Abstract

A specialized genetic algorithm approach in combination with first-principles calculations is employed to predict the stable structures of AgGaS2 crystal at different pressures. The results show that the chalcopyrite structure first transforms to the monoclinic Cc phase, and then to a centrosymmetric structure that the second-harmonic generation (SHG) response of AgGaS2 is disappeared. The effects of external pressures, up to 7 GPa, on the linear and second-order nonlinear optical properties of AgGaS2 are explored systematically. Our work reveals that the resistance to laser-induced damage, the transparency range, and the phase matchability can be improved by the pressure-induced deformation of AgGaS2 crystal. Moreover, the feature of the strong SHG response of AgGaS2 crystal is still preserved in the whole IR region even under pressure up to 7 GPa.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Second-harmonic generation from chalcopyrite-structure semiconductor thin films

D. J. Bottomley, A. Mito, S. Niki, and A. Yamada
Opt. Lett. 21(4) 254-256 (1996)

Terahertz generation by optical rectification in uniaxial birefringent crystals

J. D. Rowley, J. K. Wahlstrand, K. T. Zawilski, P. G. Schunemann, N. C. Giles, and A. D. Bristow
Opt. Express 20(15) 16968-16973 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigelson, “Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4.,” Appl. Opt. 26(12), 2390–2394 (1987).
    [Crossref] [PubMed]
  2. G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5(11), 234–236 (1964).
    [Crossref]
  3. I. Chung and M. G. Kanatzidis, “Metal chalcogenides: a rich source of nonlinear optical materials,” Chem. Mater. 26(1), 849–869 (2014).
    [Crossref]
  4. G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18(7), 301–304 (1971).
    [Crossref]
  5. D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3(1), 29–31 (1971).
    [Crossref]
  6. T.-J. Wang, Z.-H. Kang, H.-Z. Zhang, Q.-Y. He, Y. Qu, Z.-S. Feng, Y. Jiang, J.-Y. Gao, Y. M. Andreev, and G. V. Lanskii, “Wide-tunable, high-energy AgGaS2 optical parametric oscillator,” Opt. Express 14(26), 13001–13006 (2006).
    [Crossref] [PubMed]
  7. A. Vitcu, R. Ciurylo, R. Wehr, J. R. Drummond, and A. D. May, “High-resolution tunable mid-infrared spectrometer based on difference-frequency generation in AgGaS2.,” Appl. Opt. 43(25), 4965–4971 (2004).
    [Crossref] [PubMed]
  8. A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16(9), 1481–1498 (1999).
    [Crossref]
  9. A. Douillet and J.-J. Zondy, “Low-threshold, self-frequency-stabilized AgGaS2 continuous-wave subharmonic optical parametric oscillator,” Opt. Lett. 23(16), 1259–1261 (1998).
    [Crossref] [PubMed]
  10. V. Petrov, C. Rempel, K.-P. Stolberg, and W. Schade, “Widely tunable continuous-wave mid-infrared laser source based on difference-frequency generation in AgGaS2,” Appl. Opt. 37(21), 4925–4928 (1998).
    [Crossref] [PubMed]
  11. V. V. Badikov, O. N. Pivovarov, Y. V. Skokov, O. V. Skrebneva, and N. K. Trotsenko, “Some optical properties of silver thiogallate single crystals,” Sov. J. Quantum Electron. 5(3), 350–351 (1975).
    [Crossref]
  12. J. L. Shay and J. H. Wernik, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications (Pergamon, 1974).
  13. Ch. Power, S. Gilliland, A. Segura, and J. Gonzalez, “Variation of the optical absorption edge in AgGaS2 single crystals at high pressure,” Phys. Status Solidi 235(2), 326–330 (2003).
    [Crossref]
  14. I.-H. Choi and P. Y. Yu, “Optical investigation of defects in AgGaS2 and CuGaS2,” J. Phys. Chem. Solids 57(11), 1695–1704 (1996).
    [Crossref]
  15. C. Carlone, D. Olego, A. Jayaraman, and M. Cardona, “Pressure dependence of the Raman modes and pressure-induced phase changes in CuGaS2 and AgGaS2,” Phys. Rev. B 22(8), 3877–3885 (1980).
    [Crossref]
  16. A. Werner, H. D. Hochheimer, and A. Jayaraman, “Pressure-induced phase transformations in the chalcopyrite-structure compounds: CuGaS2 and AgGaS2,” Phys. Rev. B 23(8), 3836–3839 (1981).
    [Crossref]
  17. T. Sakuntala and A. K. Arora, “Pressure-tuned resonance Raman scattering in AgGaSe2.,” Phys. Rev. B Condens. Matter 53(23), 15667–15674 (1996).
    [Crossref] [PubMed]
  18. H. Kitahara, N. Ishizawa, F. Marumo, and Y. Noda, “Monoclinic high-pressure phase of AgGaS2,” Phys. Rev. B 55(5), 2690–2692 (1997).
    [Crossref]
  19. H. K. Eba, N. Ishizawa, F. Marumo, and Y. Noda, “Synchrotron x-ray study of the monoclinic high-pressure structure of AgGaS2,” Phys. Rev. B 61(5), 3310–3316 (2000).
    [Crossref]
  20. T. Tinoco, A. Polian, J. P. Itie, E. Moya, and J. Gonzalez, “Equation of state and phase transitions in AgGaS2 and AgGaSe2,” J. Phys. Chem. Solids 56(3-4), 481–484 (1995).
    [Crossref]
  21. V. Kumar, S. K. Tripathy, and V. Jha, “Second order nonlinear optical properties of AIBIIIC2VI chalcopyrite semiconductors,” Appl. Phys. Lett. 101(19), 192105 (2012).
    [Crossref]
  22. H.-J. Hou, S.-F. Zhu, B.-J. Zhao, Y. Yu, and L.-H. Xie, “First-principles calculations of the elastic, electronic and optical properties of AgGaS2,” Phys. Scr. 82(5), 055601 (2010).
    [Crossref]
  23. M. G. Brik, “Electronic, optical and elastic properties of CuXS2 (X=Al, Ga, In) and AgGaS2 semiconductors from first-principles calculations,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 8(9), 2582–2584 (2011).
    [Crossref]
  24. S. Sharma, A. S. Verma, and V. K. Jindal, “Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX2: X = S, Se, Te),” Mater. Res. Bull. 53, 218–233 (2014).
    [Crossref]
  25. A. Chahed, O. Benhelal, S. Laksari, B. Abbar, B. Bouhafs, and N. Amrane, “First-principles calculations of the structural, electronic and optical properties of AgGaS2 and AgGaSe2,” Physica B 367(1–4), 142–151 (2005).
    [Crossref]
  26. C. T. Chen, L. Bai, Z. Z. Wang, and R. K. Li, “Development of new NLO crystals for UV and IR applications,” J. Cryst. Growth 292(2), 169–178 (2006).
    [Crossref]
  27. Z. Fang, J. Lin, R. Liu, P. Liu, Y. Li, X. Huang, K. Ding, L. Ning, and Y. Zhang, “Computational design of inorganic nonlinearoptical crystals based on a genetic algorithm,” CrystEngComm 16(46), 10569–10580 (2014).
    [Crossref]
  28. G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B Condens. Matter 47(1), 558–561 (1993).
    [Crossref] [PubMed]
  29. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
    [Crossref] [PubMed]
  30. G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
    [Crossref]
  31. J. Heyd, G. E. Scuseria, and E. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8215 (2003).
    [Crossref]
  32. I. De. P. R. Moreira, F. Illas, and R. L. Martin, “Effect of Fock exchange on the electronic structure and magnetic coupling in NiO,” Phys. Rev. B 65(15), 155102 (2002).
  33. Y.-F. Zhang, W. Lin, Y. Li, K.-N. Ding, and J. Q. Li, “A Theoretical Study on the Electronic Structures of TiO2: Effect of Hartree-Fock Exchange,” J. Phys. Chem. B 109(41), 19270–19277 (2005).
    [Crossref] [PubMed]
  34. J. L. P. Hughes and J. E. Sipe, “Calculation of second-order optical response in semiconductors,” Phys. Rev. B Condens. Matter 53(16), 10751–10763 (1996).
    [Crossref] [PubMed]
  35. S. N. Rashkeev, W. R. Lambrecht, and B. Segall, “Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors,” Phys. Rev. B 57(7), 3905–3919 (1998).
    [Crossref]
  36. R. Liu, Y. Zhang, and M. Wang, “Research on parallel computing algorithm of the second harmonic generation coefficients of nonlinear optical crystals based on MPI,” presented at the 11th International Symposium on Distributed Computing and Applications to Business, Engineering and Science, GuiLin, China, 77–80 Oct. 2012.
    [Crossref]
  37. G. D. Boyd, H. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. 7(12), 563–573 (1971).
    [Crossref]
  38. K. Kato and H. Shirahata, “Nonlinear IR Generation in AgGaS2,” Jpn. J. Appl. Phys. 35(Part 1, No. 9A), 4645–4648 (1996).
    [Crossref]
  39. S. Laksari, A. Chahed, N. Abbouni, O. Benhelal, and B. Abbar, “First-principles calculations of the structural, electronic and optical properties of CuGaS2 and AgGaS2,” Comput. Mater. Sci. 38(1), 223–230 (2006).
    [Crossref]
  40. L. Bai, Z. Lin, Z. Wang, C. Chen, and M.-H. Lee, “Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X=S, Se, and Te) crystals,” J. Chem. Phys. 120(18), 8772–8778 (2004).
    [Crossref] [PubMed]
  41. M. J. Weber, Handbook of Optical Materials (CRC, 2002).

