Abstract

We report Zr4+-doped Ti:LiNbO3 strip waveguide fabricated by Zr4+-diffusion-doping followed by diffusion of 8 μm wide, 100 nm thick Ti-strips on a Z-cut congruent substrate. Optical study shows that the waveguide well supports both TE and TM, is single-mode at the 1.5 μm wavelength, and has a loss ≤ 1.3/1.5 dB/cm for the TE/TM mode. Secondary ion mass spectrometry study shows that the Zr4+-profile part having a Zr4+-concentration above the threshold of photorefractive damage covers 60% (70%) ordinary (extraordinary) index profile in the waveguide. We conclude that the waveguide is optical-damage-resistant.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near-stoichiometric Ti:Sc:LiNbO3 strip waveguide for integrated optics

Xiao-Fei Yang, Zi-Bo Zhang, Wan-Ying Du, Qun Zhang, Wing-Han Wong, Dao-Yin Yu, Edwin Yue-Bun Pun, and De-Long Zhang
Opt. Mater. Express 6(8) 2637-2643 (2016)

Optical damage resistant Ti-diffused Zr/Er-codoped lithium niobate strip waveguide for high-power 980 nm pumping

Wen-Bao Sun, Xiao-Fei Yang, Zi-Bo Zhang, Wing-Han Wong, Dao-Yin Yu, Edwin Yue-Bun Pun, and De-Long Zhang
Opt. Express 25(8) 8653-8658 (2017)

Characterization of near-stoichiometric Ti:LiNbO3 strip waveguides with varied substrate refractive index in the guiding layer

De-Long Zhang, Pei Zhang, Hao-Jiang Zhou, and Edwin Yue-Bun Pun
J. Opt. Soc. Am. A 25(10) 2558-2570 (2008)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
    [Crossref]
  2. T. R. Volk, V. I. Pryalkin, and N. M. Rubinina, “Optical-damage-resistant LiNbO3:Zn crystal,” Opt. Lett. 15(18), 996–998 (1990).
    [Crossref] [PubMed]
  3. M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
    [Crossref]
  4. J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
    [Crossref]
  5. K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
    [Crossref]
  6. L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
    [Crossref]
  7. Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
    [Crossref]
  8. G. Nava, P. Minzioni, W. B. Yan, J. Parravicini, D. Grando, E. Musso, I. Cristiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, A. Zaltron, C. Sada, and V. Degiorgio, “Zirconium-doped lithium niobate: photorefractive and electro-optical properties as a function of dopant concentration,” Opt. Mater. Express 1(2), 270–277 (2011).
    [Crossref]
  9. L. Wang, S. Liu, Y. Kong, S. Chen, Z. Huang, L. Wu, R. Rupp, and J. Xu, “Increased optical-damage resistance in tin-doped lithium niobate,” Opt. Lett. 35(6), 883–885 (2010).
    [Crossref] [PubMed]
  10. D. L. Zhang, C. X. Qiu, W. J. Du, W. H. Wong, and E. Y. B. Pun, “Zr4+/Ti4+ Co-diffusion characteristics in lithium niobate,” J. Am. Ceram. Soc. 96(9), 2722–2724 (2013).
    [Crossref]
  11. D. L. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Y. B. Pun, “Optical-damage-resistant Ti-diffused LiNbO3 strip waveguide doped with scandium,” IEEE Photon. Technol. Lett. 26(17), 1770–1773 (2014).
    [Crossref]
  12. D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Zr4+ diffusion-doping effect on refractive index of LiNbO3: A comparison with bulk-doping case,” Opt. Mater. Express 4(10), 2215–2220 (2014).
    [Crossref]
  13. M. Wöhlecke, G. Corradi, and K. Betzler, “Optical methods to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63(4), 323–330 (1996).
    [Crossref]
  14. U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
    [Crossref] [PubMed]
  15. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [Crossref]
  16. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
    [Crossref]
  17. E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparision with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
    [Crossref]

2014 (2)

D. L. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Y. B. Pun, “Optical-damage-resistant Ti-diffused LiNbO3 strip waveguide doped with scandium,” IEEE Photon. Technol. Lett. 26(17), 1770–1773 (2014).
[Crossref]

