Abstract

Er3+-doped K-Ca-Al fluorophosphate glasses were prepared by melt quenching technique and their thermal and optical properties were studied. The thermal stability factor was obtained to be 131 °C. The gain bandwidth, lifetime and quantum efficiency of the 4I13/24I15/2 transition were found to be 96.14 × 10−27 cm3, 5.41 ms and 61%, respectively for 1.0 mol% Er2O3-doped glass. The quenching concentration has been evaluated (Q = 2.30 mol%) and found to be higher compared to other reported glasses. These results clearly indicate that present glasses are suitable for laser as well as optical amplifiers in the 1.53 μm region.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical spectroscopy, 1.5μm emission, and upconversion properties of Er3+-doped metaphosphate laser glasses

P. Babu, Hyo Jin Seo, Kyoung Hyuk Jang, R. Balakrishnaiah, C. K. Jayasankar, Ki-Soo Lim, and V. Lavín
J. Opt. Soc. Am. B 24(9) 2218-2228 (2007)

Spectroscopic and lasing properties of Er3+/Yb3+-doped fluorophosphate glass with small additives of phosphates

E. Kolobkova, A. Alkhlef, A. Yasukevich, and A. Babkina
Opt. Mater. Express 9(9) 3666-3679 (2019)

Effect of Ba(PO3)2 addition on the optical properties of Tm3+-doped fluorophosphate glasses

Xin Sun, Jiangbo She, Xiaohui Li, Min Lu, Pengfei Wang, and Dongdong Li
Opt. Mater. Express 9(3) 1233-1245 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Ch.-L. Zhao, B.-O. Guan, H.-Y. Tam, W.-H. Chung, X. Dong, P. K. A. Wai, and X. Dong, “Performance of optical automatic gain control EDFA with dual-oscillating control lasers,” Opt. Commun. 224(4-6), 281–287 (2003).
    [Crossref]
  2. J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
    [Crossref]
  3. J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
    [Crossref]
  4. S. Jiang, T. Luo, B. C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghabarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263–264, 364–368 (2000).
    [Crossref]
  5. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  6. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [Crossref]
  7. G. V. Prakash, R. Jagannathan, and D. N. Rao, “Physical and optical properties of NASICON-type phosphate glasses,” Mater. Lett. 57(1), 134–140 (2002).
    [Crossref]
  8. X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84(1), 165–171 (2001).
    [Crossref]
  9. M. Liao, L. Hu, Z. Duan, L. Zhang, and L. Wen, “Spectroscopic properties of fluorophosphate glass with high Er3+ concentration,” Appl. Phys. B 86(1), 83–89 (2006).
    [Crossref]
  10. A. D. Sontakke, K. Biswas, A. Tarafder, R. Sen, and K. Annapurna, “Broadband Er3+ emission in highly nonlinear Bismuth modified Zinc-Borate glasses,” Opt. Mater. Express 1(3), 344–356 (2011).
    [Crossref]
  11. N. Sdiri, H. Elhouichet, and M. Ferid, “Effects of substituting P2O5 for B2O3 on the thermal and optical properties of sodium borophosphate glasses doped with Er,” J. Non-Cryst. Solids 389, 38–45 (2014).
    [Crossref]
  12. C. R. Kesavulu, V. B. Sreedhar, C. K. Jayasankar, K. Jang, D.-S. Shin, and S. S. Yi, “Structural, thermal and spectroscopic properties of highly Er3+-doped novel oxyfluoride glasses for photonic application,” Mater. Res. Bull. 51, 336–344 (2014).
    [Crossref]
  13. A. Langar, C. Bouzidi, H. Elhouichet, and M. Férid, “Er–Yb codoped phosphate glasses with improved gain characteristics for an efficient 1.55 µm broadband optical amplifiers,” J. Lumin. 148, 249–255 (2014).
    [Crossref]
  14. T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
    [Crossref]
  15. M. Hamzaoui, M. T. Soltani, M. Baazouzi, B. Tioua, Z. G. Ivanova, R. Lebullenger, M. Poulain, and J. Zavadil, “Optical properties of erbium doped antimony based glasses: Promising visible and infrared amplifiers materials,” Phys. Status Solidi B 249(11), 2213–2221 (2012).
    [Crossref]
  16. M. G. Drexhage, O. H. El-Bayoumi, C. T. Moynihan, A. J. Bruce, K.-H. Chung, D. L. Gavin, and T. J. Loretz, “Preparation and properties of heavy-metal fluoride glasses containing ytterbium or lutetium,” J. Am. Ceram. Soc. 65(10), C168–C171 (1982).
    [Crossref]
  17. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
    [Crossref]
  18. H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd–Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
    [Crossref]
  19. P. Babu, H. J. Seo, K. H. Jang, R. Balakrishnaiah, C. K. Jayasankar, K.-S. Lim, and V. Lavín, “Optical spectroscopy, 1.5 μm emission, and upconversion properties of Er3+-doped metaphosphate laser glass,” J. Opt. Soc. Am. B 24(9), 2218–2228 (2007).
    [Crossref]
  20. G. Bilir, G. Ozen, D. Tatar, and M. L. Öveçoğlu, “Judd–Ofelt analysis and near infrared emission properties of the Er3+ ions in tellurite glasses containing WO3 and CdO,” Opt. Commun. 284(3), 863–868 (2011).
    [Crossref]
  21. K. Linganna, M. Rathaiah, N. Vijaya, Ch. Basavapoornima, C. K. Jayasankar, S. Ju, W.-T. Han, and V. Venkatramu, “1.53 µm luminescence properties of Er3+-doped K-Sr-Al phosphate glasses,” Cer. Inter. 41(4), 5765–5771 (2015).
    [Crossref]
  22. L. R. Moorthy, M. Jayasimhadri, S. A. Saleem, and D. V. R. Murthy, “Optical properties of Er3+-doped alkali fluorophosphate glasses,” J. Non-Cryst. Solids 353(13-15), 1392–1396 (2007).
    [Crossref]
  23. H. Ebendorff-Heidepriem, D. Ehrt, J. Philipps, Th. Töpfer, A. Speghini, M. Bettinelli, and R. W. S. Fat, “Properties of Er3 + doped glasses for waveguide and fiber lasers,” Proc. SPIE 3942, 29–39 (2000).
    [Crossref]
  24. K. Damak, E. Yousef, S. AlFaify, C. Rüssel, and R. Maâlej, “Raman, green and infrared emission cross-sections of Er3+ doped TZPPN tellurite glass,” Opt. Mater. Express 4(4), 597–612 (2014).
    [Crossref]
  25. H. Takebe, Y. Nageno, and K. Morinaga, “Compositional dependence of Judd-Ofelt parameters in Silicate, Borate and Phosphate glasses,” J. Am. Ceram. Soc. 78(5), 1161–1168 (1995).
    [Crossref]
  26. H. Desirena, E. De la Rosa, L. A. Diaz-Torres, and G. A. Kumar, “Concentration effect of Er3+ ion on the spectroscopic properties of Er3+ and Yb3+/Er3+ co-doped phosphate glasses,” Opt. Mater. 28(5), 560–568 (2006).
    [Crossref]
  27. Y. Luo, J. Zhang, J. Sun, S. Lu, and X. Wang, “Spectroscopic properties of tungsten–tellurite glasses doped with Er3+ ions at different concentrations,” Opt. Mater. 28(3), 255–258 (2006).
    [Crossref]
  28. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157(2), 262–272 (1967).
    [Crossref]
  29. D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. A 134(2), A299–A306 (1964).
    [Crossref]
  30. L. Zhang, N.-K. Chen, and L. Hua, “High Er3+ concentration low refractive index fluorophosphate glass for evanescent wave optical amplifiers,” Physica B 403(19-20), 3470–3472 (2008).
    [Crossref]
  31. S. Ronchin, R. Rolli, M. Montagna, C. Duverger, V. Tikhomirov, A. Jha, M. Ferrari, G. C. Righini, S. Pelli, and M. Fossi, “Erbium-activated aluminum fluoride glasses: optical and spectroscopic properties,” J. Non-Cryst. Solids 284(1-3), 243–248 (2001).
    [Crossref]
  32. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
    [Crossref]
  33. S. Tanabe, “Optical transition of rare earth ions for amplifiers: how the local structure woks in glass,” J. Non-Cryst. Solids 259(1-3), 1–9 (1999).
    [Crossref]
  34. L. R. P. Kassab, L. C. Courrol, R. Seragioli, N. U. Wetter, S. H. Tatumi, and L. Gomes, “Er3+ laser transition in PbO-PbF2-B2O3 glasses,” J. Non-Cryst. Solids 348, 94–97 (2004).
    [Crossref]
  35. J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er/Yb co-doped fluoride phosphate glasses,” Appl. Phys. B 72(4), 399–405 (2001).
    [Crossref]
  36. S. Xu, Z. Yang, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 361(1-2), 313–319 (2003).
    [Crossref]
  37. X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol–gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm,” Opt. Mater. 12(1), 1–18 (1999).
    [Crossref]
  38. R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater. 25(2), 131–139 (2004).
    [Crossref]