2014 (3)

I. Chung and M. G. Kanatzidis, “Metal chalcogenides: a rich source of nonlinear optical materials,” Chem. Mater. 26(1), 849–869 (2014).
[Crossref]

S. Sharma, A. S. Verma, and V. K. Jindal, “Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX2: X = S, Se, Te),” Mater. Res. Bull. 53, 218–233 (2014).
[Crossref]

Z. Fang, J. Lin, R. Liu, P. Liu, Y. Li, X. Huang, K. Ding, L. Ning, and Y. Zhang, “Computational design of inorganic nonlinearoptical crystals based on a genetic algorithm,” CrystEngComm 16(46), 10569–10580 (2014).
[Crossref]

2012 (1)

V. Kumar, S. K. Tripathy, and V. Jha, “Second order nonlinear optical properties of AIBIIIC2VI chalcopyrite semiconductors,” Appl. Phys. Lett. 101(19), 192105 (2012).
[Crossref]

2011 (1)

M. G. Brik, “Electronic, optical and elastic properties of CuXS2 (X=Al, Ga, In) and AgGaS2 semiconductors from first-principles calculations,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 8(9), 2582–2584 (2011).
[Crossref]

2010 (1)

H.-J. Hou, S.-F. Zhu, B.-J. Zhao, Y. Yu, and L.-H. Xie, “First-principles calculations of the elastic, electronic and optical properties of AgGaS2,” Phys. Scr. 82(5), 055601 (2010).
[Crossref]

2006 (3)

T.-J. Wang, Z.-H. Kang, H.-Z. Zhang, Q.-Y. He, Y. Qu, Z.-S. Feng, Y. Jiang, J.-Y. Gao, Y. M. Andreev, and G. V. Lanskii, “Wide-tunable, high-energy AgGaS2 optical parametric oscillator,” Opt. Express 14(26), 13001–13006 (2006).
[Crossref] [PubMed]

C. T. Chen, L. Bai, Z. Z. Wang, and R. K. Li, “Development of new NLO crystals for UV and IR applications,” J. Cryst. Growth 292(2), 169–178 (2006).
[Crossref]

S. Laksari, A. Chahed, N. Abbouni, O. Benhelal, and B. Abbar, “First-principles calculations of the structural, electronic and optical properties of CuGaS2 and AgGaS2,” Comput. Mater. Sci. 38(1), 223–230 (2006).
[Crossref]

2005 (2)

Y.-F. Zhang, W. Lin, Y. Li, K.-N. Ding, and J. Q. Li, “A Theoretical Study on the Electronic Structures of TiO2: Effect of Hartree-Fock Exchange,” J. Phys. Chem. B 109(41), 19270–19277 (2005).
[Crossref] [PubMed]

A. Chahed, O. Benhelal, S. Laksari, B. Abbar, B. Bouhafs, and N. Amrane, “First-principles calculations of the structural, electronic and optical properties of AgGaS2 and AgGaSe2,” Physica B 367(1–4), 142–151 (2005).
[Crossref]

2004 (2)

A. Vitcu, R. Ciurylo, R. Wehr, J. R. Drummond, and A. D. May, “High-resolution tunable mid-infrared spectrometer based on difference-frequency generation in AgGaS2.,” Appl. Opt. 43(25), 4965–4971 (2004).
[Crossref] [PubMed]

L. Bai, Z. Lin, Z. Wang, C. Chen, and M.-H. Lee, “Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X=S, Se, and Te) crystals,” J. Chem. Phys. 120(18), 8772–8778 (2004).
[Crossref] [PubMed]

2003 (2)

Ch. Power, S. Gilliland, A. Segura, and J. Gonzalez, “Variation of the optical absorption edge in AgGaS2 single crystals at high pressure,” Phys. Status Solidi 235(2), 326–330 (2003).
[Crossref]

J. Heyd, G. E. Scuseria, and E. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8215 (2003).
[Crossref]

2002 (1)

I. De. P. R. Moreira, F. Illas, and R. L. Martin, “Effect of Fock exchange on the electronic structure and magnetic coupling in NiO,” Phys. Rev. B 65(15), 155102 (2002).

