Abstract

Upconversion nanoparticles (UCNPs) is a class of promising probes widely used in protein molecules imaging due to the no photobleaching and non-blinking emission. However, it is still remained challenging to synthesize a type of ultra-small but bright UCNPs. In this paper, a new class of efficient sub-5-nm upconversion nanodots (UCNDs) was elaborately designed and experimentally demonstrated. The proposed uniform UCNDs comprise two parts: a 3.5-nm Ln3+-doped ZrO2 core and 0.5-nm NaYF4 shell. The emission intensity of the proposed UCNDs was measured to be more than 10 times brighter than that of the conventional 10-nm NaYF4 UCNPs. Under 300 kW·cm−2 irradiance excitation, the 15 mol% Er3+-doped UCNDs exhibit an 18-fold enhanced intensity and one fifth emission lifetime compared to the 0.5 mol% Er3+-doped ones. Using the biocompatible UCNDs, the aptamer-mediated proteins-targeted imaging was performed and demonstrated high efficiency. These ultra-small, efficient UCNDs would have great potentials in rapid scanning and cellular imaging.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Designed Er3+-singly doped NaYF4 with double excitation bands for simultaneous deep macroscopic and microscopic upconverting bioimaging

Xuanyuan Wen, Baoju Wang, Ruitao Wu, Nana Li, Sailing He, and Qiuqiang Zhan
Biomed. Opt. Express 7(6) 2174-2185 (2016)

Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW

Jing Liu, Ruitao Wu, Nana Li, Xin Zhang, Qiuqiang Zhan, and Sailing He
Biomed. Opt. Express 6(5) 1857-1866 (2015)