2015 (1)

K. Linganna, M. Rathaiah, N. Vijaya, Ch. Basavapoornima, C. K. Jayasankar, S. Ju, W.-T. Han, and V. Venkatramu, “1.53 µm luminescence properties of Er3+-doped K-Sr-Al phosphate glasses,” Cer. Inter. 41(4), 5765–5771 (2015).
[Crossref]

2014 (5)

N. Sdiri, H. Elhouichet, and M. Ferid, “Effects of substituting P2O5 for B2O3 on the thermal and optical properties of sodium borophosphate glasses doped with Er,” J. Non-Cryst. Solids 389, 38–45 (2014).
[Crossref]

C. R. Kesavulu, V. B. Sreedhar, C. K. Jayasankar, K. Jang, D.-S. Shin, and S. S. Yi, “Structural, thermal and spectroscopic properties of highly Er3+-doped novel oxyfluoride glasses for photonic application,” Mater. Res. Bull. 51, 336–344 (2014).
[Crossref]

A. Langar, C. Bouzidi, H. Elhouichet, and M. Férid, “Er–Yb codoped phosphate glasses with improved gain characteristics for an efficient 1.55 µm broadband optical amplifiers,” J. Lumin. 148, 249–255 (2014).
[Crossref]

T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
[Crossref]

K. Damak, E. Yousef, S. AlFaify, C. Rüssel, and R. Maâlej, “Raman, green and infrared emission cross-sections of Er3+ doped TZPPN tellurite glass,” Opt. Mater. Express 4(4), 597–612 (2014).
[Crossref]

2012 (1)

M. Hamzaoui, M. T. Soltani, M. Baazouzi, B. Tioua, Z. G. Ivanova, R. Lebullenger, M. Poulain, and J. Zavadil, “Optical properties of erbium doped antimony based glasses: Promising visible and infrared amplifiers materials,” Phys. Status Solidi B 249(11), 2213–2221 (2012).
[Crossref]

2011 (3)

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

A. D. Sontakke, K. Biswas, A. Tarafder, R. Sen, and K. Annapurna, “Broadband Er3+ emission in highly nonlinear Bismuth modified Zinc-Borate glasses,” Opt. Mater. Express 1(3), 344–356 (2011).
[Crossref]

G. Bilir, G. Ozen, D. Tatar, and M. L. Öveçoğlu, “Judd–Ofelt analysis and near infrared emission properties of the Er3+ ions in tellurite glasses containing WO3 and CdO,” Opt. Commun. 284(3), 863–868 (2011).
[Crossref]

2008 (1)

L. Zhang, N.-K. Chen, and L. Hua, “High Er3+ concentration low refractive index fluorophosphate glass for evanescent wave optical amplifiers,” Physica B 403(19-20), 3470–3472 (2008).
[Crossref]

2007 (2)

P. Babu, H. J. Seo, K. H. Jang, R. Balakrishnaiah, C. K. Jayasankar, K.-S. Lim, and V. Lavín, “Optical spectroscopy, 1.5 μm emission, and upconversion properties of Er3+-doped metaphosphate laser glass,” J. Opt. Soc. Am. B 24(9), 2218–2228 (2007).
[Crossref]

L. R. Moorthy, M. Jayasimhadri, S. A. Saleem, and D. V. R. Murthy, “Optical properties of Er3+-doped alkali fluorophosphate glasses,” J. Non-Cryst. Solids 353(13-15), 1392–1396 (2007).
[Crossref]

2006 (3)

M. Liao, L. Hu, Z. Duan, L. Zhang, and L. Wen, “Spectroscopic properties of fluorophosphate glass with high Er3+ concentration,” Appl. Phys. B 86(1), 83–89 (2006).
[Crossref]

H. Desirena, E. De la Rosa, L. A. Diaz-Torres, and G. A. Kumar, “Concentration effect of Er3+ ion on the spectroscopic properties of Er3+ and Yb3+/Er3+ co-doped phosphate glasses,” Opt. Mater. 28(5), 560–568 (2006).
[Crossref]

Y. Luo, J. Zhang, J. Sun, S. Lu, and X. Wang, “Spectroscopic properties of tungsten–tellurite glasses doped with Er3+ ions at different concentrations,” Opt. Mater. 28(3), 255–258 (2006).
[Crossref]

2004 (2)

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater. 25(2), 131–139 (2004).
[Crossref]

L. R. P. Kassab, L. C. Courrol, R. Seragioli, N. U. Wetter, S. H. Tatumi, and L. Gomes, “Er3+ laser transition in PbO-PbF2-B2O3 glasses,” J. Non-Cryst. Solids 348, 94–97 (2004).
[Crossref]

2003 (2)

S. Xu, Z. Yang, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 361(1-2), 313–319 (2003).
[Crossref]

Ch.-L. Zhao, B.-O. Guan, H.-Y. Tam, W.-H. Chung, X. Dong, P. K. A. Wai, and X. Dong, “Performance of optical automatic gain control EDFA with dual-oscillating control lasers,” Opt. Commun. 224(4-6), 281–287 (2003).
[Crossref]

2002 (1)

G. V. Prakash, R. Jagannathan, and D. N. Rao, “Physical and optical properties of NASICON-type phosphate glasses,” Mater. Lett. 57(1), 134–140 (2002).
[Crossref]

2001 (3)

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84(1), 165–171 (2001).
[Crossref]

J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er/Yb co-doped fluoride phosphate glasses,” Appl. Phys. B 72(4), 399–405 (2001).
[Crossref]

S. Ronchin, R. Rolli, M. Montagna, C. Duverger, V. Tikhomirov, A. Jha, M. Ferrari, G. C. Righini, S. Pelli, and M. Fossi, “Erbium-activated aluminum fluoride glasses: optical and spectroscopic properties,” J. Non-Cryst. Solids 284(1-3), 243–248 (2001).
[Crossref]

2000 (3)

H. Ebendorff-Heidepriem, D. Ehrt, J. Philipps, Th. Töpfer, A. Speghini, M. Bettinelli, and R. W. S. Fat, “Properties of Er3 + doped glasses for waveguide and fiber lasers,” Proc. SPIE 3942, 29–39 (2000).
[Crossref]

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
[Crossref]

S. Jiang, T. Luo, B. C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghabarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263–264, 364–368 (2000).
[Crossref]

1999 (2)

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol–gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm,” Opt. Mater. 12(1), 1–18 (1999).
[Crossref]

S. Tanabe, “Optical transition of rare earth ions for amplifiers: how the local structure woks in glass,” J. Non-Cryst. Solids 259(1-3), 1–9 (1999).
[Crossref]

1998 (1)

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd–Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
[Crossref]

1995 (1)

H. Takebe, Y. Nageno, and K. Morinaga, “Compositional dependence of Judd-Ofelt parameters in Silicate, Borate and Phosphate glasses,” J. Am. Ceram. Soc. 78(5), 1161–1168 (1995).
[Crossref]

1994 (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

1982 (1)

M. G. Drexhage, O. H. El-Bayoumi, C. T. Moynihan, A. J. Bruce, K.-H. Chung, D. L. Gavin, and T. J. Loretz, “Preparation and properties of heavy-metal fluoride glasses containing ytterbium or lutetium,” J. Am. Ceram. Soc. 65(10), C168–C171 (1982).
[Crossref]

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

1967 (1)

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157(2), 262–272 (1967).
[Crossref]

1964 (1)

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. A 134(2), A299–A306 (1964).
[Crossref]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

AlFaify, S.

