Abstract

Nd3+-doped RE3Ga5O12 (RE = Gd, Y, and Lu) nano-crystalline garnets of 40-45 nm in size have been synthesized by a sol-gel method. With the decrease of the RE atom size, the chemical pressure related to the decreasing volumes of the GaO4 tetrahedral, GaO6 octahedral and REO8 dodecahedral units drive the nano-garnets toward a more compacted structure, which is evidenced by the change of the vibrational phonon mode frequencies. The chemical pressure also increases the crystal-field strength felt by the RE3+ ions while decreases the orthorhombic distortion of the REO8 local environment. These effects alter the absorption and emission properties of the Nd3+ ion measured in the near-infrared luminescence range from 0.87 to 1.43 μm associated with the 4F3/24IJ (J = 9/2, 11/2, 13/2) transitions. The 4F3/2 luminescence decay curves show non-exponential behavior due to dipole-dipole energy transfer interactions among Nd3+ ions that increases with pressure.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ambient and high pressure spectroscopy of Ce3+ doped yttrium gallium garnet

A. Wittlin, H. Przybylińska, M. Berkowski, A. Kamińska, P. Nowakowski, P. Sybilski, Chong-Geng Ma, M.G. Brik, and A. Suchocki
Opt. Mater. Express 5(8) 1868-1880 (2015)

Optical pressure and temperature sensor based on the luminescence properties of Nd3+ ion in a gadolinium scandium gallium garnet crystal

S. F. León-Luis, J. E. Muñoz-Santiuste, V. Lavín, and U. R. Rodríguez-Mendoza
Opt. Express 20(9) 10393-10398 (2012)

Microchip laser operation of Yb-doped gallium garnets

Josep Maria Serres, Venkatesan Jambunathan, Pavel Loiko, Xavier Mateos, Haohai Yu, Huaijin Zhang, Junhai Liu, Antonio Lucianetti, Tomas Mocek, Konstantin Yumashev, Uwe Griebner, Valentin Petrov, Magdalena Aguiló, and Francesc Díaz
Opt. Mater. Express 6(1) 46-57 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Weber, “Rare earth lasers,” in Handbook on the Physics and Chemistry of Rare Earths, K.A. Gschneidner, Jr. and L. Eyring, eds. (North Holland Publishing Company, 1979), vol. 4, ch. 35, p. 275.
  2. M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
    [Crossref]
  3. A. A. Kaminiskii, Laser Crystals (Springer-Verlag, 1981).
  4. C. D. Brandle and R. L. Barns, “Crystal stoichiometry of Czochralski grown rare-earth gallium garnets,” J. Cryst. Growth 26(1), 169–170 (1974).
    [Crossref]
  5. V. Venkatramu, M. Giarola, G. Mariotto, S. Enzo, S. Polizzi, C. K. Jayasankar, F. Piccinelli, M. Bettinelli, and A. Speghini, “Nanocrystalline lanthanide-doped Lu3Ga5O12 garnets: interesting materials for light-emitting devices,” Nanotechnology 21(17), 175703 (2010).
    [Crossref] [PubMed]
  6. A. Speghini, F. Piccinelli, and M. Bettinelli, “Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: The garnet family,” Opt. Mater. 33(3), 247–257 (2011).
    [Crossref]
  7. R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. Van Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
    [Crossref]
  8. R. Naccache, F. Vetrone, A. Speghini, M. Bettinelli, and J. A. Capobianco, “Cross relaxation and upconversion processes in Pr3+ singly doped and Pr3+/Yb3+ codoped nanocrystalline Gd3Ga5O12: The sensitizer/activator relationship,” J. Phys. Chem. C 112(20), 7750–7756 (2008).
    [Crossref]
  9. Th. Tröster, “Optical studies of non-metallic compounds under pressure,” in Handbook on the Physics and Chemistry of Rare Earths, K.A. Gschneidner, Jr., J.-C. G. Bunzli, and V.K. Pecharsky, eds. (Elsevier Science B.V., 2003) vol. 33, ch. 217, p. 515.
  10. E. Antic-Fidancev, J. Hölsa, M. Lastusaari, and A. Lupei, “Dopant-host relationships in rare-earth oxides and garnets doped with trivalent rare-earth ions,” Phys. Rev. B 64(19), 195108 (2001).
    [Crossref]
  11. J. Rodríguez-Carvajal, “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192(1-2), 55–69 (1993).
    [Crossref]
  12. V. Monteseguro, P. Rodríguez-Hernández, H. M. Ortiz, V. Venkatramu, F. J. Manjón, C. K. Jayasankar, V. Lavín, and A. Muñoz, “Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure,” Phys. Chem. Chem. Phys. 17(14), 9454–9464 (2015).
    [Crossref] [PubMed]
  13. S. Ray, S. F. León-Luis, F. J. Manjón, M. A. Mollar, O. Gomis, U. R. Rodríguez-Mendoza, S. Agouram, A. Muñoz, and V. Lavín, “Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method,” Curr. Appl. Phys. 14(1), 72–81 (2014).
    [Crossref]
  14. B. G. Wybourne, Spectroscopic Properties of Rare Earths (Wiley-Interscience, 1965).
  15. C. A. Morrison and R. P. Leavitt, “Spectroscopic properties of triply ionized lanthanides in transparent host crystals,” in Handbook on the Physics and Chemistry of Rare Earths, edited by K.A. Gschneidener, Jr. and L. Eyring, eds. (North Holland Publishing Company, 1982), vol. 5, ch. 46, p. 461.
  16. V. Nekvasil, “The crystal field for Nd3+ in garnets,” Phys. Status Solidi 87(1), 317–323 (1978).
    [Crossref]
  17. U. R. Rodríguez-Mendoza, S. F. León-Luis, J. E. Muñoz-Santiuste, D. Jaque, and V. Lavín, “Nd3+-doped Ca3Ga2Ge3O12 garnet: A new optical pressure sensor,” J. Appl. Phys. 113(21), 213517 (2013).
    [Crossref]
  18. A. Kaminska, R. Buczko, W. Paszkowicz, H. Przybylinska, E. Werner-Malento, A. Suchocki, M. Brik, A. Durygin, V. Drozd, and S. Saxena, “Merging of the 4F3/2 level states of Nd3+ ions in the photoluminescence spectra of gadolinium-gallium garnets under high pressure,” Phys. Rev. B 84(7), 075483 (2011).
    [Crossref]
  19. T. H. Allik, S. A. Stewart, D. K. Sardar, G. J. Quarles, R. C. Powell, C. A. Morrison, G. A. Turner, M. R. Kokta, W. W. Hovis, and A. A. Pinto, “Preparation, structure, and spectroscopic properties of Nd3+:{La1−xLux}3[Lu1−yGay]2Ga3O12 crystals,” Phys. Rev. B 37(16), 9129–9139 (1988).
    [Crossref]
  20. K. Wu, B. Yao, H. Zhang, H. Yu, Z. Wang, J. Wang, and M. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312(24), 3631–3636 (2010).
    [Crossref]
  21. Z. Jia, A. Arcangeli, J. Zhang, and C. Dong, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
    [Crossref]
  22. O. Guillot-Noël, B. Bellamy, B. Viana, and D. Gourier, “Correlation between rare-earth oscillator strengths and rare-earth–valence-band interactions in neodymium-doped YMO4(M=V, P, As), Y3Al5O12, and LiYF4 matrices,” Phys. Rev. B 60(3), 1668–1677 (1999).
    [Crossref]
  23. A. A. Deminovich, A. P. Shkadarevich, and M. B. Dansilov, “Comparison of cw laser performance of Nd:KGW, Nd:YAG, Nd:BEL, and Nd:YVO4 under laser diode pumping,” Appl. Phys. B 67(1), 11–15 (1998).
    [Crossref]
  24. M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978 (1965).
    [Crossref]
  25. V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61(12), 8087–8098 (2000).
    [Crossref]
  26. K. Maeda, N. Wada, M. Umino, M. Abe, Y. Takada, N. Nakano, and H. Kuroda, “Concentration dependence of fluorescence lifetime of Nd3+-doped Gd3Ga5O12 lasers,” Jpn. J. Appl. Phys. 23(10), L759–L760 (1984).
    [Crossref]
  27. J. E. Geusic, H. M. Marcos, and L. G. Van Uitert, “Laser oscillations in Nd‐doped yttrium aluminum, yttrium gallium and gadolinium garnets,” Appl. Phys. Lett. 4(10), 182 (1964).
    [Crossref]
  28. J. Löhring, K. Nicklausa, N. Kujatha, and D. Hoffmann, “Diode pumped Nd : YGG laser for direct generation of pulsed 935 nm radiation for water vapour measurements,” Proc. SPIE 6451, 64510I (2007).
    [Crossref]
  29. C. Maunier, J. L. Doualan, R. Moncorge, A. Speghini, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19(8), 1794–1800 (2002).
    [Crossref]