2000 (1)

H. K. Eba, N. Ishizawa, F. Marumo, and Y. Noda, “Synchrotron x-ray study of the monoclinic high-pressure structure of AgGaS2,” Phys. Rev. B 61(5), 3310–3316 (2000).
[Crossref]

1999 (1)

1998 (3)

1997 (1)

H. Kitahara, N. Ishizawa, F. Marumo, and Y. Noda, “Monoclinic high-pressure phase of AgGaS2,” Phys. Rev. B 55(5), 2690–2692 (1997).
[Crossref]

1996 (6)

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

K. Kato and H. Shirahata, “Nonlinear IR Generation in AgGaS2,” Jpn. J. Appl. Phys. 35(Part 1, No. 9A), 4645–4648 (1996).
[Crossref]

J. L. P. Hughes and J. E. Sipe, “Calculation of second-order optical response in semiconductors,” Phys. Rev. B Condens. Matter 53(16), 10751–10763 (1996).
[Crossref] [PubMed]

I.-H. Choi and P. Y. Yu, “Optical investigation of defects in AgGaS2 and CuGaS2,” J. Phys. Chem. Solids 57(11), 1695–1704 (1996).
[Crossref]

T. Sakuntala and A. K. Arora, “Pressure-tuned resonance Raman scattering in AgGaSe2.,” Phys. Rev. B Condens. Matter 53(23), 15667–15674 (1996).
[Crossref] [PubMed]

1995 (1)

T. Tinoco, A. Polian, J. P. Itie, E. Moya, and J. Gonzalez, “Equation of state and phase transitions in AgGaS2 and AgGaSe2,” J. Phys. Chem. Solids 56(3-4), 481–484 (1995).
[Crossref]

1993 (1)

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B Condens. Matter 47(1), 558–561 (1993).
[Crossref] [PubMed]

1987 (1)

1981 (1)

A. Werner, H. D. Hochheimer, and A. Jayaraman, “Pressure-induced phase transformations in the chalcopyrite-structure compounds: CuGaS2 and AgGaS2,” Phys. Rev. B 23(8), 3836–3839 (1981).
[Crossref]

1980 (1)

C. Carlone, D. Olego, A. Jayaraman, and M. Cardona, “Pressure dependence of the Raman modes and pressure-induced phase changes in CuGaS2 and AgGaS2,” Phys. Rev. B 22(8), 3877–3885 (1980).
[Crossref]

1975 (1)

V. V. Badikov, O. N. Pivovarov, Y. V. Skokov, O. V. Skrebneva, and N. K. Trotsenko, “Some optical properties of silver thiogallate single crystals,” Sov. J. Quantum Electron. 5(3), 350–351 (1975).
[Crossref]

1971 (3)

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18(7), 301–304 (1971).
[Crossref]

D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3(1), 29–31 (1971).
[Crossref]

G. D. Boyd, H. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. 7(12), 563–573 (1971).
[Crossref]

1964 (1)

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5(11), 234–236 (1964).
[Crossref]

Abbar, B.

S. Laksari, A. Chahed, N. Abbouni, O. Benhelal, and B. Abbar, “First-principles calculations of the structural, electronic and optical properties of CuGaS2 and AgGaS2,” Comput. Mater. Sci. 38(1), 223–230 (2006).
[Crossref]

A. Chahed, O. Benhelal, S. Laksari, B. Abbar, B. Bouhafs, and N. Amrane, “First-principles calculations of the structural, electronic and optical properties of AgGaS2 and AgGaSe2,” Physica B 367(1–4), 142–151 (2005).
[Crossref]

Abbouni, N.

S. Laksari, A. Chahed, N. Abbouni, O. Benhelal, and B. Abbar, “First-principles calculations of the structural, electronic and optical properties of CuGaS2 and AgGaS2,” Comput. Mater. Sci. 38(1), 223–230 (2006).
[Crossref]

Amrane, N.

A. Chahed, O. Benhelal, S. Laksari, B. Abbar, B. Bouhafs, and N. Amrane, “First-principles calculations of the structural, electronic and optical properties of AgGaS2 and AgGaSe2,” Physica B 367(1–4), 142–151 (2005).
[Crossref]

Andreev, Y. M.

Arora, A. K.

T. Sakuntala and A. K. Arora, “Pressure-tuned resonance Raman scattering in AgGaSe2.,” Phys. Rev. B Condens. Matter 53(23), 15667–15674 (1996).
[Crossref] [PubMed]

Badikov, V. V.

V. V. Badikov, O. N. Pivovarov, Y. V. Skokov, O. V. Skrebneva, and N. K. Trotsenko, “Some optical properties of silver thiogallate single crystals,” Sov. J. Quantum Electron. 5(3), 350–351 (1975).
[Crossref]

Bai, L.

C. T. Chen, L. Bai, Z. Z. Wang, and R. K. Li, “Development of new NLO crystals for UV and IR applications,” J. Cryst. Growth 292(2), 169–178 (2006).
[Crossref]

L. Bai, Z. Lin, Z. Wang, C. Chen, and M.-H. Lee, “Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X=S, Se, and Te) crystals,” J. Chem. Phys. 120(18), 8772–8778 (2004).
[Crossref] [PubMed]

Benhelal, O.

S. Laksari, A. Chahed, N. Abbouni, O. Benhelal, and B. Abbar, “First-principles calculations of the structural, electronic and optical properties of CuGaS2 and AgGaS2,” Comput. Mater. Sci. 38(1), 223–230 (2006).
[Crossref]

A. Chahed, O. Benhelal, S. Laksari, B. Abbar, B. Bouhafs, and N. Amrane, “First-principles calculations of the structural, electronic and optical properties of AgGaS2 and AgGaSe2,” Physica B 367(1–4), 142–151 (2005).
[Crossref]

Bond, W. L.

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5(11), 234–236 (1964).
[Crossref]

Bouhafs, B.

A. Chahed, O. Benhelal, S. Laksari, B. Abbar, B. Bouhafs, and N. Amrane, “First-principles calculations of the structural, electronic and optical properties of AgGaS2 and AgGaSe2,” Physica B 367(1–4), 142–151 (2005).
[Crossref]

Boyd, G. D.

G. D. Boyd, H. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. 7(12), 563–573 (1971).
[Crossref]

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18(7), 301–304 (1971).
[Crossref]

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5(11), 234–236 (1964).
[Crossref]

Brik, M. G.

M. G. Brik, “Electronic, optical and elastic properties of CuXS2 (X=Al, Ga, In) and AgGaS2 semiconductors from first-principles calculations,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 8(9), 2582–2584 (2011).
[Crossref]

Buehler, E.

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18(7), 301–304 (1971).
[Crossref]

Byer, R. L.

Cardona, M.

C. Carlone, D. Olego, A. Jayaraman, and M. Cardona, “Pressure dependence of the Raman modes and pressure-induced phase changes in CuGaS2 and AgGaS2,” Phys. Rev. B 22(8), 3877–3885 (1980).
[Crossref]

Carlone, C.