Almeida, R. M.

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol–gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm,” Opt. Mater. 12(1), 1–18 (1999).
[Crossref]

Annapurna, K.

Baazouzi, M.

M. Hamzaoui, M. T. Soltani, M. Baazouzi, B. Tioua, Z. G. Ivanova, R. Lebullenger, M. Poulain, and J. Zavadil, “Optical properties of erbium doped antimony based glasses: Promising visible and infrared amplifiers materials,” Phys. Status Solidi B 249(11), 2213–2221 (2012).
[Crossref]

Babu, P.

Balakrishnaiah, R.

Barbier, D.

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol–gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm,” Opt. Mater. 12(1), 1–18 (1999).
[Crossref]

Basavapoornima, Ch.

K. Linganna, M. Rathaiah, N. Vijaya, Ch. Basavapoornima, C. K. Jayasankar, S. Ju, W.-T. Han, and V. Venkatramu, “1.53 µm luminescence properties of Er3+-doped K-Sr-Al phosphate glasses,” Cer. Inter. 41(4), 5765–5771 (2015).
[Crossref]

Bettinelli, M.

H. Ebendorff-Heidepriem, D. Ehrt, J. Philipps, Th. Töpfer, A. Speghini, M. Bettinelli, and R. W. S. Fat, “Properties of Er3 + doped glasses for waveguide and fiber lasers,” Proc. SPIE 3942, 29–39 (2000).
[Crossref]

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd–Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
[Crossref]

Bilir, G.

G. Bilir, G. Ozen, D. Tatar, and M. L. Öveçoğlu, “Judd–Ofelt analysis and near infrared emission properties of the Er3+ ions in tellurite glasses containing WO3 and CdO,” Opt. Commun. 284(3), 863–868 (2011).
[Crossref]

Biswas, K.

Bouzidi, C.

A. Langar, C. Bouzidi, H. Elhouichet, and M. Férid, “Er–Yb codoped phosphate glasses with improved gain characteristics for an efficient 1.55 µm broadband optical amplifiers,” J. Lumin. 148, 249–255 (2014).
[Crossref]

Bradley, J. D. B.

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Bruce, A. J.

M. G. Drexhage, O. H. El-Bayoumi, C. T. Moynihan, A. J. Bruce, K.-H. Chung, D. L. Gavin, and T. J. Loretz, “Preparation and properties of heavy-metal fluoride glasses containing ytterbium or lutetium,” J. Am. Ceram. Soc. 65(10), C168–C171 (1982).
[Crossref]

Campbell, J. H.

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
[Crossref]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

Carturan, G.

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater. 25(2), 131–139 (2004).
[Crossref]

Chen, F.

T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
[Crossref]

Chen, N.-K.

L. Zhang, N.-K. Chen, and L. Hua, “High Er3+ concentration low refractive index fluorophosphate glass for evanescent wave optical amplifiers,” Physica B 403(19-20), 3470–3472 (2008).
[Crossref]

Chung, K.-H.

M. G. Drexhage, O. H. El-Bayoumi, C. T. Moynihan, A. J. Bruce, K.-H. Chung, D. L. Gavin, and T. J. Loretz, “Preparation and properties of heavy-metal fluoride glasses containing ytterbium or lutetium,” J. Am. Ceram. Soc. 65(10), C168–C171 (1982).
[Crossref]

Chung, W.-H.

Ch.-L. Zhao, B.-O. Guan, H.-Y. Tam, W.-H. Chung, X. Dong, P. K. A. Wai, and X. Dong, “Performance of optical automatic gain control EDFA with dual-oscillating control lasers,” Opt. Commun. 224(4-6), 281–287 (2003).
[Crossref]

Courrol, L. C.

L. R. P. Kassab, L. C. Courrol, R. Seragioli, N. U. Wetter, S. H. Tatumi, and L. Gomes, “Er3+ laser transition in PbO-PbF2-B2O3 glasses,” J. Non-Cryst. Solids 348, 94–97 (2004).
[Crossref]

Dai, S.

S. Xu, Z. Yang, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 361(1-2), 313–319 (2003).
[Crossref]

Damak, K.

De la Rosa, E.

H. Desirena, E. De la Rosa, L. A. Diaz-Torres, and G. A. Kumar, “Concentration effect of Er3+ ion on the spectroscopic properties of Er3+ and Yb3+/Er3+ co-doped phosphate glasses,” Opt. Mater. 28(5), 560–568 (2006).
[Crossref]

Desirena, H.

H. Desirena, E. De la Rosa, L. A. Diaz-Torres, and G. A. Kumar, “Concentration effect of Er3+ ion on the spectroscopic properties of Er3+ and Yb3+/Er3+ co-doped phosphate glasses,” Opt. Mater. 28(5), 560–568 (2006).
[Crossref]

Diaz-Torres, L. A.

H. Desirena, E. De la Rosa, L. A. Diaz-Torres, and G. A. Kumar, “Concentration effect of Er3+ ion on the spectroscopic properties of Er3+ and Yb3+/Er3+ co-doped phosphate glasses,” Opt. Mater. 28(5), 560–568 (2006).
[Crossref]

Dong, X.

Ch.-L. Zhao, B.-O. Guan, H.-Y. Tam, W.-H. Chung, X. Dong, P. K. A. Wai, and X. Dong, “Performance of optical automatic gain control EDFA with dual-oscillating control lasers,” Opt. Commun. 224(4-6), 281–287 (2003).
[Crossref]

Ch.-L. Zhao, B.-O. Guan, H.-Y. Tam, W.-H. Chung, X. Dong, P. K. A. Wai, and X. Dong, “Performance of optical automatic gain control EDFA with dual-oscillating control lasers,” Opt. Commun. 224(4-6), 281–287 (2003).
[Crossref]

Drexhage, M. G.

M. G. Drexhage, O. H. El-Bayoumi, C. T. Moynihan, A. J. Bruce, K.-H. Chung, D. L. Gavin, and T. J. Loretz, “Preparation and properties of heavy-metal fluoride glasses containing ytterbium or lutetium,” J. Am. Ceram. Soc. 65(10), C168–C171 (1982).
[Crossref]

Du, X. M.

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol–gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm,” Opt. Mater. 12(1), 1–18 (1999).
[Crossref]

Duan, Z.

M. Liao, L. Hu, Z. Duan, L. Zhang, and L. Wen, “Spectroscopic properties of fluorophosphate glass with high Er3+ concentration,” Appl. Phys. B 86(1), 83–89 (2006).
[Crossref]

Duverger, C.

S. Ronchin, R. Rolli, M. Montagna, C. Duverger, V. Tikhomirov, A. Jha, M. Ferrari, G. C. Righini, S. Pelli, and M. Fossi, “Erbium-activated aluminum fluoride glasses: optical and spectroscopic properties,” J. Non-Cryst. Solids 284(1-3), 243–248 (2001).
[Crossref]

Ebendorff-Heidepriem, H.

J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er/Yb co-doped fluoride phosphate glasses,” Appl. Phys. B 72(4), 399–405 (2001).
[Crossref]

H. Ebendorff-Heidepriem, D. Ehrt, J. Philipps, Th. Töpfer, A. Speghini, M. Bettinelli, and R. W. S. Fat, “Properties of Er3 + doped glasses for waveguide and fiber lasers,” Proc. SPIE 3942, 29–39 (2000).
[Crossref]

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd–Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
[Crossref]

Ehrt, D.