2015 (1)

V. Monteseguro, P. Rodríguez-Hernández, H. M. Ortiz, V. Venkatramu, F. J. Manjón, C. K. Jayasankar, V. Lavín, and A. Muñoz, “Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure,” Phys. Chem. Chem. Phys. 17(14), 9454–9464 (2015).
[Crossref] [PubMed]

2014 (1)

S. Ray, S. F. León-Luis, F. J. Manjón, M. A. Mollar, O. Gomis, U. R. Rodríguez-Mendoza, S. Agouram, A. Muñoz, and V. Lavín, “Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method,” Curr. Appl. Phys. 14(1), 72–81 (2014).
[Crossref]

2013 (1)

U. R. Rodríguez-Mendoza, S. F. León-Luis, J. E. Muñoz-Santiuste, D. Jaque, and V. Lavín, “Nd3+-doped Ca3Ga2Ge3O12 garnet: A new optical pressure sensor,” J. Appl. Phys. 113(21), 213517 (2013).
[Crossref]

2011 (2)

A. Kaminska, R. Buczko, W. Paszkowicz, H. Przybylinska, E. Werner-Malento, A. Suchocki, M. Brik, A. Durygin, V. Drozd, and S. Saxena, “Merging of the 4F3/2 level states of Nd3+ ions in the photoluminescence spectra of gadolinium-gallium garnets under high pressure,” Phys. Rev. B 84(7), 075483 (2011).
[Crossref]

A. Speghini, F. Piccinelli, and M. Bettinelli, “Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: The garnet family,” Opt. Mater. 33(3), 247–257 (2011).
[Crossref]

2010 (2)

K. Wu, B. Yao, H. Zhang, H. Yu, Z. Wang, J. Wang, and M. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312(24), 3631–3636 (2010).
[Crossref]

V. Venkatramu, M. Giarola, G. Mariotto, S. Enzo, S. Polizzi, C. K. Jayasankar, F. Piccinelli, M. Bettinelli, and A. Speghini, “Nanocrystalline lanthanide-doped Lu3Ga5O12 garnets: interesting materials for light-emitting devices,” Nanotechnology 21(17), 175703 (2010).
[Crossref] [PubMed]

2009 (1)

Z. Jia, A. Arcangeli, J. Zhang, and C. Dong, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[Crossref]

2008 (1)

R. Naccache, F. Vetrone, A. Speghini, M. Bettinelli, and J. A. Capobianco, “Cross relaxation and upconversion processes in Pr3+ singly doped and Pr3+/Yb3+ codoped nanocrystalline Gd3Ga5O12: The sensitizer/activator relationship,” J. Phys. Chem. C 112(20), 7750–7756 (2008).
[Crossref]

2007 (2)

R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. Van Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
[Crossref]

J. Löhring, K. Nicklausa, N. Kujatha, and D. Hoffmann, “Diode pumped Nd : YGG laser for direct generation of pulsed 935 nm radiation for water vapour measurements,” Proc. SPIE 6451, 64510I (2007).
[Crossref]

2002 (1)

2001 (1)

E. Antic-Fidancev, J. Hölsa, M. Lastusaari, and A. Lupei, “Dopant-host relationships in rare-earth oxides and garnets doped with trivalent rare-earth ions,” Phys. Rev. B 64(19), 195108 (2001).
[Crossref]

2000 (1)

V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61(12), 8087–8098 (2000).
[Crossref]

1999 (1)

O. Guillot-Noël, B. Bellamy, B. Viana, and D. Gourier, “Correlation between rare-earth oscillator strengths and rare-earth–valence-band interactions in neodymium-doped YMO4(M=V, P, As), Y3Al5O12, and LiYF4 matrices,” Phys. Rev. B 60(3), 1668–1677 (1999).
[Crossref]

1998 (2)

A. A. Deminovich, A. P. Shkadarevich, and M. B. Dansilov, “Comparison of cw laser performance of Nd:KGW, Nd:YAG, Nd:BEL, and Nd:YVO4 under laser diode pumping,” Appl. Phys. B 67(1), 11–15 (1998).
[Crossref]

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
[Crossref]

1993 (1)

J. Rodríguez-Carvajal, “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192(1-2), 55–69 (1993).
[Crossref]

1988 (1)

T. H. Allik, S. A. Stewart, D. K. Sardar, G. J. Quarles, R. C. Powell, C. A. Morrison, G. A. Turner, M. R. Kokta, W. W. Hovis, and A. A. Pinto, “Preparation, structure, and spectroscopic properties of Nd3+:{La1−xLux}3[Lu1−yGay]2Ga3O12 crystals,” Phys. Rev. B 37(16), 9129–9139 (1988).
[Crossref]

1984 (1)

K. Maeda, N. Wada, M. Umino, M. Abe, Y. Takada, N. Nakano, and H. Kuroda, “Concentration dependence of fluorescence lifetime of Nd3+-doped Gd3Ga5O12 lasers,” Jpn. J. Appl. Phys. 23(10), L759–L760 (1984).
[Crossref]

1978 (1)

V. Nekvasil, “The crystal field for Nd3+ in garnets,” Phys. Status Solidi 87(1), 317–323 (1978).
[Crossref]

1974 (1)

C. D. Brandle and R. L. Barns, “Crystal stoichiometry of Czochralski grown rare-earth gallium garnets,” J. Cryst. Growth 26(1), 169–170 (1974).
[Crossref]

1965 (1)

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978 (1965).
[Crossref]

1964 (1)

J. E. Geusic, H. M. Marcos, and L. G. Van Uitert, “Laser oscillations in Nd‐doped yttrium aluminum, yttrium gallium and gadolinium garnets,” Appl. Phys. Lett. 4(10), 182 (1964).
[Crossref]

Abe, M.