Multifunctional nanoheater based on NaGdF4:Yb3+, Er3+ upconversion nanoparticles

Qiyue Shao, Lilai Ouyang, Lifei Jin, and Jianqing Jiang
Opt. Express 23(23) 30057-30066 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
    [Crossref] [PubMed]
  2. F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
    [Crossref] [PubMed]
  3. A. M. Derfus, W. C. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett. 4(1), 11–18 (2004).
    [Crossref]
  4. J. M. Klostranec and W. C. Chan, “Quantum dots in biological and biomedical research: recent progress and present challenges,” Adv. Mater. 18(15), 1953–1964 (2006).
    [Crossref]
  5. G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
    [Crossref] [PubMed]
  6. S. A. Hilderbrand and R. Weissleder, “Near-infrared fluorescence: application to in vivo molecular imaging,” Curr. Opin. Chem. Biol. 14(1), 71–79 (2010).
    [Crossref] [PubMed]
  7. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
    [Crossref] [PubMed]
  8. G. M. Whitesides, “The ‘right’ size in nanobiotechnology,” Nat. Biotechnol. 21(10), 1161–1165 (2003).
    [Crossref] [PubMed]
  9. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
    [Crossref] [PubMed]
  10. D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
    [Crossref] [PubMed]
  11. Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
    [Crossref] [PubMed]
  12. D. Yang, Y. Dai, J. Liu, Y. Zhou, Y. Chen, C. Li, P. Ma, and J. Lin, “Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes,” Biomaterials 35(6), 2011–2023 (2014).
    [Crossref] [PubMed]
  13. Y. Liu, S. Zhou, D. Tu, Z. Chen, M. Huang, H. Zhu, E. Ma, and X. Chen, “Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging,” J. Am. Chem. Soc. 134(36), 15083–15090 (2012).
    [Crossref] [PubMed]
  14. K. Sato, H. Abe, and S. Ohara, “Selective growth of monoclinic and tetragonal zirconia nanocrystals,” J. Am. Chem. Soc. 132(8), 2538–2539 (2010).
    [Crossref] [PubMed]
  15. T. Ninjbadgar, G. Garnweitner, A. Börger, L. M. Goldenberg, O. V. Sakhno, and J. Stumpe, “Synthesis of Luminescent ZrO2: Eu3+ Nanoparticles and Their Holographic Sub‐Micrometer Patterning in Polymer Composites,” Adv. Funct. Mater. 19(11), 1819–1825 (2009).
    [Crossref]
  16. X. Bai, A. Pucci, V. T. Freitas, R. A. Ferreira, and N. Pinna, “One‐Step Synthesis and Optical Properties of Benzoate‐and Biphenolate‐Capped ZrO2 Nanoparticles,” Adv. Funct. Mater. 22(20), 4275–4283 (2012).
    [Crossref]
  17. C. F. Gainer, U. Utzinger, and M. Romanowski, “Scanning two-photon microscopy with upconverting lanthanide nanoparticles via Richardson-Lucy deconvolution,” J. Biomed. Opt. 17(7), 0760031 (2012).
    [Crossref] [PubMed]
  18. J. Pichaandi, J.-C. Boyer, K. R. Delaney, and F. C. Van Veggel, “Two-photon upconversion laser (scanning and wide-field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: a critical evaluation of their performance and potential in bioimaging,” J. Phys. Chem. C 115(39), 19054–19064 (2011).
    [Crossref]
  19. Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
    [Crossref]
  20. L. Q. Chen, S. J. Xiao, P. P. Hu, L. Peng, J. Ma, L. F. Luo, Y. F. Li, and C. Z. Huang, “Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics,” Anal. Chem. 84(7), 3099–3110 (2012).
    [Crossref] [PubMed]
  21. A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
    [Crossref]
  22. Q. Lü, F. Guo, L. Sun, A. Li, and L. Zhao, “Surface modification of ZrO2: Er3+ nanoparticles to attenuate aggregation and enhance upconversion fluorescence,” J. Phys. Chem. C 112(8), 2836–2844 (2008).
    [Crossref]
  23. G. Chen, Y. Zhang, G. Somesfalean, Z. Zhang, Q. Sun, and F. Wang, “Two-color upconversion in rare-earth-ion-doped ZrO 2 nanocrystals,” Appl. Phys. Lett. 89(16), 163105 (2006).
    [Crossref]
  24. J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, and S. He, “Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF 4: Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW,” Biomed. Opt. Express 6(5), 1857–1866 (2015).
    [Crossref]
  25. A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa, and C. B. Murray, “A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals,” J. Am. Chem. Soc. 133(4), 998–1006 (2011).
    [Crossref] [PubMed]
  26. L. Q. Chen, S. J. Xiao, L. Peng, T. Wu, J. Ling, Y. F. Li, and C. Z. Huang, “Aptamer-based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis,” J. Phys. Chem. B 114(10), 3655–3659 (2010).
    [Crossref] [PubMed]
  27. Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
    [Crossref] [PubMed]
  28. Q. Zhan, S. He, J. Qian, H. Cheng, and F. Cai, “Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield,” Theranostics 3(5), 306–316 (2013).
    [Crossref] [PubMed]
  29. F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active‐core/active‐shell approach: A strategy to enhance the upconversion luminescence in lanthanide‐doped nanoparticles,” Adv. Funct. Mater. 19(18), 2924–2929 (2009).
    [Crossref]
  30. K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
    [Crossref]
  31. Y. Liu, M. Chen, T. Cao, Y. Sun, C. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
    [Crossref] [PubMed]
  32. Z. Li, Y. Zhang, and S. Jiang, “Multicolor core/shell‐structured upconversion fluorescent nanoparticles,” Adv. Mater. 20(24), 4765–4769 (2008).
    [Crossref]
  33. A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
    [Crossref] [PubMed]
  34. N. Pinna and M. Niederberger, “Surfactant-free nonaqueous synthesis of metal oxide nanostructures,” Angew. Chem. Int. Ed. Engl. 47(29), 5292–5304 (2008).
    [Crossref] [PubMed]
  35. G. Garnweitner, L. M. Goldenberg, O. V. Sakhno, M. Antonietti, M. Niederberger, and J. Stumpe, “Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography,” Small 3(9), 1626–1632 (2007).
    [Crossref] [PubMed]
  36. J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
    [Crossref] [PubMed]
  37. X. Luo, R. Yuminami, T. Sakurai, and K. Akimoto, “Effect of Er3+ Concentration on Upconversion in Hexagonal-Phase NaYF4: Er3+ Nanocrystals,” in Journal of Physics: Conference Series, (IOP Publishing, 2013), 012054.
  38. A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+:ZrO2 Nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
    [Crossref]
  39. M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
    [Crossref] [PubMed]
  40. J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF₄:Yb³⁺, Er³⁺ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

D. Yang, Y. Dai, J. Liu, Y. Zhou, Y. Chen, C. Li, P. Ma, and J. Lin, “Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes,” Biomaterials 35(6), 2011–2023 (2014).
[Crossref] [PubMed]

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

2013 (4)