J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er/Yb co-doped fluoride phosphate glasses,” Appl. Phys. B 72(4), 399–405 (2001).
[Crossref]

H. Ebendorff-Heidepriem, D. Ehrt, J. Philipps, Th. Töpfer, A. Speghini, M. Bettinelli, and R. W. S. Fat, “Properties of Er3 + doped glasses for waveguide and fiber lasers,” Proc. SPIE 3942, 29–39 (2000).
[Crossref]

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd–Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
[Crossref]

El-Bayoumi, O. H.

M. G. Drexhage, O. H. El-Bayoumi, C. T. Moynihan, A. J. Bruce, K.-H. Chung, D. L. Gavin, and T. J. Loretz, “Preparation and properties of heavy-metal fluoride glasses containing ytterbium or lutetium,” J. Am. Ceram. Soc. 65(10), C168–C171 (1982).
[Crossref]

Elhouichet, H.

A. Langar, C. Bouzidi, H. Elhouichet, and M. Férid, “Er–Yb codoped phosphate glasses with improved gain characteristics for an efficient 1.55 µm broadband optical amplifiers,” J. Lumin. 148, 249–255 (2014).
[Crossref]

N. Sdiri, H. Elhouichet, and M. Ferid, “Effects of substituting P2O5 for B2O3 on the thermal and optical properties of sodium borophosphate glasses doped with Er,” J. Non-Cryst. Solids 389, 38–45 (2014).
[Crossref]

Fat, R. W. S.

H. Ebendorff-Heidepriem, D. Ehrt, J. Philipps, Th. Töpfer, A. Speghini, M. Bettinelli, and R. W. S. Fat, “Properties of Er3 + doped glasses for waveguide and fiber lasers,” Proc. SPIE 3942, 29–39 (2000).
[Crossref]

Feng, X.

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84(1), 165–171 (2001).
[Crossref]

Ferid, M.

N. Sdiri, H. Elhouichet, and M. Ferid, “Effects of substituting P2O5 for B2O3 on the thermal and optical properties of sodium borophosphate glasses doped with Er,” J. Non-Cryst. Solids 389, 38–45 (2014).
[Crossref]

Férid, M.

A. Langar, C. Bouzidi, H. Elhouichet, and M. Férid, “Er–Yb codoped phosphate glasses with improved gain characteristics for an efficient 1.55 µm broadband optical amplifiers,” J. Lumin. 148, 249–255 (2014).
[Crossref]

Ferrari, M.

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater. 25(2), 131–139 (2004).
[Crossref]

S. Ronchin, R. Rolli, M. Montagna, C. Duverger, V. Tikhomirov, A. Jha, M. Ferrari, G. C. Righini, S. Pelli, and M. Fossi, “Erbium-activated aluminum fluoride glasses: optical and spectroscopic properties,” J. Non-Cryst. Solids 284(1-3), 243–248 (2001).
[Crossref]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

Fossi, M.

S. Ronchin, R. Rolli, M. Montagna, C. Duverger, V. Tikhomirov, A. Jha, M. Ferrari, G. C. Righini, S. Pelli, and M. Fossi, “Erbium-activated aluminum fluoride glasses: optical and spectroscopic properties,” J. Non-Cryst. Solids 284(1-3), 243–248 (2001).
[Crossref]

Gavin, D. L.

M. G. Drexhage, O. H. El-Bayoumi, C. T. Moynihan, A. J. Bruce, K.-H. Chung, D. L. Gavin, and T. J. Loretz, “Preparation and properties of heavy-metal fluoride glasses containing ytterbium or lutetium,” J. Am. Ceram. Soc. 65(10), C168–C171 (1982).
[Crossref]

Gomes, L.

L. R. P. Kassab, L. C. Courrol, R. Seragioli, N. U. Wetter, S. H. Tatumi, and L. Gomes, “Er3+ laser transition in PbO-PbF2-B2O3 glasses,” J. Non-Cryst. Solids 348, 94–97 (2004).
[Crossref]

Gonçalves, R. R.

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater. 25(2), 131–139 (2004).
[Crossref]

Guan, B.-O.

Ch.-L. Zhao, B.-O. Guan, H.-Y. Tam, W.-H. Chung, X. Dong, P. K. A. Wai, and X. Dong, “Performance of optical automatic gain control EDFA with dual-oscillating control lasers,” Opt. Commun. 224(4-6), 281–287 (2003).
[Crossref]

Hamzaoui, M.

M. Hamzaoui, M. T. Soltani, M. Baazouzi, B. Tioua, Z. G. Ivanova, R. Lebullenger, M. Poulain, and J. Zavadil, “Optical properties of erbium doped antimony based glasses: Promising visible and infrared amplifiers materials,” Phys. Status Solidi B 249(11), 2213–2221 (2012).
[Crossref]

Han, W.-T.

K. Linganna, M. Rathaiah, N. Vijaya, Ch. Basavapoornima, C. K. Jayasankar, S. Ju, W.-T. Han, and V. Venkatramu, “1.53 µm luminescence properties of Er3+-doped K-Sr-Al phosphate glasses,” Cer. Inter. 41(4), 5765–5771 (2015).
[Crossref]

Hanada, T.

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84(1), 165–171 (2001).
[Crossref]

Hu, L.

M. Liao, L. Hu, Z. Duan, L. Zhang, and L. Wen, “Spectroscopic properties of fluorophosphate glass with high Er3+ concentration,” Appl. Phys. B 86(1), 83–89 (2006).
[Crossref]

S. Xu, Z. Yang, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 361(1-2), 313–319 (2003).
[Crossref]

Hua, L.

L. Zhang, N.-K. Chen, and L. Hua, “High Er3+ concentration low refractive index fluorophosphate glass for evanescent wave optical amplifiers,” Physica B 403(19-20), 3470–3472 (2008).
[Crossref]

Hwang, B. C.

S. Jiang, T. Luo, B. C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghabarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263–264, 364–368 (2000).
[Crossref]

Ivanova, Z. G.

M. Hamzaoui, M. T. Soltani, M. Baazouzi, B. Tioua, Z. G. Ivanova, R. Lebullenger, M. Poulain, and J. Zavadil, “Optical properties of erbium doped antimony based glasses: Promising visible and infrared amplifiers materials,” Phys. Status Solidi B 249(11), 2213–2221 (2012).
[Crossref]

Jagannathan, R.

G. V. Prakash, R. Jagannathan, and D. N. Rao, “Physical and optical properties of NASICON-type phosphate glasses,” Mater. Lett. 57(1), 134–140 (2002).
[Crossref]

Jang, K.

C. R. Kesavulu, V. B. Sreedhar, C. K. Jayasankar, K. Jang, D.-S. Shin, and S. S. Yi, “Structural, thermal and spectroscopic properties of highly Er3+-doped novel oxyfluoride glasses for photonic application,” Mater. Res. Bull. 51, 336–344 (2014).
[Crossref]

Jang, K. H.

Jayasankar, C. K.

K. Linganna, M. Rathaiah, N. Vijaya, Ch. Basavapoornima, C. K. Jayasankar, S. Ju, W.-T. Han, and V. Venkatramu, “1.53 µm luminescence properties of Er3+-doped K-Sr-Al phosphate glasses,” Cer. Inter. 41(4), 5765–5771 (2015).
[Crossref]

C. R. Kesavulu, V. B. Sreedhar, C. K. Jayasankar, K. Jang, D.-S. Shin, and S. S. Yi, “Structural, thermal and spectroscopic properties of highly Er3+-doped novel oxyfluoride glasses for photonic application,” Mater. Res. Bull. 51, 336–344 (2014).
[Crossref]

P. Babu, H. J. Seo, K. H. Jang, R. Balakrishnaiah, C. K. Jayasankar, K.-S. Lim, and V. Lavín, “Optical spectroscopy, 1.5 μm emission, and upconversion properties of Er3+-doped metaphosphate laser glass,” J. Opt. Soc. Am. B 24(9), 2218–2228 (2007).
[Crossref]

Jayasimhadri, M.

L. R. Moorthy, M. Jayasimhadri, S. A. Saleem, and D. V. R. Murthy, “Optical properties of Er3+-doped alkali fluorophosphate glasses,” J. Non-Cryst. Solids 353(13-15), 1392–1396 (2007).
[Crossref]

Jha, A.