K. Maeda, N. Wada, M. Umino, M. Abe, Y. Takada, N. Nakano, and H. Kuroda, “Concentration dependence of fluorescence lifetime of Nd3+-doped Gd3Ga5O12 lasers,” Jpn. J. Appl. Phys. 23(10), L759–L760 (1984).
[Crossref]

Agouram, S.

S. Ray, S. F. León-Luis, F. J. Manjón, M. A. Mollar, O. Gomis, U. R. Rodríguez-Mendoza, S. Agouram, A. Muñoz, and V. Lavín, “Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method,” Curr. Appl. Phys. 14(1), 72–81 (2014).
[Crossref]

Allik, T. H.

T. H. Allik, S. A. Stewart, D. K. Sardar, G. J. Quarles, R. C. Powell, C. A. Morrison, G. A. Turner, M. R. Kokta, W. W. Hovis, and A. A. Pinto, “Preparation, structure, and spectroscopic properties of Nd3+:{La1−xLux}3[Lu1−yGay]2Ga3O12 crystals,” Phys. Rev. B 37(16), 9129–9139 (1988).
[Crossref]

Antic-Fidancev, E.

E. Antic-Fidancev, J. Hölsa, M. Lastusaari, and A. Lupei, “Dopant-host relationships in rare-earth oxides and garnets doped with trivalent rare-earth ions,” Phys. Rev. B 64(19), 195108 (2001).
[Crossref]

Arcangeli, A.

Z. Jia, A. Arcangeli, J. Zhang, and C. Dong, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[Crossref]

Barns, R. L.

C. D. Brandle and R. L. Barns, “Crystal stoichiometry of Czochralski grown rare-earth gallium garnets,” J. Cryst. Growth 26(1), 169–170 (1974).
[Crossref]

Bellamy, B.

O. Guillot-Noël, B. Bellamy, B. Viana, and D. Gourier, “Correlation between rare-earth oscillator strengths and rare-earth–valence-band interactions in neodymium-doped YMO4(M=V, P, As), Y3Al5O12, and LiYF4 matrices,” Phys. Rev. B 60(3), 1668–1677 (1999).
[Crossref]

Bettinelli, M.

A. Speghini, F. Piccinelli, and M. Bettinelli, “Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: The garnet family,” Opt. Mater. 33(3), 247–257 (2011).
[Crossref]

V. Venkatramu, M. Giarola, G. Mariotto, S. Enzo, S. Polizzi, C. K. Jayasankar, F. Piccinelli, M. Bettinelli, and A. Speghini, “Nanocrystalline lanthanide-doped Lu3Ga5O12 garnets: interesting materials for light-emitting devices,” Nanotechnology 21(17), 175703 (2010).
[Crossref] [PubMed]

R. Naccache, F. Vetrone, A. Speghini, M. Bettinelli, and J. A. Capobianco, “Cross relaxation and upconversion processes in Pr3+ singly doped and Pr3+/Yb3+ codoped nanocrystalline Gd3Ga5O12: The sensitizer/activator relationship,” J. Phys. Chem. C 112(20), 7750–7756 (2008).
[Crossref]

R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. Van Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
[Crossref]

C. Maunier, J. L. Doualan, R. Moncorge, A. Speghini, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19(8), 1794–1800 (2002).
[Crossref]

Brandle, C. D.

C. D. Brandle and R. L. Barns, “Crystal stoichiometry of Czochralski grown rare-earth gallium garnets,” J. Cryst. Growth 26(1), 169–170 (1974).
[Crossref]

Brik, M.

A. Kaminska, R. Buczko, W. Paszkowicz, H. Przybylinska, E. Werner-Malento, A. Suchocki, M. Brik, A. Durygin, V. Drozd, and S. Saxena, “Merging of the 4F3/2 level states of Nd3+ ions in the photoluminescence spectra of gadolinium-gallium garnets under high pressure,” Phys. Rev. B 84(7), 075483 (2011).
[Crossref]

Buczko, R.

A. Kaminska, R. Buczko, W. Paszkowicz, H. Przybylinska, E. Werner-Malento, A. Suchocki, M. Brik, A. Durygin, V. Drozd, and S. Saxena, “Merging of the 4F3/2 level states of Nd3+ ions in the photoluminescence spectra of gadolinium-gallium garnets under high pressure,” Phys. Rev. B 84(7), 075483 (2011).
[Crossref]

Capobianco, J. A.

R. Naccache, F. Vetrone, A. Speghini, M. Bettinelli, and J. A. Capobianco, “Cross relaxation and upconversion processes in Pr3+ singly doped and Pr3+/Yb3+ codoped nanocrystalline Gd3Ga5O12: The sensitizer/activator relationship,” J. Phys. Chem. C 112(20), 7750–7756 (2008).
[Crossref]

Cavalli, E.

Clarkson, W. A.

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
[Crossref]

Dansilov, M. B.

A. A. Deminovich, A. P. Shkadarevich, and M. B. Dansilov, “Comparison of cw laser performance of Nd:KGW, Nd:YAG, Nd:BEL, and Nd:YVO4 under laser diode pumping,” Appl. Phys. B 67(1), 11–15 (1998).
[Crossref]

Deminovich, A. A.

A. A. Deminovich, A. P. Shkadarevich, and M. B. Dansilov, “Comparison of cw laser performance of Nd:KGW, Nd:YAG, Nd:BEL, and Nd:YVO4 under laser diode pumping,” Appl. Phys. B 67(1), 11–15 (1998).
[Crossref]

Dong, C.

Z. Jia, A. Arcangeli, J. Zhang, and C. Dong, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[Crossref]

Doualan, J. L.

Drozd, V.

A. Kaminska, R. Buczko, W. Paszkowicz, H. Przybylinska, E. Werner-Malento, A. Suchocki, M. Brik, A. Durygin, V. Drozd, and S. Saxena, “Merging of the 4F3/2 level states of Nd3+ ions in the photoluminescence spectra of gadolinium-gallium garnets under high pressure,” Phys. Rev. B 84(7), 075483 (2011).
[Crossref]

Durygin, A.

A. Kaminska, R. Buczko, W. Paszkowicz, H. Przybylinska, E. Werner-Malento, A. Suchocki, M. Brik, A. Durygin, V. Drozd, and S. Saxena, “Merging of the 4F3/2 level states of Nd3+ ions in the photoluminescence spectra of gadolinium-gallium garnets under high pressure,” Phys. Rev. B 84(7), 075483 (2011).
[Crossref]

Enzo, S.

V. Venkatramu, M. Giarola, G. Mariotto, S. Enzo, S. Polizzi, C. K. Jayasankar, F. Piccinelli, M. Bettinelli, and A. Speghini, “Nanocrystalline lanthanide-doped Lu3Ga5O12 garnets: interesting materials for light-emitting devices,” Nanotechnology 21(17), 175703 (2010).
[Crossref] [PubMed]

Geusic, J. E.

J. E. Geusic, H. M. Marcos, and L. G. Van Uitert, “Laser oscillations in Nd‐doped yttrium aluminum, yttrium gallium and gadolinium garnets,” Appl. Phys. Lett. 4(10), 182 (1964).
[Crossref]

Giarola, M.