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Zr4+ diffusion-doping effect on refractive index of LiNbO3: A comparison with bulk-doping case,” Opt. Mater. Express 4(10), 2215–2220 (2014).
[Crossref]

2013 (1)

D. L. Zhang, C. X. Qiu, W. J. Du, W. H. Wong, and E. Y. B. Pun, “Zr4+/Ti4+ Co-diffusion characteristics in lithium niobate,” J. Am. Ceram. Soc. 96(9), 2722–2724 (2013).
[Crossref]

2011 (1)

2010 (1)

2007 (1)

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

2005 (2)

M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
[Crossref]

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

1998 (1)

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

1996 (2)

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

M. Wöhlecke, G. Corradi, and K. Betzler, “Optical methods to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63(4), 323–330 (1996).
[Crossref]

1993 (1)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
[Crossref] [PubMed]

1990 (1)

1988 (1)

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparision with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

1987 (1)

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

1984 (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Argiolas, N.

Bava, G. P.

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparision with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

Bazzan, M.

Betzler, K.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

M. Wöhlecke, G. Corradi, and K. Betzler, “Optical methods to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63(4), 323–330 (1996).
[Crossref]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
[Crossref] [PubMed]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Carenco, A.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Chen, S.

Chen, S. L.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Ciampolillo, M. V.

Corradi, G.

M. Wöhlecke, G. Corradi, and K. Betzler, “Optical methods to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63(4), 323–330 (1996).
[Crossref]

Cristiani, I.

Daguet, C.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

de Sandro, J. P.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Degiorgio, V.

Du, W. J.

D. L. Zhang, C. X. Qiu, W. J. Du, W. H. Wong, and E. Y. B. Pun, “Zr4+/Ti4+ Co-diffusion characteristics in lithium niobate,” J. Am. Ceram. Soc. 96(9), 2722–2724 (2013).
[Crossref]

Fouchet, S.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Gather, B.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Grando, D.

Guglielmi, R.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Hempstead, M.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Huang, Z.

Jones, J. K.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Kasemir, K.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Kitamura, K.

M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
[Crossref]

Kokanyan, E. P.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Kong, Y.

Kong, Y. F.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Liu, H. D.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Liu, S.

Liu, S. G.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Liu, Y. W.

M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
[Crossref]

Matzas, B.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Minzioni, P.

Montrosset, I.

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparision with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

Musso, E.

Nakamura, M.

M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
[Crossref]

Nava, G.

Parravicini, J.

Pryalkin, V. I.

Pun, E. Y. B.

D. L. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Y. B. Pun, “Optical-damage-resistant Ti-diffused LiNbO3 strip waveguide doped with scandium,” IEEE Photon. Technol. Lett. 26(17), 1770–1773 (2014).
[Crossref]

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Zr4+ diffusion-doping effect on refractive index of LiNbO3: A comparison with bulk-doping case,” Opt. Mater. Express 4(10), 2215–2220 (2014).
[Crossref]

D. L. Zhang, C. X. Qiu, W. J. Du, W. H. Wong, and E. Y. B. Pun, “Zr4+/Ti4+ Co-diffusion characteristics in lithium niobate,” J. Am. Ceram. Soc. 96(9), 2722–2724 (2013).
[Crossref]

Qiu, C. X.

D. L. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Y. B. Pun, “Optical-damage-resistant Ti-diffused LiNbO3 strip waveguide doped with scandium,” IEEE Photon. Technol. Lett. 26(17), 1770–1773 (2014).
[Crossref]

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Zr4+ diffusion-doping effect on refractive index of LiNbO3: A comparison with bulk-doping case,” Opt. Mater. Express 4(10), 2215–2220 (2014).
[Crossref]

D. L. Zhang, C. X. Qiu, W. J. Du, W. H. Wong, and E. Y. B. Pun, “Zr4+/Ti4+ Co-diffusion characteristics in lithium niobate,” J. Am. Ceram. Soc. 96(9), 2722–2724 (2013).
[Crossref]

Razzari, L.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Riviere, L.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Rubinina, N.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Rubinina, N. M.

Rupp, R.

Sada, C.

Schlarb, U.