S. Ronchin, R. Rolli, M. Montagna, C. Duverger, V. Tikhomirov, A. Jha, M. Ferrari, G. C. Righini, S. Pelli, and M. Fossi, “Erbium-activated aluminum fluoride glasses: optical and spectroscopic properties,” J. Non-Cryst. Solids 284(1-3), 243–248 (2001).
[Crossref]

Jiang, S.

S. Jiang, T. Luo, B. C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghabarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263–264, 364–368 (2000).
[Crossref]

Jiang, Z.

S. Xu, Z. Yang, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 361(1-2), 313–319 (2003).
[Crossref]

Ju, S.

K. Linganna, M. Rathaiah, N. Vijaya, Ch. Basavapoornima, C. K. Jayasankar, S. Ju, W.-T. Han, and V. Venkatramu, “1.53 µm luminescence properties of Er3+-doped K-Sr-Al phosphate glasses,” Cer. Inter. 41(4), 5765–5771 (2015).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Kassab, L. R. P.

L. R. P. Kassab, L. C. Courrol, R. Seragioli, N. U. Wetter, S. H. Tatumi, and L. Gomes, “Er3+ laser transition in PbO-PbF2-B2O3 glasses,” J. Non-Cryst. Solids 348, 94–97 (2004).
[Crossref]

Kesavulu, C. R.

C. R. Kesavulu, V. B. Sreedhar, C. K. Jayasankar, K. Jang, D.-S. Shin, and S. S. Yi, “Structural, thermal and spectroscopic properties of highly Er3+-doped novel oxyfluoride glasses for photonic application,” Mater. Res. Bull. 51, 336–344 (2014).
[Crossref]

Kumar, G. A.

H. Desirena, E. De la Rosa, L. A. Diaz-Torres, and G. A. Kumar, “Concentration effect of Er3+ ion on the spectroscopic properties of Er3+ and Yb3+/Er3+ co-doped phosphate glasses,” Opt. Mater. 28(5), 560–568 (2006).
[Crossref]

Langar, A.

A. Langar, C. Bouzidi, H. Elhouichet, and M. Férid, “Er–Yb codoped phosphate glasses with improved gain characteristics for an efficient 1.55 µm broadband optical amplifiers,” J. Lumin. 148, 249–255 (2014).
[Crossref]

Lavín, V.

Lebullenger, R.

M. Hamzaoui, M. T. Soltani, M. Baazouzi, B. Tioua, Z. G. Ivanova, R. Lebullenger, M. Poulain, and J. Zavadil, “Optical properties of erbium doped antimony based glasses: Promising visible and infrared amplifiers materials,” Phys. Status Solidi B 249(11), 2213–2221 (2012).
[Crossref]

Liao, M.

M. Liao, L. Hu, Z. Duan, L. Zhang, and L. Wen, “Spectroscopic properties of fluorophosphate glass with high Er3+ concentration,” Appl. Phys. B 86(1), 83–89 (2006).
[Crossref]

Lim, K.-S.

Linganna, K.

K. Linganna, M. Rathaiah, N. Vijaya, Ch. Basavapoornima, C. K. Jayasankar, S. Ju, W.-T. Han, and V. Venkatramu, “1.53 µm luminescence properties of Er3+-doped K-Sr-Al phosphate glasses,” Cer. Inter. 41(4), 5765–5771 (2015).
[Crossref]

Loretz, T. J.

M. G. Drexhage, O. H. El-Bayoumi, C. T. Moynihan, A. J. Bruce, K.-H. Chung, D. L. Gavin, and T. J. Loretz, “Preparation and properties of heavy-metal fluoride glasses containing ytterbium or lutetium,” J. Am. Ceram. Soc. 65(10), C168–C171 (1982).
[Crossref]

Lu, S.

Y. Luo, J. Zhang, J. Sun, S. Lu, and X. Wang, “Spectroscopic properties of tungsten–tellurite glasses doped with Er3+ ions at different concentrations,” Opt. Mater. 28(3), 255–258 (2006).
[Crossref]

Lucas, J.

S. Jiang, T. Luo, B. C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghabarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263–264, 364–368 (2000).
[Crossref]

Luo, T.

S. Jiang, T. Luo, B. C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghabarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263–264, 364–368 (2000).
[Crossref]

Luo, Y.

Y. Luo, J. Zhang, J. Sun, S. Lu, and X. Wang, “Spectroscopic properties of tungsten–tellurite glasses doped with Er3+ ions at different concentrations,” Opt. Mater. 28(3), 255–258 (2006).
[Crossref]

Maâlej, R.

McCarthy, O.

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol–gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm,” Opt. Mater. 12(1), 1–18 (1999).
[Crossref]

McCumber, D. E.

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. A 134(2), A299–A306 (1964).
[Crossref]

Messaddeq, Y.

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater. 25(2), 131–139 (2004).
[Crossref]

Montagna, M.

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater. 25(2), 131–139 (2004).
[Crossref]

S. Ronchin, R. Rolli, M. Montagna, C. Duverger, V. Tikhomirov, A. Jha, M. Ferrari, G. C. Righini, S. Pelli, and M. Fossi, “Erbium-activated aluminum fluoride glasses: optical and spectroscopic properties,” J. Non-Cryst. Solids 284(1-3), 243–248 (2001).
[Crossref]

Moorthy, L. R.

L. R. Moorthy, M. Jayasimhadri, S. A. Saleem, and D. V. R. Murthy, “Optical properties of Er3+-doped alkali fluorophosphate glasses,” J. Non-Cryst. Solids 353(13-15), 1392–1396 (2007).
[Crossref]

Morinaga, K.

H. Takebe, Y. Nageno, and K. Morinaga, “Compositional dependence of Judd-Ofelt parameters in Silicate, Borate and Phosphate glasses,” J. Am. Ceram. Soc. 78(5), 1161–1168 (1995).
[Crossref]

Moynihan, C. T.

M. G. Drexhage, O. H. El-Bayoumi, C. T. Moynihan, A. J. Bruce, K.-H. Chung, D. L. Gavin, and T. J. Loretz, “Preparation and properties of heavy-metal fluoride glasses containing ytterbium or lutetium,” J. Am. Ceram. Soc. 65(10), C168–C171 (1982).
[Crossref]

Murthy, D. V. R.

L. R. Moorthy, M. Jayasimhadri, S. A. Saleem, and D. V. R. Murthy, “Optical properties of Er3+-doped alkali fluorophosphate glasses,” J. Non-Cryst. Solids 353(13-15), 1392–1396 (2007).
[Crossref]

Nageno, Y.

H. Takebe, Y. Nageno, and K. Morinaga, “Compositional dependence of Judd-Ofelt parameters in Silicate, Borate and Phosphate glasses,” J. Am. Ceram. Soc. 78(5), 1161–1168 (1995).
[Crossref]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Orignac, X.

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol–gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm,” Opt. Mater. 12(1), 1–18 (1999).
[Crossref]

Öveçoglu, M. L.

G. Bilir, G. Ozen, D. Tatar, and M. L. Öveçoğlu, “Judd–Ofelt analysis and near infrared emission properties of the Er3+ ions in tellurite glasses containing WO3 and CdO,” Opt. Commun. 284(3), 863–868 (2011).
[Crossref]

Ozen, G.

G. Bilir, G. Ozen, D. Tatar, and M. L. Öveçoğlu, “Judd–Ofelt analysis and near infrared emission properties of the Er3+ ions in tellurite glasses containing WO3 and CdO,” Opt. Commun. 284(3), 863–868 (2011).
[Crossref]

Pelli, S.

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater. 25(2), 131–139 (2004).
[Crossref]

S. Ronchin, R. Rolli, M. Montagna, C. Duverger, V. Tikhomirov, A. Jha, M. Ferrari, G. C. Righini, S. Pelli, and M. Fossi, “Erbium-activated aluminum fluoride glasses: optical and spectroscopic properties,” J. Non-Cryst. Solids 284(1-3), 243–248 (2001).
[Crossref]

Peyghabarian, N.