V. Venkatramu, M. Giarola, G. Mariotto, S. Enzo, S. Polizzi, C. K. Jayasankar, F. Piccinelli, M. Bettinelli, and A. Speghini, “Nanocrystalline lanthanide-doped Lu3Ga5O12 garnets: interesting materials for light-emitting devices,” Nanotechnology 21(17), 175703 (2010).
[Crossref] [PubMed]

Gomis, O.

S. Ray, S. F. León-Luis, F. J. Manjón, M. A. Mollar, O. Gomis, U. R. Rodríguez-Mendoza, S. Agouram, A. Muñoz, and V. Lavín, “Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method,” Curr. Appl. Phys. 14(1), 72–81 (2014).
[Crossref]

Gourier, D.

O. Guillot-Noël, B. Bellamy, B. Viana, and D. Gourier, “Correlation between rare-earth oscillator strengths and rare-earth–valence-band interactions in neodymium-doped YMO4(M=V, P, As), Y3Al5O12, and LiYF4 matrices,” Phys. Rev. B 60(3), 1668–1677 (1999).
[Crossref]

Guillot-Noël, O.

O. Guillot-Noël, B. Bellamy, B. Viana, and D. Gourier, “Correlation between rare-earth oscillator strengths and rare-earth–valence-band interactions in neodymium-doped YMO4(M=V, P, As), Y3Al5O12, and LiYF4 matrices,” Phys. Rev. B 60(3), 1668–1677 (1999).
[Crossref]

Hanna, D. C.

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
[Crossref]

Hardman, P. J.

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
[Crossref]

Hirayama, F.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978 (1965).
[Crossref]

Hoffmann, D.

J. Löhring, K. Nicklausa, N. Kujatha, and D. Hoffmann, “Diode pumped Nd : YGG laser for direct generation of pulsed 935 nm radiation for water vapour measurements,” Proc. SPIE 6451, 64510I (2007).
[Crossref]

Hölsa, J.

E. Antic-Fidancev, J. Hölsa, M. Lastusaari, and A. Lupei, “Dopant-host relationships in rare-earth oxides and garnets doped with trivalent rare-earth ions,” Phys. Rev. B 64(19), 195108 (2001).
[Crossref]

Hovis, W. W.

T. H. Allik, S. A. Stewart, D. K. Sardar, G. J. Quarles, R. C. Powell, C. A. Morrison, G. A. Turner, M. R. Kokta, W. W. Hovis, and A. A. Pinto, “Preparation, structure, and spectroscopic properties of Nd3+:{La1−xLux}3[Lu1−yGay]2Ga3O12 crystals,” Phys. Rev. B 37(16), 9129–9139 (1988).
[Crossref]

Inokuti, M.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978 (1965).
[Crossref]

Jaque, D.

U. R. Rodríguez-Mendoza, S. F. León-Luis, J. E. Muñoz-Santiuste, D. Jaque, and V. Lavín, “Nd3+-doped Ca3Ga2Ge3O12 garnet: A new optical pressure sensor,” J. Appl. Phys. 113(21), 213517 (2013).
[Crossref]

Jayasankar, C. K.

V. Monteseguro, P. Rodríguez-Hernández, H. M. Ortiz, V. Venkatramu, F. J. Manjón, C. K. Jayasankar, V. Lavín, and A. Muñoz, “Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure,” Phys. Chem. Chem. Phys. 17(14), 9454–9464 (2015).
[Crossref] [PubMed]

V. Venkatramu, M. Giarola, G. Mariotto, S. Enzo, S. Polizzi, C. K. Jayasankar, F. Piccinelli, M. Bettinelli, and A. Speghini, “Nanocrystalline lanthanide-doped Lu3Ga5O12 garnets: interesting materials for light-emitting devices,” Nanotechnology 21(17), 175703 (2010).
[Crossref] [PubMed]

Jia, Z.

Z. Jia, A. Arcangeli, J. Zhang, and C. Dong, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[Crossref]

Jiang, M.

K. Wu, B. Yao, H. Zhang, H. Yu, Z. Wang, J. Wang, and M. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312(24), 3631–3636 (2010).
[Crossref]

Kaminska, A.

A. Kaminska, R. Buczko, W. Paszkowicz, H. Przybylinska, E. Werner-Malento, A. Suchocki, M. Brik, A. Durygin, V. Drozd, and S. Saxena, “Merging of the 4F3/2 level states of Nd3+ ions in the photoluminescence spectra of gadolinium-gallium garnets under high pressure,” Phys. Rev. B 84(7), 075483 (2011).
[Crossref]

Kokta, M. R.

T. H. Allik, S. A. Stewart, D. K. Sardar, G. J. Quarles, R. C. Powell, C. A. Morrison, G. A. Turner, M. R. Kokta, W. W. Hovis, and A. A. Pinto, “Preparation, structure, and spectroscopic properties of Nd3+:{La1−xLux}3[Lu1−yGay]2Ga3O12 crystals,” Phys. Rev. B 37(16), 9129–9139 (1988).
[Crossref]

Krsmanovic, R.

R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. Van Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
[Crossref]

Kujatha, N.

J. Löhring, K. Nicklausa, N. Kujatha, and D. Hoffmann, “Diode pumped Nd : YGG laser for direct generation of pulsed 935 nm radiation for water vapour measurements,” Proc. SPIE 6451, 64510I (2007).
[Crossref]

Kuroda, H.

K. Maeda, N. Wada, M. Umino, M. Abe, Y. Takada, N. Nakano, and H. Kuroda, “Concentration dependence of fluorescence lifetime of Nd3+-doped Gd3Ga5O12 lasers,” Jpn. J. Appl. Phys. 23(10), L759–L760 (1984).
[Crossref]

Lastusaari, M.

E. Antic-Fidancev, J. Hölsa, M. Lastusaari, and A. Lupei, “Dopant-host relationships in rare-earth oxides and garnets doped with trivalent rare-earth ions,” Phys. Rev. B 64(19), 195108 (2001).
[Crossref]

Lavín, V.

V. Monteseguro, P. Rodríguez-Hernández, H. M. Ortiz, V. Venkatramu, F. J. Manjón, C. K. Jayasankar, V. Lavín, and A. Muñoz, “Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure,” Phys. Chem. Chem. Phys. 17(14), 9454–9464 (2015).
[Crossref] [PubMed]

S. Ray, S. F. León-Luis, F. J. Manjón, M. A. Mollar, O. Gomis, U. R. Rodríguez-Mendoza, S. Agouram, A. Muñoz, and V. Lavín, “Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method,” Curr. Appl. Phys. 14(1), 72–81 (2014).
[Crossref]

U. R. Rodríguez-Mendoza, S. F. León-Luis, J. E. Muñoz-Santiuste, D. Jaque, and V. Lavín, “Nd3+-doped Ca3Ga2Ge3O12 garnet: A new optical pressure sensor,” J. Appl. Phys. 113(21), 213517 (2013).
[Crossref]

Lebedev, O. I.

R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. Van Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
[Crossref]

León-Luis, S. F.

S. Ray, S. F. León-Luis, F. J. Manjón, M. A. Mollar, O. Gomis, U. R. Rodríguez-Mendoza, S. Agouram, A. Muñoz, and V. Lavín, “Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method,” Curr. Appl. Phys. 14(1), 72–81 (2014).
[Crossref]

U. R. Rodríguez-Mendoza, S. F. León-Luis, J. E. Muñoz-Santiuste, D. Jaque, and V. Lavín, “Nd3+-doped Ca3Ga2Ge3O12 garnet: A new optical pressure sensor,” J. Appl. Phys. 113(21), 213517 (2013).
[Crossref]

Löhring, J.