C. Carlone, D. Olego, A. Jayaraman, and M. Cardona, “Pressure dependence of the Raman modes and pressure-induced phase changes in CuGaS2 and AgGaS2,” Phys. Rev. B 22(8), 3877–3885 (1980).
[Crossref]

Chahed, A.

S. Laksari, A. Chahed, N. Abbouni, O. Benhelal, and B. Abbar, “First-principles calculations of the structural, electronic and optical properties of CuGaS2 and AgGaS2,” Comput. Mater. Sci. 38(1), 223–230 (2006).
[Crossref]

A. Chahed, O. Benhelal, S. Laksari, B. Abbar, B. Bouhafs, and N. Amrane, “First-principles calculations of the structural, electronic and optical properties of AgGaS2 and AgGaSe2,” Physica B 367(1–4), 142–151 (2005).
[Crossref]

Chemla, D. S.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3(1), 29–31 (1971).
[Crossref]

Chen, C.

L. Bai, Z. Lin, Z. Wang, C. Chen, and M.-H. Lee, “Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X=S, Se, and Te) crystals,” J. Chem. Phys. 120(18), 8772–8778 (2004).
[Crossref] [PubMed]

Chen, C. T.

C. T. Chen, L. Bai, Z. Z. Wang, and R. K. Li, “Development of new NLO crystals for UV and IR applications,” J. Cryst. Growth 292(2), 169–178 (2006).
[Crossref]

Choi, I.-H.

I.-H. Choi and P. Y. Yu, “Optical investigation of defects in AgGaS2 and CuGaS2,” J. Phys. Chem. Solids 57(11), 1695–1704 (1996).
[Crossref]

Chung, I.

I. Chung and M. G. Kanatzidis, “Metal chalcogenides: a rich source of nonlinear optical materials,” Chem. Mater. 26(1), 849–869 (2014).
[Crossref]

Ciurylo, R.

Ding, K.

Z. Fang, J. Lin, R. Liu, P. Liu, Y. Li, X. Huang, K. Ding, L. Ning, and Y. Zhang, “Computational design of inorganic nonlinearoptical crystals based on a genetic algorithm,” CrystEngComm 16(46), 10569–10580 (2014).
[Crossref]

Ding, K.-N.

Y.-F. Zhang, W. Lin, Y. Li, K.-N. Ding, and J. Q. Li, “A Theoretical Study on the Electronic Structures of TiO2: Effect of Hartree-Fock Exchange,” J. Phys. Chem. B 109(41), 19270–19277 (2005).
[Crossref] [PubMed]

Douillet, A.

Drummond, J. R.

Eba, H. K.

H. K. Eba, N. Ishizawa, F. Marumo, and Y. Noda, “Synchrotron x-ray study of the monoclinic high-pressure structure of AgGaS2,” Phys. Rev. B 61(5), 3310–3316 (2000).
[Crossref]

Eckardt, R. C.

Ernzerhof, E.

J. Heyd, G. E. Scuseria, and E. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8215 (2003).
[Crossref]

Fan, T. Y.

Fan, Y. X.

Fang, Z.

Z. Fang, J. Lin, R. Liu, P. Liu, Y. Li, X. Huang, K. Ding, L. Ning, and Y. Zhang, “Computational design of inorganic nonlinearoptical crystals based on a genetic algorithm,” CrystEngComm 16(46), 10569–10580 (2014).
[Crossref]

Feigelson, R. S.

Feng, Z.-S.

Furthmuller, J.

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

Furthmüller, J.

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

Gao, J.-Y.

Gilliland, S.

Ch. Power, S. Gilliland, A. Segura, and J. Gonzalez, “Variation of the optical absorption edge in AgGaS2 single crystals at high pressure,” Phys. Status Solidi 235(2), 326–330 (2003).
[Crossref]

Gonzalez, J.

Ch. Power, S. Gilliland, A. Segura, and J. Gonzalez, “Variation of the optical absorption edge in AgGaS2 single crystals at high pressure,” Phys. Status Solidi 235(2), 326–330 (2003).
[Crossref]

T. Tinoco, A. Polian, J. P. Itie, E. Moya, and J. Gonzalez, “Equation of state and phase transitions in AgGaS2 and AgGaSe2,” J. Phys. Chem. Solids 56(3-4), 481–484 (1995).
[Crossref]

Hafner, J.

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B Condens. Matter 47(1), 558–561 (1993).
[Crossref] [PubMed]

He, Q.-Y.

Heyd, J.

J. Heyd, G. E. Scuseria, and E. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8215 (2003).
[Crossref]

Hochheimer, H. D.

A. Werner, H. D. Hochheimer, and A. Jayaraman, “Pressure-induced phase transformations in the chalcopyrite-structure compounds: CuGaS2 and AgGaS2,” Phys. Rev. B 23(8), 3836–3839 (1981).
[Crossref]

Hou, H.-J.

H.-J. Hou, S.-F. Zhu, B.-J. Zhao, Y. Yu, and L.-H. Xie, “First-principles calculations of the elastic, electronic and optical properties of AgGaS2,” Phys. Scr. 82(5), 055601 (2010).
[Crossref]

Hu, B. Q.

Huang, C. E.

Huang, X.

Z. Fang, J. Lin, R. Liu, P. Liu, Y. Li, X. Huang, K. Ding, L. Ning, and Y. Zhang, “Computational design of inorganic nonlinearoptical crystals based on a genetic algorithm,” CrystEngComm 16(46), 10569–10580 (2014).
[Crossref]

Hughes, J. L. P.

J. L. P. Hughes and J. E. Sipe, “Calculation of second-order optical response in semiconductors,” Phys. Rev. B Condens. Matter 53(16), 10751–10763 (1996).
[Crossref] [PubMed]

Illas, F.

I. De. P. R. Moreira, F. Illas, and R. L. Martin, “Effect of Fock exchange on the electronic structure and magnetic coupling in NiO,” Phys. Rev. B 65(15), 155102 (2002).

Isaenko, L.

Ishizawa, N.

H. K. Eba, N. Ishizawa, F. Marumo, and Y. Noda, “Synchrotron x-ray study of the monoclinic high-pressure structure of AgGaS2,” Phys. Rev. B 61(5), 3310–3316 (2000).
[Crossref]

H. Kitahara, N. Ishizawa, F. Marumo, and Y. Noda, “Monoclinic high-pressure phase of AgGaS2,” Phys. Rev. B 55(5), 2690–2692 (1997).
[Crossref]

Itie, J. P.

T. Tinoco, A. Polian, J. P. Itie, E. Moya, and J. Gonzalez, “Equation of state and phase transitions in AgGaS2 and AgGaSe2,” J. Phys. Chem. Solids 56(3-4), 481–484 (1995).
[Crossref]

Jayaraman, A.