S. Jiang, T. Luo, B. C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghabarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263–264, 364–368 (2000).
[Crossref]

Philipps, J.

H. Ebendorff-Heidepriem, D. Ehrt, J. Philipps, Th. Töpfer, A. Speghini, M. Bettinelli, and R. W. S. Fat, “Properties of Er3 + doped glasses for waveguide and fiber lasers,” Proc. SPIE 3942, 29–39 (2000).
[Crossref]

Philipps, J. F.

J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er/Yb co-doped fluoride phosphate glasses,” Appl. Phys. B 72(4), 399–405 (2001).
[Crossref]

Pollnau, M.

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Poulain, M.

M. Hamzaoui, M. T. Soltani, M. Baazouzi, B. Tioua, Z. G. Ivanova, R. Lebullenger, M. Poulain, and J. Zavadil, “Optical properties of erbium doped antimony based glasses: Promising visible and infrared amplifiers materials,” Phys. Status Solidi B 249(11), 2213–2221 (2012).
[Crossref]

Prakash, G. V.

G. V. Prakash, R. Jagannathan, and D. N. Rao, “Physical and optical properties of NASICON-type phosphate glasses,” Mater. Lett. 57(1), 134–140 (2002).
[Crossref]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

Rao, D. N.

G. V. Prakash, R. Jagannathan, and D. N. Rao, “Physical and optical properties of NASICON-type phosphate glasses,” Mater. Lett. 57(1), 134–140 (2002).
[Crossref]

Rathaiah, M.

K. Linganna, M. Rathaiah, N. Vijaya, Ch. Basavapoornima, C. K. Jayasankar, S. Ju, W.-T. Han, and V. Venkatramu, “1.53 µm luminescence properties of Er3+-doped K-Sr-Al phosphate glasses,” Cer. Inter. 41(4), 5765–5771 (2015).
[Crossref]

Ribeiro, S. J. L.

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater. 25(2), 131–139 (2004).
[Crossref]

Righini, G. C.

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater. 25(2), 131–139 (2004).
[Crossref]

S. Ronchin, R. Rolli, M. Montagna, C. Duverger, V. Tikhomirov, A. Jha, M. Ferrari, G. C. Righini, S. Pelli, and M. Fossi, “Erbium-activated aluminum fluoride glasses: optical and spectroscopic properties,” J. Non-Cryst. Solids 284(1-3), 243–248 (2001).
[Crossref]

Rolli, R.

S. Ronchin, R. Rolli, M. Montagna, C. Duverger, V. Tikhomirov, A. Jha, M. Ferrari, G. C. Righini, S. Pelli, and M. Fossi, “Erbium-activated aluminum fluoride glasses: optical and spectroscopic properties,” J. Non-Cryst. Solids 284(1-3), 243–248 (2001).
[Crossref]

Ronchin, S.

S. Ronchin, R. Rolli, M. Montagna, C. Duverger, V. Tikhomirov, A. Jha, M. Ferrari, G. C. Righini, S. Pelli, and M. Fossi, “Erbium-activated aluminum fluoride glasses: optical and spectroscopic properties,” J. Non-Cryst. Solids 284(1-3), 243–248 (2001).
[Crossref]

Rüssel, C.

Saleem, S. A.

L. R. Moorthy, M. Jayasimhadri, S. A. Saleem, and D. V. R. Murthy, “Optical properties of Er3+-doped alkali fluorophosphate glasses,” J. Non-Cryst. Solids 353(13-15), 1392–1396 (2007).
[Crossref]

Sauerbrey, R.

J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er/Yb co-doped fluoride phosphate glasses,” Appl. Phys. B 72(4), 399–405 (2001).
[Crossref]

Sdiri, N.

N. Sdiri, H. Elhouichet, and M. Ferid, “Effects of substituting P2O5 for B2O3 on the thermal and optical properties of sodium borophosphate glasses doped with Er,” J. Non-Cryst. Solids 389, 38–45 (2014).
[Crossref]

Sen, R.

Seneschal, K.

S. Jiang, T. Luo, B. C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghabarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263–264, 364–368 (2000).
[Crossref]

Seo, H. J.

Seragioli, R.

L. R. P. Kassab, L. C. Courrol, R. Seragioli, N. U. Wetter, S. H. Tatumi, and L. Gomes, “Er3+ laser transition in PbO-PbF2-B2O3 glasses,” J. Non-Cryst. Solids 348, 94–97 (2004).
[Crossref]

Shin, D.-S.

C. R. Kesavulu, V. B. Sreedhar, C. K. Jayasankar, K. Jang, D.-S. Shin, and S. S. Yi, “Structural, thermal and spectroscopic properties of highly Er3+-doped novel oxyfluoride glasses for photonic application,” Mater. Res. Bull. 51, 336–344 (2014).
[Crossref]

Smekatala, F.

S. Jiang, T. Luo, B. C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghabarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263–264, 364–368 (2000).
[Crossref]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Soltani, M. T.

M. Hamzaoui, M. T. Soltani, M. Baazouzi, B. Tioua, Z. G. Ivanova, R. Lebullenger, M. Poulain, and J. Zavadil, “Optical properties of erbium doped antimony based glasses: Promising visible and infrared amplifiers materials,” Phys. Status Solidi B 249(11), 2213–2221 (2012).
[Crossref]

Sontakke, A. D.

Speghini, A.

H. Ebendorff-Heidepriem, D. Ehrt, J. Philipps, Th. Töpfer, A. Speghini, M. Bettinelli, and R. W. S. Fat, “Properties of Er3 + doped glasses for waveguide and fiber lasers,” Proc. SPIE 3942, 29–39 (2000).
[Crossref]

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd–Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
[Crossref]

Sreedhar, V. B.

C. R. Kesavulu, V. B. Sreedhar, C. K. Jayasankar, K. Jang, D.-S. Shin, and S. S. Yi, “Structural, thermal and spectroscopic properties of highly Er3+-doped novel oxyfluoride glasses for photonic application,” Mater. Res. Bull. 51, 336–344 (2014).
[Crossref]

Sun, J.

Y. Luo, J. Zhang, J. Sun, S. Lu, and X. Wang, “Spectroscopic properties of tungsten–tellurite glasses doped with Er3+ ions at different concentrations,” Opt. Mater. 28(3), 255–258 (2006).
[Crossref]

Suratwala, T. I.

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
[Crossref]

Takebe, H.

H. Takebe, Y. Nageno, and K. Morinaga, “Compositional dependence of Judd-Ofelt parameters in Silicate, Borate and Phosphate glasses,” J. Am. Ceram. Soc. 78(5), 1161–1168 (1995).
[Crossref]

Tam, H.-Y.

Ch.-L. Zhao, B.-O. Guan, H.-Y. Tam, W.-H. Chung, X. Dong, P. K. A. Wai, and X. Dong, “Performance of optical automatic gain control EDFA with dual-oscillating control lasers,” Opt. Commun. 224(4-6), 281–287 (2003).
[Crossref]

Tanabe, S.

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84(1), 165–171 (2001).
[Crossref]

S. Tanabe, “Optical transition of rare earth ions for amplifiers: how the local structure woks in glass,” J. Non-Cryst. Solids 259(1-3), 1–9 (1999).
[Crossref]

Tarafder, A.

Tatar, D.

G. Bilir, G. Ozen, D. Tatar, and M. L. Öveçoğlu, “Judd–Ofelt analysis and near infrared emission properties of the Er3+ ions in tellurite glasses containing WO3 and CdO,” Opt. Commun. 284(3), 863–868 (2011).
[Crossref]

Tatumi, S. H.

L. R. P. Kassab, L. C. Courrol, R. Seragioli, N. U. Wetter, S. H. Tatumi, and L. Gomes, “Er3+ laser transition in PbO-PbF2-B2O3 glasses,” J. Non-Cryst. Solids 348, 94–97 (2004).
[Crossref]

Tian, Y.

T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
[Crossref]

Tikhomirov, V.