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Q. Zhan, S. He, J. Qian, H. Cheng, and F. Cai, “Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield,” Theranostics 3(5), 306–316 (2013).
[Crossref] [PubMed]

Y. Liu, M. Chen, T. Cao, Y. Sun, C. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

2012 (6)

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

L. Q. Chen, S. J. Xiao, P. P. Hu, L. Peng, J. Ma, L. F. Luo, Y. F. Li, and C. Z. Huang, “Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics,” Anal. Chem. 84(7), 3099–3110 (2012).
[Crossref] [PubMed]

X. Bai, A. Pucci, V. T. Freitas, R. A. Ferreira, and N. Pinna, “One‐Step Synthesis and Optical Properties of Benzoate‐and Biphenolate‐Capped ZrO2 Nanoparticles,” Adv. Funct. Mater. 22(20), 4275–4283 (2012).
[Crossref]

C. F. Gainer, U. Utzinger, and M. Romanowski, “Scanning two-photon microscopy with upconverting lanthanide nanoparticles via Richardson-Lucy deconvolution,” J. Biomed. Opt. 17(7), 0760031 (2012).
[Crossref] [PubMed]

Y. Liu, S. Zhou, D. Tu, Z. Chen, M. Huang, H. Zhu, E. Ma, and X. Chen, “Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging,” J. Am. Chem. Soc. 134(36), 15083–15090 (2012).
[Crossref] [PubMed]

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

2011 (5)

J. Pichaandi, J.-C. Boyer, K. R. Delaney, and F. C. Van Veggel, “Two-photon upconversion laser (scanning and wide-field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: a critical evaluation of their performance and potential in bioimaging,” J. Phys. Chem. C 115(39), 19054–19064 (2011).
[Crossref]

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa, and C. B. Murray, “A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals,” J. Am. Chem. Soc. 133(4), 998–1006 (2011).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF₄:Yb³⁺, Er³⁺ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

2010 (4)

L. Q. Chen, S. J. Xiao, L. Peng, T. Wu, J. Ling, Y. F. Li, and C. Z. Huang, “Aptamer-based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis,” J. Phys. Chem. B 114(10), 3655–3659 (2010).
[Crossref] [PubMed]

K. Sato, H. Abe, and S. Ohara, “Selective growth of monoclinic and tetragonal zirconia nanocrystals,” J. Am. Chem. Soc. 132(8), 2538–2539 (2010).
[Crossref] [PubMed]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

S. A. Hilderbrand and R. Weissleder, “Near-infrared fluorescence: application to in vivo molecular imaging,” Curr. Opin. Chem. Biol. 14(1), 71–79 (2010).
[Crossref] [PubMed]

2009 (3)

T. Ninjbadgar, G. Garnweitner, A. Börger, L. M. Goldenberg, O. V. Sakhno, and J. Stumpe, “Synthesis of Luminescent ZrO2: Eu3+ Nanoparticles and Their Holographic Sub‐Micrometer Patterning in Polymer Composites,” Adv. Funct. Mater. 19(11), 1819–1825 (2009).
[Crossref]

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active‐core/active‐shell approach: A strategy to enhance the upconversion luminescence in lanthanide‐doped nanoparticles,” Adv. Funct. Mater. 19(18), 2924–2929 (2009).
[Crossref]

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[Crossref] [PubMed]

2008 (4)

N. Pinna and M. Niederberger, “Surfactant-free nonaqueous synthesis of metal oxide nanostructures,” Angew. Chem. Int. Ed. Engl. 47(29), 5292–5304 (2008).
[Crossref] [PubMed]

Z. Li, Y. Zhang, and S. Jiang, “Multicolor core/shell‐structured upconversion fluorescent nanoparticles,” Adv. Mater. 20(24), 4765–4769 (2008).
[Crossref]

Q. Lü, F. Guo, L. Sun, A. Li, and L. Zhao, “Surface modification of ZrO2: Er3+ nanoparticles to attenuate aggregation and enhance upconversion fluorescence,” J. Phys. Chem. C 112(8), 2836–2844 (2008).
[Crossref]

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

2007 (1)

G. Garnweitner, L. M. Goldenberg, O. V. Sakhno, M. Antonietti, M. Niederberger, and J. Stumpe, “Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography,” Small 3(9), 1626–1632 (2007).
[Crossref] [PubMed]

2006 (2)