A. Werner, H. D. Hochheimer, and A. Jayaraman, “Pressure-induced phase transformations in the chalcopyrite-structure compounds: CuGaS2 and AgGaS2,” Phys. Rev. B 23(8), 3836–3839 (1981).
[Crossref]

C. Carlone, D. Olego, A. Jayaraman, and M. Cardona, “Pressure dependence of the Raman modes and pressure-induced phase changes in CuGaS2 and AgGaS2,” Phys. Rev. B 22(8), 3877–3885 (1980).
[Crossref]

Jha, V.

V. Kumar, S. K. Tripathy, and V. Jha, “Second order nonlinear optical properties of AIBIIIC2VI chalcopyrite semiconductors,” Appl. Phys. Lett. 101(19), 192105 (2012).
[Crossref]

Jiang, Y.

Jindal, V. K.

S. Sharma, A. S. Verma, and V. K. Jindal, “Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX2: X = S, Se, Te),” Mater. Res. Bull. 53, 218–233 (2014).
[Crossref]

Kanatzidis, M. G.

I. Chung and M. G. Kanatzidis, “Metal chalcogenides: a rich source of nonlinear optical materials,” Chem. Mater. 26(1), 849–869 (2014).
[Crossref]

Kang, Z.-H.

Kasper, H.

G. D. Boyd, H. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. 7(12), 563–573 (1971).
[Crossref]

Kato, K.

K. Kato and H. Shirahata, “Nonlinear IR Generation in AgGaS2,” Jpn. J. Appl. Phys. 35(Part 1, No. 9A), 4645–4648 (1996).
[Crossref]

Kitahara, H.

H. Kitahara, N. Ishizawa, F. Marumo, and Y. Noda, “Monoclinic high-pressure phase of AgGaS2,” Phys. Rev. B 55(5), 2690–2692 (1997).
[Crossref]

Kresse, G.

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B Condens. Matter 47(1), 558–561 (1993).
[Crossref] [PubMed]

Kumar, V.

V. Kumar, S. K. Tripathy, and V. Jha, “Second order nonlinear optical properties of AIBIIIC2VI chalcopyrite semiconductors,” Appl. Phys. Lett. 101(19), 192105 (2012).
[Crossref]

Kupecek, P. J.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3(1), 29–31 (1971).
[Crossref]

Laksari, S.

S. Laksari, A. Chahed, N. Abbouni, O. Benhelal, and B. Abbar, “First-principles calculations of the structural, electronic and optical properties of CuGaS2 and AgGaS2,” Comput. Mater. Sci. 38(1), 223–230 (2006).
[Crossref]

A. Chahed, O. Benhelal, S. Laksari, B. Abbar, B. Bouhafs, and N. Amrane, “First-principles calculations of the structural, electronic and optical properties of AgGaS2 and AgGaSe2,” Physica B 367(1–4), 142–151 (2005).
[Crossref]

Lambrecht, W. R.

S. N. Rashkeev, W. R. Lambrecht, and B. Segall, “Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors,” Phys. Rev. B 57(7), 3905–3919 (1998).
[Crossref]

Lanskii, G. V.

Lee, M.-H.

L. Bai, Z. Lin, Z. Wang, C. Chen, and M.-H. Lee, “Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X=S, Se, and Te) crystals,” J. Chem. Phys. 120(18), 8772–8778 (2004).
[Crossref] [PubMed]

Li, J. Q.

Y.-F. Zhang, W. Lin, Y. Li, K.-N. Ding, and J. Q. Li, “A Theoretical Study on the Electronic Structures of TiO2: Effect of Hartree-Fock Exchange,” J. Phys. Chem. B 109(41), 19270–19277 (2005).
[Crossref] [PubMed]

Li, R. K.

C. T. Chen, L. Bai, Z. Z. Wang, and R. K. Li, “Development of new NLO crystals for UV and IR applications,” J. Cryst. Growth 292(2), 169–178 (2006).
[Crossref]

Li, Y.

Z. Fang, J. Lin, R. Liu, P. Liu, Y. Li, X. Huang, K. Ding, L. Ning, and Y. Zhang, “Computational design of inorganic nonlinearoptical crystals based on a genetic algorithm,” CrystEngComm 16(46), 10569–10580 (2014).
[Crossref]

Y.-F. Zhang, W. Lin, Y. Li, K.-N. Ding, and J. Q. Li, “A Theoretical Study on the Electronic Structures of TiO2: Effect of Hartree-Fock Exchange,” J. Phys. Chem. B 109(41), 19270–19277 (2005).
[Crossref] [PubMed]

Lin, J.

Z. Fang, J. Lin, R. Liu, P. Liu, Y. Li, X. Huang, K. Ding, L. Ning, and Y. Zhang, “Computational design of inorganic nonlinearoptical crystals based on a genetic algorithm,” CrystEngComm 16(46), 10569–10580 (2014).
[Crossref]

Lin, W.

Y.-F. Zhang, W. Lin, Y. Li, K.-N. Ding, and J. Q. Li, “A Theoretical Study on the Electronic Structures of TiO2: Effect of Hartree-Fock Exchange,” J. Phys. Chem. B 109(41), 19270–19277 (2005).
[Crossref] [PubMed]

Lin, Z.

L. Bai, Z. Lin, Z. Wang, C. Chen, and M.-H. Lee, “Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X=S, Se, and Te) crystals,” J. Chem. Phys. 120(18), 8772–8778 (2004).
[Crossref] [PubMed]

Liu, P.

Z. Fang, J. Lin, R. Liu, P. Liu, Y. Li, X. Huang, K. Ding, L. Ning, and Y. Zhang, “Computational design of inorganic nonlinearoptical crystals based on a genetic algorithm,” CrystEngComm 16(46), 10569–10580 (2014).
[Crossref]

Liu, R.

Z. Fang, J. Lin, R. Liu, P. Liu, Y. Li, X. Huang, K. Ding, L. Ning, and Y. Zhang, “Computational design of inorganic nonlinearoptical crystals based on a genetic algorithm,” CrystEngComm 16(46), 10569–10580 (2014).
[Crossref]

Lobanov, S.

Martin, R. L.

I. De. P. R. Moreira, F. Illas, and R. L. Martin, “Effect of Fock exchange on the electronic structure and magnetic coupling in NiO,” Phys. Rev. B 65(15), 155102 (2002).

Marumo, F.

H. K. Eba, N. Ishizawa, F. Marumo, and Y. Noda, “Synchrotron x-ray study of the monoclinic high-pressure structure of AgGaS2,” Phys. Rev. B 61(5), 3310–3316 (2000).
[Crossref]

H. Kitahara, N. Ishizawa, F. Marumo, and Y. Noda, “Monoclinic high-pressure phase of AgGaS2,” Phys. Rev. B 55(5), 2690–2692 (1997).
[Crossref]

May, A. D.

McFee, J. H.