S. Ronchin, R. Rolli, M. Montagna, C. Duverger, V. Tikhomirov, A. Jha, M. Ferrari, G. C. Righini, S. Pelli, and M. Fossi, “Erbium-activated aluminum fluoride glasses: optical and spectroscopic properties,” J. Non-Cryst. Solids 284(1-3), 243–248 (2001).
[Crossref]

Tioua, B.

M. Hamzaoui, M. T. Soltani, M. Baazouzi, B. Tioua, Z. G. Ivanova, R. Lebullenger, M. Poulain, and J. Zavadil, “Optical properties of erbium doped antimony based glasses: Promising visible and infrared amplifiers materials,” Phys. Status Solidi B 249(11), 2213–2221 (2012).
[Crossref]

Topfer, T.

J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er/Yb co-doped fluoride phosphate glasses,” Appl. Phys. B 72(4), 399–405 (2001).
[Crossref]

Töpfer, Th.

H. Ebendorff-Heidepriem, D. Ehrt, J. Philipps, Th. Töpfer, A. Speghini, M. Bettinelli, and R. W. S. Fat, “Properties of Er3 + doped glasses for waveguide and fiber lasers,” Proc. SPIE 3942, 29–39 (2000).
[Crossref]

Venkatramu, V.

K. Linganna, M. Rathaiah, N. Vijaya, Ch. Basavapoornima, C. K. Jayasankar, S. Ju, W.-T. Han, and V. Venkatramu, “1.53 µm luminescence properties of Er3+-doped K-Sr-Al phosphate glasses,” Cer. Inter. 41(4), 5765–5771 (2015).
[Crossref]

Vijaya, N.

K. Linganna, M. Rathaiah, N. Vijaya, Ch. Basavapoornima, C. K. Jayasankar, S. Ju, W.-T. Han, and V. Venkatramu, “1.53 µm luminescence properties of Er3+-doped K-Sr-Al phosphate glasses,” Cer. Inter. 41(4), 5765–5771 (2015).
[Crossref]

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Wai, P. K. A.

Ch.-L. Zhao, B.-O. Guan, H.-Y. Tam, W.-H. Chung, X. Dong, P. K. A. Wai, and X. Dong, “Performance of optical automatic gain control EDFA with dual-oscillating control lasers,” Opt. Commun. 224(4-6), 281–287 (2003).
[Crossref]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Wang, X.

Y. Luo, J. Zhang, J. Sun, S. Lu, and X. Wang, “Spectroscopic properties of tungsten–tellurite glasses doped with Er3+ ions at different concentrations,” Opt. Mater. 28(3), 255–258 (2006).
[Crossref]

Weber, M. J.

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157(2), 262–272 (1967).
[Crossref]

Wei, T.

T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
[Crossref]

Wen, L.

M. Liao, L. Hu, Z. Duan, L. Zhang, and L. Wen, “Spectroscopic properties of fluorophosphate glass with high Er3+ concentration,” Appl. Phys. B 86(1), 83–89 (2006).
[Crossref]

Wetter, N. U.

L. R. P. Kassab, L. C. Courrol, R. Seragioli, N. U. Wetter, S. H. Tatumi, and L. Gomes, “Er3+ laser transition in PbO-PbF2-B2O3 glasses,” J. Non-Cryst. Solids 348, 94–97 (2004).
[Crossref]

Xu, S.

T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
[Crossref]

S. Xu, Z. Yang, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 361(1-2), 313–319 (2003).
[Crossref]

Yang, J.

S. Xu, Z. Yang, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 361(1-2), 313–319 (2003).
[Crossref]

Yang, Z.

S. Xu, Z. Yang, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 361(1-2), 313–319 (2003).
[Crossref]

Yeatman, E.

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol–gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm,” Opt. Mater. 12(1), 1–18 (1999).
[Crossref]

Yi, S. S.

C. R. Kesavulu, V. B. Sreedhar, C. K. Jayasankar, K. Jang, D.-S. Shin, and S. S. Yi, “Structural, thermal and spectroscopic properties of highly Er3+-doped novel oxyfluoride glasses for photonic application,” Mater. Res. Bull. 51, 336–344 (2014).
[Crossref]

Yousef, E.

Zampedri, L.

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater. 25(2), 131–139 (2004).
[Crossref]

Zavadil, J.

M. Hamzaoui, M. T. Soltani, M. Baazouzi, B. Tioua, Z. G. Ivanova, R. Lebullenger, M. Poulain, and J. Zavadil, “Optical properties of erbium doped antimony based glasses: Promising visible and infrared amplifiers materials,” Phys. Status Solidi B 249(11), 2213–2221 (2012).
[Crossref]

Zhang, J.

Y. Luo, J. Zhang, J. Sun, S. Lu, and X. Wang, “Spectroscopic properties of tungsten–tellurite glasses doped with Er3+ ions at different concentrations,” Opt. Mater. 28(3), 255–258 (2006).
[Crossref]

Zhang, L.

L. Zhang, N.-K. Chen, and L. Hua, “High Er3+ concentration low refractive index fluorophosphate glass for evanescent wave optical amplifiers,” Physica B 403(19-20), 3470–3472 (2008).
[Crossref]

M. Liao, L. Hu, Z. Duan, L. Zhang, and L. Wen, “Spectroscopic properties of fluorophosphate glass with high Er3+ concentration,” Appl. Phys. B 86(1), 83–89 (2006).
[Crossref]

Zhao, Ch.-L.

Ch.-L. Zhao, B.-O. Guan, H.-Y. Tam, W.-H. Chung, X. Dong, P. K. A. Wai, and X. Dong, “Performance of optical automatic gain control EDFA with dual-oscillating control lasers,” Opt. Commun. 224(4-6), 281–287 (2003).
[Crossref]

Appl. Phys. B (2)

M. Liao, L. Hu, Z. Duan, L. Zhang, and L. Wen, “Spectroscopic properties of fluorophosphate glass with high Er3+ concentration,” Appl. Phys. B 86(1), 83–89 (2006).
[Crossref]

J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er/Yb co-doped fluoride phosphate glasses,” Appl. Phys. B 72(4), 399–405 (2001).
[Crossref]

Cer. Inter. (1)

K. Linganna, M. Rathaiah, N. Vijaya, Ch. Basavapoornima, C. K. Jayasankar, S. Ju, W.-T. Han, and V. Venkatramu, “1.53 µm luminescence properties of Er3+-doped K-Sr-Al phosphate glasses,” Cer. Inter. 41(4), 5765–5771 (2015).
[Crossref]

J. Alloys Compd. (1)

S. Xu, Z. Yang, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 361(1-2), 313–319 (2003).
[Crossref]

J. Am. Ceram. Soc. (3)

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84(1), 165–171 (2001).
[Crossref]

H. Takebe, Y. Nageno, and K. Morinaga, “Compositional dependence of Judd-Ofelt parameters in Silicate, Borate and Phosphate glasses,” J. Am. Ceram. Soc. 78(5), 1161–1168 (1995).
[Crossref]

M. G. Drexhage, O. H. El-Bayoumi, C. T. Moynihan, A. J. Bruce, K.-H. Chung, D. L. Gavin, and T. J. Loretz, “Preparation and properties of heavy-metal fluoride glasses containing ytterbium or lutetium,” J. Am. Ceram. Soc. 65(10), C168–C171 (1982).
[Crossref]

J. Chem. Phys. (2)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

J. Lumin. (1)

A. Langar, C. Bouzidi, H. Elhouichet, and M. Férid, “Er–Yb codoped phosphate glasses with improved gain characteristics for an efficient 1.55 µm broadband optical amplifiers,” J. Lumin. 148, 249–255 (2014).
[Crossref]

J. Non-Cryst. Solids (8)

N. Sdiri, H. Elhouichet, and M. Ferid, “Effects of substituting P2O5 for B2O3 on the thermal and optical properties of sodium borophosphate glasses doped with Er,” J. Non-Cryst. Solids 389, 38–45 (2014).
[Crossref]

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd–Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
[Crossref]

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
[Crossref]

S. Jiang, T. Luo, B. C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghabarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263–264, 364–368 (2000).
[Crossref]