G. Chen, Y. Zhang, G. Somesfalean, Z. Zhang, Q. Sun, and F. Wang, “Two-color upconversion in rare-earth-ion-doped ZrO 2 nanocrystals,” Appl. Phys. Lett. 89(16), 163105 (2006).
[Crossref]

J. M. Klostranec and W. C. Chan, “Quantum dots in biological and biomedical research: recent progress and present challenges,” Adv. Mater. 18(15), 1953–1964 (2006).
[Crossref]

2005 (1)

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

2004 (2)

A. M. Derfus, W. C. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett. 4(1), 11–18 (2004).
[Crossref]

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[Crossref]

2003 (1)

G. M. Whitesides, “The ‘right’ size in nanobiotechnology,” Nat. Biotechnol. 21(10), 1161–1165 (2003).
[Crossref] [PubMed]

2002 (2)

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
[Crossref]

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+:ZrO2 Nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
[Crossref]

Abe, H.

K. Sato, H. Abe, and S. Ohara, “Selective growth of monoclinic and tetragonal zirconia nanocrystals,” J. Am. Chem. Soc. 132(8), 2538–2539 (2010).
[Crossref] [PubMed]

Aloni, S.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

Altoe, M. V. P.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

Andersson-Engels, S.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Antonietti, M.

G. Garnweitner, L. M. Goldenberg, O. V. Sakhno, M. Antonietti, M. Niederberger, and J. Stumpe, “Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography,” Small 3(9), 1626–1632 (2007).
[Crossref] [PubMed]

Bai, X.

X. Bai, A. Pucci, V. T. Freitas, R. A. Ferreira, and N. Pinna, “One‐Step Synthesis and Optical Properties of Benzoate‐and Biphenolate‐Capped ZrO2 Nanoparticles,” Adv. Funct. Mater. 22(20), 4275–4283 (2012).
[Crossref]

Banerjee, D.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Barnard, E. S.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

Bentolila, L. A.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Bergey, E. J.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Bhatia, S. N.

A. M. Derfus, W. C. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett. 4(1), 11–18 (2004).
[Crossref]

Biner, D.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[Crossref]

Börger, A.

T. Ninjbadgar, G. Garnweitner, A. Börger, L. M. Goldenberg, O. V. Sakhno, and J. Stumpe, “Synthesis of Luminescent ZrO2: Eu3+ Nanoparticles and Their Holographic Sub‐Micrometer Patterning in Polymer Composites,” Adv. Funct. Mater. 19(11), 1819–1825 (2009).
[Crossref]

Boyer, J.-C.

J. Pichaandi, J.-C. Boyer, K. R. Delaney, and F. C. Van Veggel, “Two-photon upconversion laser (scanning and wide-field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: a critical evaluation of their performance and potential in bioimaging,” J. Phys. Chem. C 115(39), 19054–19064 (2011).
[Crossref]

Cai, F.

Q. Zhan, S. He, J. Qian, H. Cheng, and F. Cai, “Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield,” Theranostics 3(5), 306–316 (2013).
[Crossref] [PubMed]

Cao, T.

Y. Liu, M. Chen, T. Cao, Y. Sun, C. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref] [PubMed]

Capobianco, J. A.

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active‐core/active‐shell approach: A strategy to enhance the upconversion luminescence in lanthanide‐doped nanoparticles,” Adv. Funct. Mater. 19(18), 2924–2929 (2009).
[Crossref]

Chan, E. M.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Chan, W. C.

J. M. Klostranec and W. C. Chan, “Quantum dots in biological and biomedical research: recent progress and present challenges,” Adv. Mater. 18(15), 1953–1964 (2006).
[Crossref]

A. M. Derfus, W. C. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett. 4(1), 11–18 (2004).
[Crossref]

Chen, G.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

G. Chen, Y. Zhang, G. Somesfalean, Z. Zhang, Q. Sun, and F. Wang, “Two-color upconversion in rare-earth-ion-doped ZrO 2 nanocrystals,” Appl. Phys. Lett. 89(16), 163105 (2006).
[Crossref]

Chen, J.

A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa, and C. B. Murray, “A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals,” J. Am. Chem. Soc. 133(4), 998–1006 (2011).
[Crossref] [PubMed]

Chen, L. Q.