G. D. Boyd, H. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. 7(12), 563–573 (1971).
[Crossref]

Miller, R. C.

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5(11), 234–236 (1964).
[Crossref]

Moreira, I. De. P. R.

I. De. P. R. Moreira, F. Illas, and R. L. Martin, “Effect of Fock exchange on the electronic structure and magnetic coupling in NiO,” Phys. Rev. B 65(15), 155102 (2002).

Moya, E.

T. Tinoco, A. Polian, J. P. Itie, E. Moya, and J. Gonzalez, “Equation of state and phase transitions in AgGaS2 and AgGaSe2,” J. Phys. Chem. Solids 56(3-4), 481–484 (1995).
[Crossref]

Nassau, K.

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5(11), 234–236 (1964).
[Crossref]

Ning, L.

Z. Fang, J. Lin, R. Liu, P. Liu, Y. Li, X. Huang, K. Ding, L. Ning, and Y. Zhang, “Computational design of inorganic nonlinearoptical crystals based on a genetic algorithm,” CrystEngComm 16(46), 10569–10580 (2014).
[Crossref]

Noda, Y.

H. K. Eba, N. Ishizawa, F. Marumo, and Y. Noda, “Synchrotron x-ray study of the monoclinic high-pressure structure of AgGaS2,” Phys. Rev. B 61(5), 3310–3316 (2000).
[Crossref]

H. Kitahara, N. Ishizawa, F. Marumo, and Y. Noda, “Monoclinic high-pressure phase of AgGaS2,” Phys. Rev. B 55(5), 2690–2692 (1997).
[Crossref]

Olego, D.

C. Carlone, D. Olego, A. Jayaraman, and M. Cardona, “Pressure dependence of the Raman modes and pressure-induced phase changes in CuGaS2 and AgGaS2,” Phys. Rev. B 22(8), 3877–3885 (1980).
[Crossref]

Petrov, V.

Pivovarov, O. N.

V. V. Badikov, O. N. Pivovarov, Y. V. Skokov, O. V. Skrebneva, and N. K. Trotsenko, “Some optical properties of silver thiogallate single crystals,” Sov. J. Quantum Electron. 5(3), 350–351 (1975).
[Crossref]

Polian, A.

T. Tinoco, A. Polian, J. P. Itie, E. Moya, and J. Gonzalez, “Equation of state and phase transitions in AgGaS2 and AgGaSe2,” J. Phys. Chem. Solids 56(3-4), 481–484 (1995).
[Crossref]

Power, Ch.

Ch. Power, S. Gilliland, A. Segura, and J. Gonzalez, “Variation of the optical absorption edge in AgGaS2 single crystals at high pressure,” Phys. Status Solidi 235(2), 326–330 (2003).
[Crossref]

Qu, Y.

Rashkeev, S. N.

S. N. Rashkeev, W. R. Lambrecht, and B. Segall, “Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors,” Phys. Rev. B 57(7), 3905–3919 (1998).
[Crossref]

Rempel, C.

Robertson, D. S.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3(1), 29–31 (1971).
[Crossref]

Sakuntala, T.

T. Sakuntala and A. K. Arora, “Pressure-tuned resonance Raman scattering in AgGaSe2.,” Phys. Rev. B Condens. Matter 53(23), 15667–15674 (1996).
[Crossref] [PubMed]

Savage, A.

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5(11), 234–236 (1964).
[Crossref]

Schade, W.

Scuseria, G. E.

J. Heyd, G. E. Scuseria, and E. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8215 (2003).
[Crossref]

Segall, B.

S. N. Rashkeev, W. R. Lambrecht, and B. Segall, “Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors,” Phys. Rev. B 57(7), 3905–3919 (1998).
[Crossref]

Segura, A.

Ch. Power, S. Gilliland, A. Segura, and J. Gonzalez, “Variation of the optical absorption edge in AgGaS2 single crystals at high pressure,” Phys. Status Solidi 235(2), 326–330 (2003).
[Crossref]

Sharma, S.

S. Sharma, A. S. Verma, and V. K. Jindal, “Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX2: X = S, Se, Te),” Mater. Res. Bull. 53, 218–233 (2014).
[Crossref]

Shirahata, H.

K. Kato and H. Shirahata, “Nonlinear IR Generation in AgGaS2,” Jpn. J. Appl. Phys. 35(Part 1, No. 9A), 4645–4648 (1996).
[Crossref]

Sipe, J. E.

J. L. P. Hughes and J. E. Sipe, “Calculation of second-order optical response in semiconductors,” Phys. Rev. B Condens. Matter 53(16), 10751–10763 (1996).
[Crossref] [PubMed]

Skokov, Y. V.

V. V. Badikov, O. N. Pivovarov, Y. V. Skokov, O. V. Skrebneva, and N. K. Trotsenko, “Some optical properties of silver thiogallate single crystals,” Sov. J. Quantum Electron. 5(3), 350–351 (1975).
[Crossref]

Skrebneva, O. V.

V. V. Badikov, O. N. Pivovarov, Y. V. Skokov, O. V. Skrebneva, and N. K. Trotsenko, “Some optical properties of silver thiogallate single crystals,” Sov. J. Quantum Electron. 5(3), 350–351 (1975).
[Crossref]

Smith, R. C.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3(1), 29–31 (1971).
[Crossref]

Stolberg, K.-P.

Storz, F. G.

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18(7), 301–304 (1971).
[Crossref]

Tinoco, T.

T. Tinoco, A. Polian, J. P. Itie, E. Moya, and J. Gonzalez, “Equation of state and phase transitions in AgGaS2 and AgGaSe2,” J. Phys. Chem. Solids 56(3-4), 481–484 (1995).
[Crossref]

Tripathy, S. K.

V. Kumar, S. K. Tripathy, and V. Jha, “Second order nonlinear optical properties of AIBIIIC2VI chalcopyrite semiconductors,” Appl. Phys. Lett. 101(19), 192105 (2012).
[Crossref]

Trotsenko, N. K.

V. V. Badikov, O. N. Pivovarov, Y. V. Skokov, O. V. Skrebneva, and N. K. Trotsenko, “Some optical properties of silver thiogallate single crystals,” Sov. J. Quantum Electron. 5(3), 350–351 (1975).
[Crossref]

Verma, A. S.

S. Sharma, A. S. Verma, and V. K. Jindal, “Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX2: X = S, Se, Te),” Mater. Res. Bull. 53, 218–233 (2014).
[Crossref]

Vitcu, A.

Wang, T.-J.

Wang, Z.

L. Bai, Z. Lin, Z. Wang, C. Chen, and M.-H. Lee, “Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X=S, Se, and Te) crystals,” J. Chem. Phys. 120(18), 8772–8778 (2004).
[Crossref] [PubMed]

Wang, Z. Z.

C. T. Chen, L. Bai, Z. Z. Wang, and R. K. Li, “Development of new NLO crystals for UV and IR applications,” J. Cryst. Growth 292(2), 169–178 (2006).
[Crossref]

Wehr, R.