J. Löhring, K. Nicklausa, N. Kujatha, and D. Hoffmann, “Diode pumped Nd : YGG laser for direct generation of pulsed 935 nm radiation for water vapour measurements,” Proc. SPIE 6451, 64510I (2007).
[Crossref]

Lupei, A.

E. Antic-Fidancev, J. Hölsa, M. Lastusaari, and A. Lupei, “Dopant-host relationships in rare-earth oxides and garnets doped with trivalent rare-earth ions,” Phys. Rev. B 64(19), 195108 (2001).
[Crossref]

V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61(12), 8087–8098 (2000).
[Crossref]

Lupei, V.

V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61(12), 8087–8098 (2000).
[Crossref]

Maeda, K.

K. Maeda, N. Wada, M. Umino, M. Abe, Y. Takada, N. Nakano, and H. Kuroda, “Concentration dependence of fluorescence lifetime of Nd3+-doped Gd3Ga5O12 lasers,” Jpn. J. Appl. Phys. 23(10), L759–L760 (1984).
[Crossref]

Manjón, F. J.

V. Monteseguro, P. Rodríguez-Hernández, H. M. Ortiz, V. Venkatramu, F. J. Manjón, C. K. Jayasankar, V. Lavín, and A. Muñoz, “Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure,” Phys. Chem. Chem. Phys. 17(14), 9454–9464 (2015).
[Crossref] [PubMed]

S. Ray, S. F. León-Luis, F. J. Manjón, M. A. Mollar, O. Gomis, U. R. Rodríguez-Mendoza, S. Agouram, A. Muñoz, and V. Lavín, “Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method,” Curr. Appl. Phys. 14(1), 72–81 (2014).
[Crossref]

Marcos, H. M.

J. E. Geusic, H. M. Marcos, and L. G. Van Uitert, “Laser oscillations in Nd‐doped yttrium aluminum, yttrium gallium and gadolinium garnets,” Appl. Phys. Lett. 4(10), 182 (1964).
[Crossref]

Mariotto, G.

V. Venkatramu, M. Giarola, G. Mariotto, S. Enzo, S. Polizzi, C. K. Jayasankar, F. Piccinelli, M. Bettinelli, and A. Speghini, “Nanocrystalline lanthanide-doped Lu3Ga5O12 garnets: interesting materials for light-emitting devices,” Nanotechnology 21(17), 175703 (2010).
[Crossref] [PubMed]

Maunier, C.

Mollar, M. A.

S. Ray, S. F. León-Luis, F. J. Manjón, M. A. Mollar, O. Gomis, U. R. Rodríguez-Mendoza, S. Agouram, A. Muñoz, and V. Lavín, “Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method,” Curr. Appl. Phys. 14(1), 72–81 (2014).
[Crossref]

Moncorge, R.

Monteseguro, V.

V. Monteseguro, P. Rodríguez-Hernández, H. M. Ortiz, V. Venkatramu, F. J. Manjón, C. K. Jayasankar, V. Lavín, and A. Muñoz, “Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure,” Phys. Chem. Chem. Phys. 17(14), 9454–9464 (2015).
[Crossref] [PubMed]

Morozov, V. A.

R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. Van Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
[Crossref]

Morrison, C. A.

T. H. Allik, S. A. Stewart, D. K. Sardar, G. J. Quarles, R. C. Powell, C. A. Morrison, G. A. Turner, M. R. Kokta, W. W. Hovis, and A. A. Pinto, “Preparation, structure, and spectroscopic properties of Nd3+:{La1−xLux}3[Lu1−yGay]2Ga3O12 crystals,” Phys. Rev. B 37(16), 9129–9139 (1988).
[Crossref]

Muñoz, A.

V. Monteseguro, P. Rodríguez-Hernández, H. M. Ortiz, V. Venkatramu, F. J. Manjón, C. K. Jayasankar, V. Lavín, and A. Muñoz, “Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure,” Phys. Chem. Chem. Phys. 17(14), 9454–9464 (2015).
[Crossref] [PubMed]

S. Ray, S. F. León-Luis, F. J. Manjón, M. A. Mollar, O. Gomis, U. R. Rodríguez-Mendoza, S. Agouram, A. Muñoz, and V. Lavín, “Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method,” Curr. Appl. Phys. 14(1), 72–81 (2014).
[Crossref]

Muñoz-Santiuste, J. E.

U. R. Rodríguez-Mendoza, S. F. León-Luis, J. E. Muñoz-Santiuste, D. Jaque, and V. Lavín, “Nd3+-doped Ca3Ga2Ge3O12 garnet: A new optical pressure sensor,” J. Appl. Phys. 113(21), 213517 (2013).
[Crossref]

Naccache, R.

R. Naccache, F. Vetrone, A. Speghini, M. Bettinelli, and J. A. Capobianco, “Cross relaxation and upconversion processes in Pr3+ singly doped and Pr3+/Yb3+ codoped nanocrystalline Gd3Ga5O12: The sensitizer/activator relationship,” J. Phys. Chem. C 112(20), 7750–7756 (2008).
[Crossref]

Nakano, N.

K. Maeda, N. Wada, M. Umino, M. Abe, Y. Takada, N. Nakano, and H. Kuroda, “Concentration dependence of fluorescence lifetime of Nd3+-doped Gd3Ga5O12 lasers,” Jpn. J. Appl. Phys. 23(10), L759–L760 (1984).
[Crossref]

Nekvasil, V.

V. Nekvasil, “The crystal field for Nd3+ in garnets,” Phys. Status Solidi 87(1), 317–323 (1978).
[Crossref]

Nicklausa, K.

J. Löhring, K. Nicklausa, N. Kujatha, and D. Hoffmann, “Diode pumped Nd : YGG laser for direct generation of pulsed 935 nm radiation for water vapour measurements,” Proc. SPIE 6451, 64510I (2007).
[Crossref]

Ortiz, H. M.

V. Monteseguro, P. Rodríguez-Hernández, H. M. Ortiz, V. Venkatramu, F. J. Manjón, C. K. Jayasankar, V. Lavín, and A. Muñoz, “Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure,” Phys. Chem. Chem. Phys. 17(14), 9454–9464 (2015).
[Crossref] [PubMed]

Paszkowicz, W.

A. Kaminska, R. Buczko, W. Paszkowicz, H. Przybylinska, E. Werner-Malento, A. Suchocki, M. Brik, A. Durygin, V. Drozd, and S. Saxena, “Merging of the 4F3/2 level states of Nd3+ ions in the photoluminescence spectra of gadolinium-gallium garnets under high pressure,” Phys. Rev. B 84(7), 075483 (2011).
[Crossref]

Piccinelli, F.

A. Speghini, F. Piccinelli, and M. Bettinelli, “Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: The garnet family,” Opt. Mater. 33(3), 247–257 (2011).
[Crossref]

V. Venkatramu, M. Giarola, G. Mariotto, S. Enzo, S. Polizzi, C. K. Jayasankar, F. Piccinelli, M. Bettinelli, and A. Speghini, “Nanocrystalline lanthanide-doped Lu3Ga5O12 garnets: interesting materials for light-emitting devices,” Nanotechnology 21(17), 175703 (2010).
[Crossref] [PubMed]

Pinto, A. A.