L. Q. Chen, S. J. Xiao, P. P. Hu, L. Peng, J. Ma, L. F. Luo, Y. F. Li, and C. Z. Huang, “Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics,” Anal. Chem. 84(7), 3099–3110 (2012).
[Crossref] [PubMed]

L. Q. Chen, S. J. Xiao, L. Peng, T. Wu, J. Ling, Y. F. Li, and C. Z. Huang, “Aptamer-based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis,” J. Phys. Chem. B 114(10), 3655–3659 (2010).
[Crossref] [PubMed]

Chen, M.

Y. Liu, M. Chen, T. Cao, Y. Sun, C. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref] [PubMed]

Chen, X.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Y. Liu, S. Zhou, D. Tu, Z. Chen, M. Huang, H. Zhu, E. Ma, and X. Chen, “Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging,” J. Am. Chem. Soc. 134(36), 15083–15090 (2012).
[Crossref] [PubMed]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Chen, Y.

D. Yang, Y. Dai, J. Liu, Y. Zhou, Y. Chen, C. Li, P. Ma, and J. Lin, “Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes,” Biomaterials 35(6), 2011–2023 (2014).
[Crossref] [PubMed]

Chen, Z.

Y. Liu, S. Zhou, D. Tu, Z. Chen, M. Huang, H. Zhu, E. Ma, and X. Chen, “Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging,” J. Am. Chem. Soc. 134(36), 15083–15090 (2012).
[Crossref] [PubMed]

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[Crossref] [PubMed]

Cheng, H.

Q. Zhan, S. He, J. Qian, H. Cheng, and F. Cai, “Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield,” Theranostics 3(5), 306–316 (2013).
[Crossref] [PubMed]

Cheng, J.

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF₄:Yb³⁺, Er³⁺ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Cheng, S. H.

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF₄:Yb³⁺, Er³⁺ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Cohen, B. E.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Dai, Y.

D. Yang, Y. Dai, J. Liu, Y. Zhou, Y. Chen, C. Li, P. Ma, and J. Lin, “Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes,” Biomaterials 35(6), 2011–2023 (2014).
[Crossref] [PubMed]

Dawes, J. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Delaney, K. R.

J. Pichaandi, J.-C. Boyer, K. R. Delaney, and F. C. Van Veggel, “Two-photon upconversion laser (scanning and wide-field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: a critical evaluation of their performance and potential in bioimaging,” J. Phys. Chem. C 115(39), 19054–19064 (2011).
[Crossref]

Derfus, A. M.

A. M. Derfus, W. C. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett. 4(1), 11–18 (2004).
[Crossref]

Dong, A.

A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa, and C. B. Murray, “A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals,” J. Am. Chem. Soc. 133(4), 998–1006 (2011).
[Crossref] [PubMed]

Doose, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Feng, W.

Y. Liu, M. Chen, T. Cao, Y. Sun, C. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref] [PubMed]

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

Ferreira, R. A.

X. Bai, A. Pucci, V. T. Freitas, R. A. Ferreira, and N. Pinna, “One‐Step Synthesis and Optical Properties of Benzoate‐and Biphenolate‐Capped ZrO2 Nanoparticles,” Adv. Funct. Mater. 22(20), 4275–4283 (2012).
[Crossref]

Frei, G.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[Crossref]

Freitas, V. T.

X. Bai, A. Pucci, V. T. Freitas, R. A. Ferreira, and N. Pinna, “One‐Step Synthesis and Optical Properties of Benzoate‐and Biphenolate‐Capped ZrO2 Nanoparticles,” Adv. Funct. Mater. 22(20), 4275–4283 (2012).
[Crossref]

Friend, C. S.

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
[Crossref]

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+:ZrO2 Nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
[Crossref]

Gainer, C. F.

C. F. Gainer, U. Utzinger, and M. Romanowski, “Scanning two-photon microscopy with upconverting lanthanide nanoparticles via Richardson-Lucy deconvolution,” J. Biomed. Opt. 17(7), 0760031 (2012).
[Crossref] [PubMed]

Gambhir, S. S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Gargas, D. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Garnweitner, G.

T. Ninjbadgar, G. Garnweitner, A. Börger, L. M. Goldenberg, O. V. Sakhno, and J. Stumpe, “Synthesis of Luminescent ZrO2: Eu3+ Nanoparticles and Their Holographic Sub‐Micrometer Patterning in Polymer Composites,” Adv. Funct. Mater. 19(11), 1819–1825 (2009).
[Crossref]

G. Garnweitner, L. M. Goldenberg, O. V. Sakhno, M. Antonietti, M. Niederberger, and J. Stumpe, “Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography,” Small 3(9), 1626–1632 (2007).
[Crossref] [PubMed]

Goldenberg, L. M.