Werner, A.

A. Werner, H. D. Hochheimer, and A. Jayaraman, “Pressure-induced phase transformations in the chalcopyrite-structure compounds: CuGaS2 and AgGaS2,” Phys. Rev. B 23(8), 3836–3839 (1981).
[Crossref]

Xie, L.-H.

H.-J. Hou, S.-F. Zhu, B.-J. Zhao, Y. Yu, and L.-H. Xie, “First-principles calculations of the elastic, electronic and optical properties of AgGaS2,” Phys. Scr. 82(5), 055601 (2010).
[Crossref]

Yelisseyev, A.

Yu, P. Y.

I.-H. Choi and P. Y. Yu, “Optical investigation of defects in AgGaS2 and CuGaS2,” J. Phys. Chem. Solids 57(11), 1695–1704 (1996).
[Crossref]

Yu, Y.

H.-J. Hou, S.-F. Zhu, B.-J. Zhao, Y. Yu, and L.-H. Xie, “First-principles calculations of the elastic, electronic and optical properties of AgGaS2,” Phys. Scr. 82(5), 055601 (2010).
[Crossref]

Zhang, H.-Z.

Zhang, Y.

Z. Fang, J. Lin, R. Liu, P. Liu, Y. Li, X. Huang, K. Ding, L. Ning, and Y. Zhang, “Computational design of inorganic nonlinearoptical crystals based on a genetic algorithm,” CrystEngComm 16(46), 10569–10580 (2014).
[Crossref]

Zhang, Y.-F.

Y.-F. Zhang, W. Lin, Y. Li, K.-N. Ding, and J. Q. Li, “A Theoretical Study on the Electronic Structures of TiO2: Effect of Hartree-Fock Exchange,” J. Phys. Chem. B 109(41), 19270–19277 (2005).
[Crossref] [PubMed]

Zhao, B.-J.

H.-J. Hou, S.-F. Zhu, B.-J. Zhao, Y. Yu, and L.-H. Xie, “First-principles calculations of the elastic, electronic and optical properties of AgGaS2,” Phys. Scr. 82(5), 055601 (2010).
[Crossref]

Zhu, S.-F.

H.-J. Hou, S.-F. Zhu, B.-J. Zhao, Y. Yu, and L.-H. Xie, “First-principles calculations of the elastic, electronic and optical properties of AgGaS2,” Phys. Scr. 82(5), 055601 (2010).
[Crossref]

Zondy, J.-J.

Appl. Opt. (3)

Appl. Phys. Lett. (3)

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5(11), 234–236 (1964).
[Crossref]

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18(7), 301–304 (1971).
[Crossref]

V. Kumar, S. K. Tripathy, and V. Jha, “Second order nonlinear optical properties of AIBIIIC2VI chalcopyrite semiconductors,” Appl. Phys. Lett. 101(19), 192105 (2012).
[Crossref]

Chem. Mater. (1)

I. Chung and M. G. Kanatzidis, “Metal chalcogenides: a rich source of nonlinear optical materials,” Chem. Mater. 26(1), 849–869 (2014).
[Crossref]

Comput. Mater. Sci. (2)

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

S. Laksari, A. Chahed, N. Abbouni, O. Benhelal, and B. Abbar, “First-principles calculations of the structural, electronic and optical properties of CuGaS2 and AgGaS2,” Comput. Mater. Sci. 38(1), 223–230 (2006).
[Crossref]

CrystEngComm (1)

Z. Fang, J. Lin, R. Liu, P. Liu, Y. Li, X. Huang, K. Ding, L. Ning, and Y. Zhang, “Computational design of inorganic nonlinearoptical crystals based on a genetic algorithm,” CrystEngComm 16(46), 10569–10580 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

G. D. Boyd, H. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. 7(12), 563–573 (1971).
[Crossref]

J. Chem. Phys. (2)

L. Bai, Z. Lin, Z. Wang, C. Chen, and M.-H. Lee, “Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X=S, Se, and Te) crystals,” J. Chem. Phys. 120(18), 8772–8778 (2004).
[Crossref] [PubMed]

J. Heyd, G. E. Scuseria, and E. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8215 (2003).
[Crossref]

J. Cryst. Growth (1)

C. T. Chen, L. Bai, Z. Z. Wang, and R. K. Li, “Development of new NLO crystals for UV and IR applications,” J. Cryst. Growth 292(2), 169–178 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

Y.-F. Zhang, W. Lin, Y. Li, K.-N. Ding, and J. Q. Li, “A Theoretical Study on the Electronic Structures of TiO2: Effect of Hartree-Fock Exchange,” J. Phys. Chem. B 109(41), 19270–19277 (2005).
[Crossref] [PubMed]

J. Phys. Chem. Solids (2)

I.-H. Choi and P. Y. Yu, “Optical investigation of defects in AgGaS2 and CuGaS2,” J. Phys. Chem. Solids 57(11), 1695–1704 (1996).
[Crossref]

T. Tinoco, A. Polian, J. P. Itie, E. Moya, and J. Gonzalez, “Equation of state and phase transitions in AgGaS2 and AgGaSe2,” J. Phys. Chem. Solids 56(3-4), 481–484 (1995).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Kato and H. Shirahata, “Nonlinear IR Generation in AgGaS2,” Jpn. J. Appl. Phys. 35(Part 1, No. 9A), 4645–4648 (1996).
[Crossref]

Mater. Res. Bull. (1)

S. Sharma, A. S. Verma, and V. K. Jindal, “Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX2: X = S, Se, Te),” Mater. Res. Bull. 53, 218–233 (2014).
[Crossref]

Opt. Commun. (1)

D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3(1), 29–31 (1971).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (6)

H. Kitahara, N. Ishizawa, F. Marumo, and Y. Noda, “Monoclinic high-pressure phase of AgGaS2,” Phys. Rev. B 55(5), 2690–2692 (1997).
[Crossref]

H. K. Eba, N. Ishizawa, F. Marumo, and Y. Noda, “Synchrotron x-ray study of the monoclinic high-pressure structure of AgGaS2,” Phys. Rev. B 61(5), 3310–3316 (2000).
[Crossref]

C. Carlone, D. Olego, A. Jayaraman, and M. Cardona, “Pressure dependence of the Raman modes and pressure-induced phase changes in CuGaS2 and AgGaS2,” Phys. Rev. B 22(8), 3877–3885 (1980).
[Crossref]

A. Werner, H. D. Hochheimer, and A. Jayaraman, “Pressure-induced phase transformations in the chalcopyrite-structure compounds: CuGaS2 and AgGaS2,” Phys. Rev. B 23(8), 3836–3839 (1981).
[Crossref]

I. De. P. R. Moreira, F. Illas, and R. L. Martin, “Effect of Fock exchange on the electronic structure and magnetic coupling in NiO,” Phys. Rev. B 65(15), 155102 (2002).