T. H. Allik, S. A. Stewart, D. K. Sardar, G. J. Quarles, R. C. Powell, C. A. Morrison, G. A. Turner, M. R. Kokta, W. W. Hovis, and A. A. Pinto, “Preparation, structure, and spectroscopic properties of Nd3+:{La1−xLux}3[Lu1−yGay]2Ga3O12 crystals,” Phys. Rev. B 37(16), 9129–9139 (1988).
[Crossref]

Polizzi, S.

V. Venkatramu, M. Giarola, G. Mariotto, S. Enzo, S. Polizzi, C. K. Jayasankar, F. Piccinelli, M. Bettinelli, and A. Speghini, “Nanocrystalline lanthanide-doped Lu3Ga5O12 garnets: interesting materials for light-emitting devices,” Nanotechnology 21(17), 175703 (2010).
[Crossref] [PubMed]

R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. Van Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
[Crossref]

Pollnau, M.

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
[Crossref]

Powell, R. C.

T. H. Allik, S. A. Stewart, D. K. Sardar, G. J. Quarles, R. C. Powell, C. A. Morrison, G. A. Turner, M. R. Kokta, W. W. Hovis, and A. A. Pinto, “Preparation, structure, and spectroscopic properties of Nd3+:{La1−xLux}3[Lu1−yGay]2Ga3O12 crystals,” Phys. Rev. B 37(16), 9129–9139 (1988).
[Crossref]

Przybylinska, H.

A. Kaminska, R. Buczko, W. Paszkowicz, H. Przybylinska, E. Werner-Malento, A. Suchocki, M. Brik, A. Durygin, V. Drozd, and S. Saxena, “Merging of the 4F3/2 level states of Nd3+ ions in the photoluminescence spectra of gadolinium-gallium garnets under high pressure,” Phys. Rev. B 84(7), 075483 (2011).
[Crossref]

Quarles, G. J.

T. H. Allik, S. A. Stewart, D. K. Sardar, G. J. Quarles, R. C. Powell, C. A. Morrison, G. A. Turner, M. R. Kokta, W. W. Hovis, and A. A. Pinto, “Preparation, structure, and spectroscopic properties of Nd3+:{La1−xLux}3[Lu1−yGay]2Ga3O12 crystals,” Phys. Rev. B 37(16), 9129–9139 (1988).
[Crossref]

Ray, S.

S. Ray, S. F. León-Luis, F. J. Manjón, M. A. Mollar, O. Gomis, U. R. Rodríguez-Mendoza, S. Agouram, A. Muñoz, and V. Lavín, “Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method,” Curr. Appl. Phys. 14(1), 72–81 (2014).
[Crossref]

Rodríguez-Carvajal, J.

J. Rodríguez-Carvajal, “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192(1-2), 55–69 (1993).
[Crossref]

Rodríguez-Hernández, P.

V. Monteseguro, P. Rodríguez-Hernández, H. M. Ortiz, V. Venkatramu, F. J. Manjón, C. K. Jayasankar, V. Lavín, and A. Muñoz, “Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure,” Phys. Chem. Chem. Phys. 17(14), 9454–9464 (2015).
[Crossref] [PubMed]

Rodríguez-Mendoza, U. R.

S. Ray, S. F. León-Luis, F. J. Manjón, M. A. Mollar, O. Gomis, U. R. Rodríguez-Mendoza, S. Agouram, A. Muñoz, and V. Lavín, “Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method,” Curr. Appl. Phys. 14(1), 72–81 (2014).
[Crossref]

U. R. Rodríguez-Mendoza, S. F. León-Luis, J. E. Muñoz-Santiuste, D. Jaque, and V. Lavín, “Nd3+-doped Ca3Ga2Ge3O12 garnet: A new optical pressure sensor,” J. Appl. Phys. 113(21), 213517 (2013).
[Crossref]

Sardar, D. K.

T. H. Allik, S. A. Stewart, D. K. Sardar, G. J. Quarles, R. C. Powell, C. A. Morrison, G. A. Turner, M. R. Kokta, W. W. Hovis, and A. A. Pinto, “Preparation, structure, and spectroscopic properties of Nd3+:{La1−xLux}3[Lu1−yGay]2Ga3O12 crystals,” Phys. Rev. B 37(16), 9129–9139 (1988).
[Crossref]

Saxena, S.

A. Kaminska, R. Buczko, W. Paszkowicz, H. Przybylinska, E. Werner-Malento, A. Suchocki, M. Brik, A. Durygin, V. Drozd, and S. Saxena, “Merging of the 4F3/2 level states of Nd3+ ions in the photoluminescence spectra of gadolinium-gallium garnets under high pressure,” Phys. Rev. B 84(7), 075483 (2011).
[Crossref]

Shkadarevich, A. P.

A. A. Deminovich, A. P. Shkadarevich, and M. B. Dansilov, “Comparison of cw laser performance of Nd:KGW, Nd:YAG, Nd:BEL, and Nd:YVO4 under laser diode pumping,” Appl. Phys. B 67(1), 11–15 (1998).
[Crossref]

Speghini, A.

A. Speghini, F. Piccinelli, and M. Bettinelli, “Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: The garnet family,” Opt. Mater. 33(3), 247–257 (2011).
[Crossref]

V. Venkatramu, M. Giarola, G. Mariotto, S. Enzo, S. Polizzi, C. K. Jayasankar, F. Piccinelli, M. Bettinelli, and A. Speghini, “Nanocrystalline lanthanide-doped Lu3Ga5O12 garnets: interesting materials for light-emitting devices,” Nanotechnology 21(17), 175703 (2010).
[Crossref] [PubMed]

R. Naccache, F. Vetrone, A. Speghini, M. Bettinelli, and J. A. Capobianco, “Cross relaxation and upconversion processes in Pr3+ singly doped and Pr3+/Yb3+ codoped nanocrystalline Gd3Ga5O12: The sensitizer/activator relationship,” J. Phys. Chem. C 112(20), 7750–7756 (2008).
[Crossref]

R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. Van Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
[Crossref]

C. Maunier, J. L. Doualan, R. Moncorge, A. Speghini, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19(8), 1794–1800 (2002).
[Crossref]

Stewart, S. A.

T. H. Allik, S. A. Stewart, D. K. Sardar, G. J. Quarles, R. C. Powell, C. A. Morrison, G. A. Turner, M. R. Kokta, W. W. Hovis, and A. A. Pinto, “Preparation, structure, and spectroscopic properties of Nd3+:{La1−xLux}3[Lu1−yGay]2Ga3O12 crystals,” Phys. Rev. B 37(16), 9129–9139 (1988).
[Crossref]

Suchocki, A.

A. Kaminska, R. Buczko, W. Paszkowicz, H. Przybylinska, E. Werner-Malento, A. Suchocki, M. Brik, A. Durygin, V. Drozd, and S. Saxena, “Merging of the 4F3/2 level states of Nd3+ ions in the photoluminescence spectra of gadolinium-gallium garnets under high pressure,” Phys. Rev. B 84(7), 075483 (2011).
[Crossref]

Takada, Y.

K. Maeda, N. Wada, M. Umino, M. Abe, Y. Takada, N. Nakano, and H. Kuroda, “Concentration dependence of fluorescence lifetime of Nd3+-doped Gd3Ga5O12 lasers,” Jpn. J. Appl. Phys. 23(10), L759–L760 (1984).
[Crossref]

Turner, G. A.