T. Ninjbadgar, G. Garnweitner, A. Börger, L. M. Goldenberg, O. V. Sakhno, and J. Stumpe, “Synthesis of Luminescent ZrO2: Eu3+ Nanoparticles and Their Holographic Sub‐Micrometer Patterning in Polymer Composites,” Adv. Funct. Mater. 19(11), 1819–1825 (2009).
[Crossref]

G. Garnweitner, L. M. Goldenberg, O. V. Sakhno, M. Antonietti, M. Niederberger, and J. Stumpe, “Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography,” Small 3(9), 1626–1632 (2007).
[Crossref] [PubMed]

Goldys, E. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Gordon, T.

A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa, and C. B. Murray, “A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals,” J. Am. Chem. Soc. 133(4), 998–1006 (2011).
[Crossref] [PubMed]

Gu, Y.-J.

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF₄:Yb³⁺, Er³⁺ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Güdel, H. U.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[Crossref]

Guo, F.

Q. Lü, F. Guo, L. Sun, A. Li, and L. Zhao, “Surface modification of ZrO2: Er3+ nanoparticles to attenuate aggregation and enhance upconversion fluorescence,” J. Phys. Chem. C 112(8), 2836–2844 (2008).
[Crossref]

Han, G.

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

He, S.

J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, and S. He, “Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF 4: Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW,” Biomed. Opt. Express 6(5), 1857–1866 (2015).
[Crossref]

Q. Zhan, S. He, J. Qian, H. Cheng, and F. Cai, “Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield,” Theranostics 3(5), 306–316 (2013).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Hehlen, M. P.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[Crossref]

Hilderbrand, S. A.

S. A. Hilderbrand and R. Weissleder, “Near-infrared fluorescence: application to in vivo molecular imaging,” Curr. Opin. Chem. Biol. 14(1), 71–79 (2010).
[Crossref] [PubMed]

Hu, H.

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[Crossref] [PubMed]

Hu, P. P.

L. Q. Chen, S. J. Xiao, P. P. Hu, L. Peng, J. Ma, L. F. Luo, Y. F. Li, and C. Z. Huang, “Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics,” Anal. Chem. 84(7), 3099–3110 (2012).
[Crossref] [PubMed]

Huang, C.

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[Crossref] [PubMed]

Huang, C. Z.

L. Q. Chen, S. J. Xiao, P. P. Hu, L. Peng, J. Ma, L. F. Luo, Y. F. Li, and C. Z. Huang, “Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics,” Anal. Chem. 84(7), 3099–3110 (2012).
[Crossref] [PubMed]

L. Q. Chen, S. J. Xiao, L. Peng, T. Wu, J. Ling, Y. F. Li, and C. Z. Huang, “Aptamer-based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis,” J. Phys. Chem. B 114(10), 3655–3659 (2010).
[Crossref] [PubMed]

Huang, M.

Y. Liu, S. Zhou, D. Tu, Z. Chen, M. Huang, H. Zhu, E. Ma, and X. Chen, “Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging,” J. Am. Chem. Soc. 134(36), 15083–15090 (2012).
[Crossref] [PubMed]

Huo, Y.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Jiang, S.

Z. Li, Y. Zhang, and S. Jiang, “Multicolor core/shell‐structured upconversion fluorescent nanoparticles,” Adv. Mater. 20(24), 4765–4769 (2008).
[Crossref]

Jin, D.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Jin, J.

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF₄:Yb³⁺, Er³⁺ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Kang, Y.

A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa, and C. B. Murray, “A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals,” J. Am. Chem. Soc. 133(4), 998–1006 (2011).
[Crossref] [PubMed]

Kapoor, R.

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
[Crossref]

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+:ZrO2 Nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
[Crossref]

Katz, E. M.

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Kikkawa, J. M.

A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa, and C. B. Murray, “A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals,” J. Am. Chem. Soc. 133(4), 998–1006 (2011).
[Crossref] [PubMed]

Klostranec, J. M.

J. M. Klostranec and W. C. Chan, “Quantum dots in biological and biomedical research: recent progress and present challenges,” Adv. Mater. 18(15), 1953–1964 (2006).
[Crossref]

Krämer, K. W.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[Crossref]

Kumar, R.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Lee, V. H.-Y.

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF₄:Yb³⁺, Er³⁺ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Leif, R. C.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Li, A.