S. N. Rashkeev, W. R. Lambrecht, and B. Segall, “Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors,” Phys. Rev. B 57(7), 3905–3919 (1998).
[Crossref]

Phys. Rev. B Condens. Matter (4)

J. L. P. Hughes and J. E. Sipe, “Calculation of second-order optical response in semiconductors,” Phys. Rev. B Condens. Matter 53(16), 10751–10763 (1996).
[Crossref] [PubMed]

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B Condens. Matter 47(1), 558–561 (1993).
[Crossref] [PubMed]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

T. Sakuntala and A. K. Arora, “Pressure-tuned resonance Raman scattering in AgGaSe2.,” Phys. Rev. B Condens. Matter 53(23), 15667–15674 (1996).
[Crossref] [PubMed]

Phys. Scr. (1)

H.-J. Hou, S.-F. Zhu, B.-J. Zhao, Y. Yu, and L.-H. Xie, “First-principles calculations of the elastic, electronic and optical properties of AgGaS2,” Phys. Scr. 82(5), 055601 (2010).
[Crossref]

Phys. Status Solidi (1)

Ch. Power, S. Gilliland, A. Segura, and J. Gonzalez, “Variation of the optical absorption edge in AgGaS2 single crystals at high pressure,” Phys. Status Solidi 235(2), 326–330 (2003).
[Crossref]

Phys. Status Solidi., C Curr. Top. Solid State Phys. (1)

M. G. Brik, “Electronic, optical and elastic properties of CuXS2 (X=Al, Ga, In) and AgGaS2 semiconductors from first-principles calculations,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 8(9), 2582–2584 (2011).
[Crossref]

Physica B (1)

A. Chahed, O. Benhelal, S. Laksari, B. Abbar, B. Bouhafs, and N. Amrane, “First-principles calculations of the structural, electronic and optical properties of AgGaS2 and AgGaSe2,” Physica B 367(1–4), 142–151 (2005).
[Crossref]

Sov. J. Quantum Electron. (1)

V. V. Badikov, O. N. Pivovarov, Y. V. Skokov, O. V. Skrebneva, and N. K. Trotsenko, “Some optical properties of silver thiogallate single crystals,” Sov. J. Quantum Electron. 5(3), 350–351 (1975).
[Crossref]

Other (3)

J. L. Shay and J. H. Wernik, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications (Pergamon, 1974).

R. Liu, Y. Zhang, and M. Wang, “Research on parallel computing algorithm of the second harmonic generation coefficients of nonlinear optical crystals based on MPI,” presented at the 11th International Symposium on Distributed Computing and Applications to Business, Engineering and Science, GuiLin, China, 77–80 Oct. 2012.
[Crossref]

M. J. Weber, Handbook of Optical Materials (CRC, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Variation of the calculated band gap (Eg) as a function of the percentage contribution of HF exchange, and (b) the pressure dependence of Eg of AgGaS2 crystallized in different phases.
Fig. 2
Fig. 2 The most stable structures of AgGaS2 crystal at different pressures predicted by the GA approaches. The Ag, Ga and S atoms are denoted by blue, brown, and yellow spheres, respectively.
Fig. 3
Fig. 3 Variation of (a) the relative enthalpy per formula with respect to the chalcopyrite structure, and (b) the volume per formula of AgGaS2 crystal of four phases at different pressures.
Fig. 4
Fig. 4 Band structures of AgGaS2 crystallized in (a) the chalcopyrite structure phase at P = 0 and 4 GPa, and (b) the Cc phase at P = 5 and 7 GPa. The Fermi energy is set to zero.
Fig. 5
Fig. 5 (a) Calculated complex dielectric function εxx(ω) and (b) birefringence Δn(ω) for the chalcopyrite structure, as well as (c) εxx(ω) and (d) Δn(ω) for the Cc phase at different pressures.
Fig. 6
Fig. 6 Variations of the static dielectric functions (εxx(0), εzz(0)) and the magnitude of the static birefringence (|Δn(0)|) of AgGaS2 crystallized in the chalcopyrite structure and Cc space group at different pressures.
Fig. 7
Fig. 7 (a) Variations of the magnitudes of the static SHG coefficients, and (b) the calculated frequency-dependent SHG coefficients of AgGaS2 crystallized in the chalcopyrite structure and Cc space group at different pressures with an interval of 1 GPa. In figure (b), the results of P = 0, 1, 2, 3, and 4 GPa are corresponding to d36 coefficient of the chalcopyrite phase, while d31 for the Cc phase at P = 5, 6, and 7 GPa.

Tables (3)

Tables Icon

Table 1 Lattice parameters, fractional atomic positions, volume per formula, Ga-S and Ag-S bond lengths of AgGaS2 crystallized in different structures at P = 7.5 GPa

Tables Icon

Table 2 The calculated static dielectric constants, refractive indices, birefringence, and the magnitudes of the SHG coefficient of AgGaS2 crystallized in the chalcopyrite structure

Tables Icon

Table 3 Calculated static dielectric constants, refractive indices, birefringence, and the magnitudes of the SHG coefficient of AgGaS2 crystallized in the Cc space group

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E xc HSE =α E X SR (μ)+(1α) E x PBE,SR (μ)+ E X PBE,LR (μ)+ E C PBE
ε 2 ab (ω)= 4 π 2 V nm,k f nm r r nm a mn b ω nm ω
r nm a = i p nm a ω nm
χ abc (2ω,ω,ω)= χ e abc (2ω,ω,ω)+ χ i abc (2ω,ω,ω)
χ e abc = 1 V nml,k r nm a { r ml b r ln c } ω nm ω ml ω ln [ ω n f ml + ω m f ln + ω l f nm ]
χ i abc = i 4V nm,k f nm ω mn 2 [ r nm a ( r mn;c b + r mn;b c )+ r nm b ( r mn;c a + r mn;a c )+ r nm c ( r mn;b a + r mn;a b )]
r mn;a b = r nm a Δ mn b + r nm b Δ mn a ω nm + i ω nm l ( ω lm r nl a r lm b ω nl r nl b r lm a )
χ e abc (2ω,ω,ω)= 1 V nml,k r nm a { r ml b r ln c } ω ln ω ml [ 2 f nm ω nm 2ω + f ln ω ln ω + f ml ω ml ω ]
χ i abc (2ω,ω,ω)= i 2V nm,k f nm [ 2 ω mn ( ω mn 2ω) r nm a ( r nm;c b + r mn;b c )+ 1 ω mn ( ω mn ω) ( r nm;c a r mn b + r nm;b a r mn c ) + 1 ω mn 2 ( 1 ω mn ω 4 ω mn 2ω ) r nm a ( r mn b Δ mn c + r mn c Δ mn b ) 1 2 ω mn ( ω mn ω) ( r nm;a b r mn c + r nm;a c r mn b )]
E g (P)= E g (0)+aP

Metrics