T. H. Allik, S. A. Stewart, D. K. Sardar, G. J. Quarles, R. C. Powell, C. A. Morrison, G. A. Turner, M. R. Kokta, W. W. Hovis, and A. A. Pinto, “Preparation, structure, and spectroscopic properties of Nd3+:{La1−xLux}3[Lu1−yGay]2Ga3O12 crystals,” Phys. Rev. B 37(16), 9129–9139 (1988).
[Crossref]

Umino, M.

K. Maeda, N. Wada, M. Umino, M. Abe, Y. Takada, N. Nakano, and H. Kuroda, “Concentration dependence of fluorescence lifetime of Nd3+-doped Gd3Ga5O12 lasers,” Jpn. J. Appl. Phys. 23(10), L759–L760 (1984).
[Crossref]

Van Tendeloo, G.

R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. Van Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
[Crossref]

Van Uitert, L. G.

J. E. Geusic, H. M. Marcos, and L. G. Van Uitert, “Laser oscillations in Nd‐doped yttrium aluminum, yttrium gallium and gadolinium garnets,” Appl. Phys. Lett. 4(10), 182 (1964).
[Crossref]

Venkatramu, V.

V. Monteseguro, P. Rodríguez-Hernández, H. M. Ortiz, V. Venkatramu, F. J. Manjón, C. K. Jayasankar, V. Lavín, and A. Muñoz, “Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure,” Phys. Chem. Chem. Phys. 17(14), 9454–9464 (2015).
[Crossref] [PubMed]

V. Venkatramu, M. Giarola, G. Mariotto, S. Enzo, S. Polizzi, C. K. Jayasankar, F. Piccinelli, M. Bettinelli, and A. Speghini, “Nanocrystalline lanthanide-doped Lu3Ga5O12 garnets: interesting materials for light-emitting devices,” Nanotechnology 21(17), 175703 (2010).
[Crossref] [PubMed]

Vetrone, F.

R. Naccache, F. Vetrone, A. Speghini, M. Bettinelli, and J. A. Capobianco, “Cross relaxation and upconversion processes in Pr3+ singly doped and Pr3+/Yb3+ codoped nanocrystalline Gd3Ga5O12: The sensitizer/activator relationship,” J. Phys. Chem. C 112(20), 7750–7756 (2008).
[Crossref]

Viana, B.

O. Guillot-Noël, B. Bellamy, B. Viana, and D. Gourier, “Correlation between rare-earth oscillator strengths and rare-earth–valence-band interactions in neodymium-doped YMO4(M=V, P, As), Y3Al5O12, and LiYF4 matrices,” Phys. Rev. B 60(3), 1668–1677 (1999).
[Crossref]

Wada, N.

K. Maeda, N. Wada, M. Umino, M. Abe, Y. Takada, N. Nakano, and H. Kuroda, “Concentration dependence of fluorescence lifetime of Nd3+-doped Gd3Ga5O12 lasers,” Jpn. J. Appl. Phys. 23(10), L759–L760 (1984).
[Crossref]

Wang, J.

K. Wu, B. Yao, H. Zhang, H. Yu, Z. Wang, J. Wang, and M. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312(24), 3631–3636 (2010).
[Crossref]

Wang, Z.

K. Wu, B. Yao, H. Zhang, H. Yu, Z. Wang, J. Wang, and M. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312(24), 3631–3636 (2010).
[Crossref]

Werner-Malento, E.

A. Kaminska, R. Buczko, W. Paszkowicz, H. Przybylinska, E. Werner-Malento, A. Suchocki, M. Brik, A. Durygin, V. Drozd, and S. Saxena, “Merging of the 4F3/2 level states of Nd3+ ions in the photoluminescence spectra of gadolinium-gallium garnets under high pressure,” Phys. Rev. B 84(7), 075483 (2011).
[Crossref]

Wu, K.

K. Wu, B. Yao, H. Zhang, H. Yu, Z. Wang, J. Wang, and M. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312(24), 3631–3636 (2010).
[Crossref]

Yao, B.

K. Wu, B. Yao, H. Zhang, H. Yu, Z. Wang, J. Wang, and M. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312(24), 3631–3636 (2010).
[Crossref]

Yu, H.

K. Wu, B. Yao, H. Zhang, H. Yu, Z. Wang, J. Wang, and M. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312(24), 3631–3636 (2010).
[Crossref]

Zhang, H.

K. Wu, B. Yao, H. Zhang, H. Yu, Z. Wang, J. Wang, and M. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312(24), 3631–3636 (2010).
[Crossref]

Zhang, J.

Z. Jia, A. Arcangeli, J. Zhang, and C. Dong, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[Crossref]

Appl. Phys. B (1)

A. A. Deminovich, A. P. Shkadarevich, and M. B. Dansilov, “Comparison of cw laser performance of Nd:KGW, Nd:YAG, Nd:BEL, and Nd:YVO4 under laser diode pumping,” Appl. Phys. B 67(1), 11–15 (1998).
[Crossref]

Appl. Phys. Lett. (1)

J. E. Geusic, H. M. Marcos, and L. G. Van Uitert, “Laser oscillations in Nd‐doped yttrium aluminum, yttrium gallium and gadolinium garnets,” Appl. Phys. Lett. 4(10), 182 (1964).
[Crossref]

Curr. Appl. Phys. (1)

S. Ray, S. F. León-Luis, F. J. Manjón, M. A. Mollar, O. Gomis, U. R. Rodríguez-Mendoza, S. Agouram, A. Muñoz, and V. Lavín, “Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method,” Curr. Appl. Phys. 14(1), 72–81 (2014).
[Crossref]

J. Appl. Phys. (2)

U. R. Rodríguez-Mendoza, S. F. León-Luis, J. E. Muñoz-Santiuste, D. Jaque, and V. Lavín, “Nd3+-doped Ca3Ga2Ge3O12 garnet: A new optical pressure sensor,” J. Appl. Phys. 113(21), 213517 (2013).
[Crossref]

Z. Jia, A. Arcangeli, J. Zhang, and C. Dong, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[Crossref]

J. Chem. Phys. (1)

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978 (1965).
[Crossref]

J. Cryst. Growth (2)

K. Wu, B. Yao, H. Zhang, H. Yu, Z. Wang, J. Wang, and M. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312(24), 3631–3636 (2010).
[Crossref]

C. D. Brandle and R. L. Barns, “Crystal stoichiometry of Czochralski grown rare-earth gallium garnets,” J. Cryst. Growth 26(1), 169–170 (1974).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

R. Naccache, F. Vetrone, A. Speghini, M. Bettinelli, and J. A. Capobianco, “Cross relaxation and upconversion processes in Pr3+ singly doped and Pr3+/Yb3+ codoped nanocrystalline Gd3Ga5O12: The sensitizer/activator relationship,” J. Phys. Chem. C 112(20), 7750–7756 (2008).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Maeda, N. Wada, M. Umino, M. Abe, Y. Takada, N. Nakano, and H. Kuroda, “Concentration dependence of fluorescence lifetime of Nd3+-doped Gd3Ga5O12 lasers,” Jpn. J. Appl. Phys. 23(10), L759–L760 (1984).
[Crossref]