Q. Lü, F. Guo, L. Sun, A. Li, and L. Zhao, “Surface modification of ZrO2: Er3+ nanoparticles to attenuate aggregation and enhance upconversion fluorescence,” J. Phys. Chem. C 112(8), 2836–2844 (2008).
[Crossref]

Li, C.

D. Yang, Y. Dai, J. Liu, Y. Zhou, Y. Chen, C. Li, P. Ma, and J. Lin, “Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes,” Biomaterials 35(6), 2011–2023 (2014).
[Crossref] [PubMed]

Y. Liu, M. Chen, T. Cao, Y. Sun, C. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref] [PubMed]

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

Li, F.

Y. Liu, M. Chen, T. Cao, Y. Sun, C. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref] [PubMed]

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[Crossref] [PubMed]

Li, J. J.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Li, N.

Li, Y. F.

L. Q. Chen, S. J. Xiao, P. P. Hu, L. Peng, J. Ma, L. F. Luo, Y. F. Li, and C. Z. Huang, “Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics,” Anal. Chem. 84(7), 3099–3110 (2012).
[Crossref] [PubMed]

L. Q. Chen, S. J. Xiao, L. Peng, T. Wu, J. Ling, Y. F. Li, and C. Z. Huang, “Aptamer-based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis,” J. Phys. Chem. B 114(10), 3655–3659 (2010).
[Crossref] [PubMed]

Li, Z.

Z. Li, Y. Zhang, and S. Jiang, “Multicolor core/shell‐structured upconversion fluorescent nanoparticles,” Adv. Mater. 20(24), 4765–4769 (2008).
[Crossref]

Liang, H.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Lin, J.

D. Yang, Y. Dai, J. Liu, Y. Zhou, Y. Chen, C. Li, P. Ma, and J. Lin, “Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes,” Biomaterials 35(6), 2011–2023 (2014).
[Crossref] [PubMed]

Ling, J.

L. Q. Chen, S. J. Xiao, L. Peng, T. Wu, J. Ling, Y. F. Li, and C. Z. Huang, “Aptamer-based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis,” J. Phys. Chem. B 114(10), 3655–3659 (2010).
[Crossref] [PubMed]

Liu, D.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Liu, J.

J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, and S. He, “Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF 4: Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW,” Biomed. Opt. Express 6(5), 1857–1866 (2015).
[Crossref]

D. Yang, Y. Dai, J. Liu, Y. Zhou, Y. Chen, C. Li, P. Ma, and J. Lin, “Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes,” Biomaterials 35(6), 2011–2023 (2014).
[Crossref] [PubMed]

Liu, Q.

Y. Liu, M. Chen, T. Cao, Y. Sun, C. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref] [PubMed]

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

Liu, X.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Liu, Y.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Y. Liu, M. Chen, T. Cao, Y. Sun, C. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Y. Liu, S. Zhou, D. Tu, Z. Chen, M. Huang, H. Zhu, E. Ma, and X. Chen, “Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging,” J. Am. Chem. Soc. 134(36), 15083–15090 (2012).
[Crossref] [PubMed]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Liu, Z.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Lu, J.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Lu, Y.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Lü, Q.

Q. Lü, F. Guo, L. Sun, A. Li, and L. Zhao, “Surface modification of ZrO2: Er3+ nanoparticles to attenuate aggregation and enhance upconversion fluorescence,” J. Phys. Chem. C 112(8), 2836–2844 (2008).
[Crossref]

Luo, L. F.

L. Q. Chen, S. J. Xiao, P. P. Hu, L. Peng, J. Ma, L. F. Luo, Y. F. Li, and C. Z. Huang, “Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics,” Anal. Chem. 84(7), 3099–3110 (2012).
[Crossref] [PubMed]

Lüthi, S. R.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[Crossref]

Ma, E.

Y. Liu, S. Zhou, D. Tu, Z. Chen, M. Huang, H. Zhu, E. Ma, and X. Chen, “Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging,” J. Am. Chem. Soc. 134(36), 15083–15090 (2012).
[Crossref] [PubMed]

Ma, J.

L. Q. Chen, S. J. Xiao, P. P. Hu, L. Peng, J. Ma, L. F. Luo, Y. F. Li, and C. Z. Huang, “Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics,” Anal. Chem. 84(7), 3099–3110 (2012).
[Crossref] [PubMed]

Ma, P.

