the planar silicon, silicon nanowires, and macroporous black silicon. (b) IPCE spectra of the planar silicon, silicon nanowires, and macroporous black silicon. (c) The transmittance spectrum of Br2/HBr electrolyte in a quartz cuvette of 1 mm thick. The shorter cut-off wavelength in (c) than in (b) is due to the smaller thickness of the electrolyte in (c).
Fig. 4
Fig. 4 (a) Schematic illustration of the detachment of a macroporous black silicon film from the silicon substrate. (b) Cross-sectional SEM image of a black macroporous silicon film. (c) Absorptance spectrum of the macroporous black silicon film and the Yablonovitch limit of an equivalent solid silicon film.
Fig. 5
Fig. 5 (a) Schematic drawing of a macroporous black silicon film, consisting of truncated cones and ellipsoids of air in a silicon film of thickness 8.25 μm (the dimensions are shown in the axial cross section on the right). The pore shape is chosen to mimic an experimentally realized structure shown in (b). (b) Cross-sectional SEM image of a black macroporous silicon sample. The pores were arranged in a square pattern with a lattice constant of a = 2 μm. (c) Calculated absorptance spectra for a non-porous planar film (gray dashed), a film with straight nanoholes (red square), and the macroporous black silicon film (blue dot), while keeping the same silicon film thickness of 8.25 μm. The c-Si filling fraction and the lattice constant for the nanohole film are 0.5 and 500 nm, respectively. For the macroporous film, the lattice constant is 2 μm and the c-Si filling faction is about 0.46. We also show the absorptance by a film scaled down from the macroporous film to a lattice constant of 500 nm (magenta solid).

Metrics