Nanotechnology (2)

R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. Van Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
[Crossref]

V. Venkatramu, M. Giarola, G. Mariotto, S. Enzo, S. Polizzi, C. K. Jayasankar, F. Piccinelli, M. Bettinelli, and A. Speghini, “Nanocrystalline lanthanide-doped Lu3Ga5O12 garnets: interesting materials for light-emitting devices,” Nanotechnology 21(17), 175703 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
[Crossref]

Opt. Mater. (1)

A. Speghini, F. Piccinelli, and M. Bettinelli, “Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: The garnet family,” Opt. Mater. 33(3), 247–257 (2011).
[Crossref]

Phys. Chem. Chem. Phys. (1)

V. Monteseguro, P. Rodríguez-Hernández, H. M. Ortiz, V. Venkatramu, F. J. Manjón, C. K. Jayasankar, V. Lavín, and A. Muñoz, “Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure,” Phys. Chem. Chem. Phys. 17(14), 9454–9464 (2015).
[Crossref] [PubMed]

Phys. Rev. B (5)

A. Kaminska, R. Buczko, W. Paszkowicz, H. Przybylinska, E. Werner-Malento, A. Suchocki, M. Brik, A. Durygin, V. Drozd, and S. Saxena, “Merging of the 4F3/2 level states of Nd3+ ions in the photoluminescence spectra of gadolinium-gallium garnets under high pressure,” Phys. Rev. B 84(7), 075483 (2011).
[Crossref]

T. H. Allik, S. A. Stewart, D. K. Sardar, G. J. Quarles, R. C. Powell, C. A. Morrison, G. A. Turner, M. R. Kokta, W. W. Hovis, and A. A. Pinto, “Preparation, structure, and spectroscopic properties of Nd3+:{La1−xLux}3[Lu1−yGay]2Ga3O12 crystals,” Phys. Rev. B 37(16), 9129–9139 (1988).
[Crossref]

E. Antic-Fidancev, J. Hölsa, M. Lastusaari, and A. Lupei, “Dopant-host relationships in rare-earth oxides and garnets doped with trivalent rare-earth ions,” Phys. Rev. B 64(19), 195108 (2001).
[Crossref]

V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61(12), 8087–8098 (2000).
[Crossref]

O. Guillot-Noël, B. Bellamy, B. Viana, and D. Gourier, “Correlation between rare-earth oscillator strengths and rare-earth–valence-band interactions in neodymium-doped YMO4(M=V, P, As), Y3Al5O12, and LiYF4 matrices,” Phys. Rev. B 60(3), 1668–1677 (1999).
[Crossref]

Phys. Status Solidi (1)

V. Nekvasil, “The crystal field for Nd3+ in garnets,” Phys. Status Solidi 87(1), 317–323 (1978).
[Crossref]

Physica B (1)

J. Rodríguez-Carvajal, “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192(1-2), 55–69 (1993).
[Crossref]

Proc. SPIE (1)

J. Löhring, K. Nicklausa, N. Kujatha, and D. Hoffmann, “Diode pumped Nd : YGG laser for direct generation of pulsed 935 nm radiation for water vapour measurements,” Proc. SPIE 6451, 64510I (2007).
[Crossref]

Other (5)

B. G. Wybourne, Spectroscopic Properties of Rare Earths (Wiley-Interscience, 1965).

C. A. Morrison and R. P. Leavitt, “Spectroscopic properties of triply ionized lanthanides in transparent host crystals,” in Handbook on the Physics and Chemistry of Rare Earths, edited by K.A. Gschneidener, Jr. and L. Eyring, eds. (North Holland Publishing Company, 1982), vol. 5, ch. 46, p. 461.

A. A. Kaminiskii, Laser Crystals (Springer-Verlag, 1981).

M. J. Weber, “Rare earth lasers,” in Handbook on the Physics and Chemistry of Rare Earths, K.A. Gschneidner, Jr. and L. Eyring, eds. (North Holland Publishing Company, 1979), vol. 4, ch. 35, p. 275.

Th. Tröster, “Optical studies of non-metallic compounds under pressure,” in Handbook on the Physics and Chemistry of Rare Earths, K.A. Gschneidner, Jr., J.-C. G. Bunzli, and V.K. Pecharsky, eds. (Elsevier Science B.V., 2003) vol. 33, ch. 217, p. 515.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (Left) X-ray diffraction patterns of Gd3Ga5O12 (GGG1Nd), Y3Ga5O12 (YGG1Nd), and Lu3Ga5O12 (LuGG1Nd) gallium nano-garnets doped with 1 mol% of Nd3+ ions. Rietveld refinements including difference between calculated and observed patterns are also shown. (Right) Picture of the RE-O dodecahedral unit.
Fig. 2
Fig. 2 Volumes of unit cell (black), RE3+-O dodecahedron (red), Ga-O octahedron (blue) and Ga-O tetrahedron (green) of the nanocrystalline gallium garnet as a function of the ionic radius of the RE3+ ions. Data for Nd3Ga5O12 nano-garnet have been also included for comparison.
Fig. 3
Fig. 3 (Left) Infrared absorption and (right) Raman spectra of the gallium nano-garnets. The spectra of the Y3Ga5O12 and Lu3Ga5O12 nano-garnets have been shifted in transmission and intensity a fixed amount for comparison purpose.
Fig. 4
Fig. 4 (Left) Diffuse reflectance spectra of the gallium nano-garnets. (Right) The 4I9/22H9/2,4F5/2 transitions are compared for the three gallium nano-garnets. The spectra of the Y3Ga5O12 and Lu3Ga5O12 nano-garnets have been shifted in intensity a fixed amount for comparison purpose.
Fig. 5
Fig. 5 Emission spectra of the three gallium nano-garnets after exciting resonantly the 4I9/22H9/2,4F5/2 transitions with a laser light at 805 nm. Intensities are normalized to the maximum of the 4I9/22H9/2,4F5/2 transition and shifted a fixed amount for the Y3Ga5O12 and Lu3Ga5O12 nano-garnets for comparison purpose. The relative intensities of all the emissions can be directly compared.
Fig. 6
Fig. 6 (Left) Partial energy level diagram of the Nd3+ ion showing different radiative transitions (downward solid lines) related to the luminescence after a 4I15/22H9/2,4F5/2 ground state absorption (GSA) under a direct laser excitation at 805 nm. The multiphonon (zig-zag lines) and energy transfer (dashed lines) non-radiative relaxation processes are also shown. (Right) Partial energy level diagram of the Nd3+ ion corresponding to the Stark levels of the 4F3/2 and 4I9/2 multiplets and the transitions between the Stark levels in the nano-garnets under study.
Fig. 7
Fig. 7 Luminescence decay curves of the 4F3/2 level monitoring the 4F3/24I9/2 transition at around 888 nm after exciting resonantly the 4I9/24G7/2 transition with a pulsed laser light at 532 nm. Fitted curves (in black) to the Inokuti-Hirayama model (with S = 6) are also given.

Tables (2)

Tables Icon

Table 1 Cell parameters and reliability factors obtained from the Rietveld refinement.

Tables Icon

Table 2 Bond distances of the RE and Ga ions.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I 0 exp [ ( t τ 0 ) Q ( t τ 0 ) 3 S ]
Q = 4 π 3 Γ ( 1 3 S ) N 0 R 0 3

Metrics