S. Tanabe, “Optical transition of rare earth ions for amplifiers: how the local structure woks in glass,” J. Non-Cryst. Solids 259(1-3), 1–9 (1999).
[Crossref]

L. R. P. Kassab, L. C. Courrol, R. Seragioli, N. U. Wetter, S. H. Tatumi, and L. Gomes, “Er3+ laser transition in PbO-PbF2-B2O3 glasses,” J. Non-Cryst. Solids 348, 94–97 (2004).
[Crossref]

S. Ronchin, R. Rolli, M. Montagna, C. Duverger, V. Tikhomirov, A. Jha, M. Ferrari, G. C. Righini, S. Pelli, and M. Fossi, “Erbium-activated aluminum fluoride glasses: optical and spectroscopic properties,” J. Non-Cryst. Solids 284(1-3), 243–248 (2001).
[Crossref]

L. R. Moorthy, M. Jayasimhadri, S. A. Saleem, and D. V. R. Murthy, “Optical properties of Er3+-doped alkali fluorophosphate glasses,” J. Non-Cryst. Solids 353(13-15), 1392–1396 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
[Crossref]

Laser Photonics Rev. (1)

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Mater. Lett. (1)

G. V. Prakash, R. Jagannathan, and D. N. Rao, “Physical and optical properties of NASICON-type phosphate glasses,” Mater. Lett. 57(1), 134–140 (2002).
[Crossref]

Mater. Res. Bull. (1)

C. R. Kesavulu, V. B. Sreedhar, C. K. Jayasankar, K. Jang, D.-S. Shin, and S. S. Yi, “Structural, thermal and spectroscopic properties of highly Er3+-doped novel oxyfluoride glasses for photonic application,” Mater. Res. Bull. 51, 336–344 (2014).
[Crossref]

Opt. Commun. (2)

G. Bilir, G. Ozen, D. Tatar, and M. L. Öveçoğlu, “Judd–Ofelt analysis and near infrared emission properties of the Er3+ ions in tellurite glasses containing WO3 and CdO,” Opt. Commun. 284(3), 863–868 (2011).
[Crossref]

Ch.-L. Zhao, B.-O. Guan, H.-Y. Tam, W.-H. Chung, X. Dong, P. K. A. Wai, and X. Dong, “Performance of optical automatic gain control EDFA with dual-oscillating control lasers,” Opt. Commun. 224(4-6), 281–287 (2003).
[Crossref]

Opt. Mater. (5)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

H. Desirena, E. De la Rosa, L. A. Diaz-Torres, and G. A. Kumar, “Concentration effect of Er3+ ion on the spectroscopic properties of Er3+ and Yb3+/Er3+ co-doped phosphate glasses,” Opt. Mater. 28(5), 560–568 (2006).
[Crossref]

Y. Luo, J. Zhang, J. Sun, S. Lu, and X. Wang, “Spectroscopic properties of tungsten–tellurite glasses doped with Er3+ ions at different concentrations,” Opt. Mater. 28(3), 255–258 (2006).
[Crossref]

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol–gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm,” Opt. Mater. 12(1), 1–18 (1999).
[Crossref]

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater. 25(2), 131–139 (2004).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157(2), 262–272 (1967).
[Crossref]

Phys. Rev. A (1)

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. A 134(2), A299–A306 (1964).
[Crossref]

Phys. Status Solidi B (1)

M. Hamzaoui, M. T. Soltani, M. Baazouzi, B. Tioua, Z. G. Ivanova, R. Lebullenger, M. Poulain, and J. Zavadil, “Optical properties of erbium doped antimony based glasses: Promising visible and infrared amplifiers materials,” Phys. Status Solidi B 249(11), 2213–2221 (2012).
[Crossref]

Physica B (1)

L. Zhang, N.-K. Chen, and L. Hua, “High Er3+ concentration low refractive index fluorophosphate glass for evanescent wave optical amplifiers,” Physica B 403(19-20), 3470–3472 (2008).
[Crossref]

Proc. SPIE (1)

H. Ebendorff-Heidepriem, D. Ehrt, J. Philipps, Th. Töpfer, A. Speghini, M. Bettinelli, and R. W. S. Fat, “Properties of Er3 + doped glasses for waveguide and fiber lasers,” Proc. SPIE 3942, 29–39 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Differential scanning calorimetry thermograph of the PKCFAEr10 glass.
Fig. 2
Fig. 2 Absorption spectra of the PKCFAEr10 glass in (a) UV-Visible and (b) NIR regions.
Fig. 3
Fig. 3 Near infrared emission spectra of the PKCFAErx glasses (where x = 0.1, 0.5, 1.0 and 2.0 mol% Er2O3).
Fig. 4
Fig. 4 Absorption (black curve) and emission (red curve) cross-section spectra obtained using McCumber theory (Eq. (6) of the PKCFAEr10 glass.
Fig. 5
Fig. 5 Variation of emission cross-section and gain bandwidth in different Er3+-doped glasses with the same level of doping (1.0 mol%).
Fig. 6
Fig. 6 Visible emission spectra of the PKCFAErx glasses (where x = 0.1, 0.5, 1.0 and 2.0 mol% Er2O3).
Fig. 7
Fig. 7 Gain cross-section spectra for different values of the population inversion for the PKCFAEr10 glass.
Fig. 8
Fig. 8 Decay curves for the 4I13/2 level of Er3+ ion in the PKCFAErx glasses (where x = 0.1,0.5,1.0 and 2.0 mol% Er2O3).
Fig. 9
Fig. 9 Variation of lifetime and quantum efficiency of 4I13/2 level with Er2O3 concentration in the PKCFAEr glasses. The red line indicates the lifetime data fitting to Eq. (10).

Tables (5)

Tables Icon

Table 1 Physical Properties of the PKCFAEr Glasses doped with Different Er2O3 Concentrations

Tables Icon

Table 2 Thermal Properties, Tg, Tx and ∆T for Different Glasses

Tables Icon

Table 3 Energy, Experimental (fexp) and Calculated (fcal) Oscillator Strengths for the Absorption bands of the 1.0 mol% Er2O3 -doped PKCFAEr glass along with JO Parameters

Tables Icon

Table 4 Judd-Ofelt Intensity Parameters (Ωλ, × 10−20 cm2), Trend of Parameters and Radiative Lifetime (τrad, ms) for the 4I13/2 Level in Various Er3+-doped Glasses

Tables Icon

Table 5 Full Width at Half Maximum (FWHM, nm), Stimulated Emission Cross-Section (σe(λ), × 10−20 cm2), Gain Bandwidth (σe(λ) × FWHM, × 10−27 cm3), Experimental Lifetime (τexp, ms) and Figure of Merit (σe(λ) × τexp, 10−23 cm2s) for the 4I13/24I15/2 Transition of Er3+ ion in Different Er3+-doped Glasses

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

f exp = 2.303 m c 2 π e 2 N α ( υ ) d υ
f c a l = 8 π 2 m c 3 h ( 2 J + 1 ) n 2 λ [ χ e d S e d ( Ψ J , Ψ ' J ' ) + χ m d S m d ( Ψ J , Ψ ' J ' ) ]
A ( ψ J , ψ ' J ' ) = 64 π 4 υ 3 e 2 3 h ( 2 J + 1 ) n ( n 2 + 2 ) 2 9 × e 2 λ = 2 , 4 , 6 Ω λ ( ψ J U λ ψ ' J ' ) 2
A T ( ψ J ) = A ( ψ J , ψ ' J ' )
τ r a d ( ψ J ) = 1 A T ( ψ J )
σ e ( λ ) = σ a ( λ ) Z l Z u exp ( E Z L h c λ 1 k T )
S e d [ I 4 13 / 2 ; 4 I 15 / 2 ] = 0.019 Ω 2 + 0.118 Ω 4 + 1.462 Ω 6
σ e ( λ ) = λ p 4 8 π c n 2 Δ λ e f f A
G ( λ ) = P σ e ( λ ) ( 1 P ) σ a ( λ )
τ o b s = τ 0 1 + ( N / Q ) p
η = τ exp τ r a d

Metrics