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
[Crossref] [PubMed]

Shepherd, D. P.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Sohler, W.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Strake, E.

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparision with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

Takekawa, S.

M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
[Crossref]

Tiegel, B.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Tropper, A. C.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Volk, T.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Volk, T. R.

Wahlbrink, T.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Wang, J.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Wang, L.

Wöhlecke, M.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

M. Wöhlecke, G. Corradi, and K. Betzler, “Optical methods to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63(4), 323–330 (1996).
[Crossref]

Wong, W. H.

D. L. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Y. B. Pun, “Optical-damage-resistant Ti-diffused LiNbO3 strip waveguide doped with scandium,” IEEE Photon. Technol. Lett. 26(17), 1770–1773 (2014).
[Crossref]

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Zr4+ diffusion-doping effect on refractive index of LiNbO3: A comparison with bulk-doping case,” Opt. Mater. Express 4(10), 2215–2220 (2014).
[Crossref]

D. L. Zhang, C. X. Qiu, W. J. Du, W. H. Wong, and E. Y. B. Pun, “Zr4+/Ti4+ Co-diffusion characteristics in lithium niobate,” J. Am. Ceram. Soc. 96(9), 2722–2724 (2013).
[Crossref]

Wu, L.

Xu, J.

Xu, J. J.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Yan, W. B.

Yu, D. Y.

D. L. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Y. B. Pun, “Optical-damage-resistant Ti-diffused LiNbO3 strip waveguide doped with scandium,” IEEE Photon. Technol. Lett. 26(17), 1770–1773 (2014).
[Crossref]

Zaltron, A.

Zhang, D. L.

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Zr4+ diffusion-doping effect on refractive index of LiNbO3: A comparison with bulk-doping case,” Opt. Mater. Express 4(10), 2215–2220 (2014).
[Crossref]

D. L. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Y. B. Pun, “Optical-damage-resistant Ti-diffused LiNbO3 strip waveguide doped with scandium,” IEEE Photon. Technol. Lett. 26(17), 1770–1773 (2014).
[Crossref]

D. L. Zhang, C. X. Qiu, W. J. Du, W. H. Wong, and E. Y. B. Pun, “Zr4+/Ti4+ Co-diffusion characteristics in lithium niobate,” J. Am. Ceram. Soc. 96(9), 2722–2724 (2013).
[Crossref]

Zhang, Q.

Zhao, Y. J.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Appl. Phys. B (2)

M. Wöhlecke, G. Corradi, and K. Betzler, “Optical methods to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63(4), 323–330 (1996).
[Crossref]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Appl. Phys. Lett. (3)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (2)

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

D. L. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Y. B. Pun, “Optical-damage-resistant Ti-diffused LiNbO3 strip waveguide doped with scandium,” IEEE Photon. Technol. Lett. 26(17), 1770–1773 (2014).
[Crossref]

J. Am. Ceram. Soc. (1)

D. L. Zhang, C. X. Qiu, W. J. Du, W. H. Wong, and E. Y. B. Pun, “Zr4+/Ti4+ Co-diffusion characteristics in lithium niobate,” J. Am. Ceram. Soc. 96(9), 2722–2724 (2013).
[Crossref]

J. Appl. Phys. (1)

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

J. Cryst. Growth (1)

M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
[Crossref]

J. Lightwave Technol. (2)

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparision with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (2)

Phys. Rev. B Condens. Matter (1)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic of near-field measurement of polarized mode guided in Ti:Zr:LN strip waveguide.
Fig. 2
Fig. 2 (a) Morphology image of 8-μm-wide Ti:Zr:LN strip waveguide; (b) Near-field patterns of TE and TM modes guided in the 8-μm-wide Ti:Zr:LN waveguide at the 1547 nm wavelength; (c), (d) TE- and TM-mode light intensity profiles along width x and depth y of 8-μm-wide Ti:Zr:LN strip waveguide.
Fig. 3
Fig. 3 (a) Surface Ti4+ profile and (b) depth profiles of 6Li, 93Nb, 16O, 91Zr and 48Ti signals.

Tables (1)

Tables Icon

Table 1 Substrate/mode index and surface concentration of Ti:Zr:LN strip waveguide

Metrics