D. Yang, Y. Dai, J. Liu, Y. Zhou, Y. Chen, C. Li, P. Ma, and J. Lin, “Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes,” Biomaterials 35(6), 2011–2023 (2014).
[Crossref] [PubMed]

Mahalingam, V.

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active‐core/active‐shell approach: A strategy to enhance the upconversion luminescence in lanthanide‐doped nanoparticles,” Adv. Funct. Mater. 19(18), 2924–2929 (2009).
[Crossref]

Man, C. W.-Y.

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF₄:Yb³⁺, Er³⁺ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Michalet, X.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Milliron, D. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Monro, T. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Morgan, C. G.

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active‐core/active‐shell approach: A strategy to enhance the upconversion luminescence in lanthanide‐doped nanoparticles,” Adv. Funct. Mater. 19(18), 2924–2929 (2009).
[Crossref]

Murray, C. B.

A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa, and C. B. Murray, “A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals,” J. Am. Chem. Soc. 133(4), 998–1006 (2011).
[Crossref] [PubMed]

Naccache, R.

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active‐core/active‐shell approach: A strategy to enhance the upconversion luminescence in lanthanide‐doped nanoparticles,” Adv. Funct. Mater. 19(18), 2924–2929 (2009).
[Crossref]

Niederberger, M.

N. Pinna and M. Niederberger, “Surfactant-free nonaqueous synthesis of metal oxide nanostructures,” Angew. Chem. Int. Ed. Engl. 47(29), 5292–5304 (2008).
[Crossref] [PubMed]

G. Garnweitner, L. M. Goldenberg, O. V. Sakhno, M. Antonietti, M. Niederberger, and J. Stumpe, “Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography,” Small 3(9), 1626–1632 (2007).
[Crossref] [PubMed]

Ninjbadgar, T.

T. Ninjbadgar, G. Garnweitner, A. Börger, L. M. Goldenberg, O. V. Sakhno, and J. Stumpe, “Synthesis of Luminescent ZrO2: Eu3+ Nanoparticles and Their Holographic Sub‐Micrometer Patterning in Polymer Composites,” Adv. Funct. Mater. 19(11), 1819–1825 (2009).
[Crossref]

Nyk, M.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Ohara, S.

K. Sato, H. Abe, and S. Ohara, “Selective growth of monoclinic and tetragonal zirconia nanocrystals,” J. Am. Chem. Soc. 132(8), 2538–2539 (2010).
[Crossref] [PubMed]

Ohulchanskyy, T. Y.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Ostrowski, A. D.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Patra, A.

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+:ZrO2 Nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
[Crossref]

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
[Crossref]

Peng, L.

L. Q. Chen, S. J. Xiao, P. P. Hu, L. Peng, J. Ma, L. F. Luo, Y. F. Li, and C. Z. Huang, “Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics,” Anal. Chem. 84(7), 3099–3110 (2012).
[Crossref] [PubMed]

L. Q. Chen, S. J. Xiao, L. Peng, T. Wu, J. Ling, Y. F. Li, and C. Z. Huang, “Aptamer-based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis,” J. Phys. Chem. B 114(10), 3655–3659 (2010).
[Crossref] [PubMed]

Pichaandi, J.

J. Pichaandi, J.-C. Boyer, K. R. Delaney, and F. C. Van Veggel, “Two-photon upconversion laser (scanning and wide-field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: a critical evaluation of their performance and potential in bioimaging,” J. Phys. Chem. C 115(39), 19054–19064 (2011).
[Crossref]

Pinaud, F. F.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Pinna, N.

X. Bai, A. Pucci, V. T. Freitas, R. A. Ferreira, and N. Pinna, “One‐Step Synthesis and Optical Properties of Benzoate‐and Biphenolate‐Capped ZrO2 Nanoparticles,” Adv. Funct. Mater. 22(20), 4275–4283 (2012).
[Crossref]

N. Pinna and M. Niederberger, “Surfactant-free nonaqueous synthesis of metal oxide nanostructures,” Angew. Chem. Int. Ed. Engl. 47(29), 5292–5304 (2008).
[Crossref] [PubMed]

Piper, J. A.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Prasad, P. N.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
[Crossref]

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+:ZrO2 Nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
[Crossref]

Pucci, A.

X. Bai, A. Pucci, V. T. Freitas, R. A. Ferreira, and N. Pinna, “One‐Step Synthesis and Optical Properties of Benzoate‐and Biphenolate‐Capped ZrO2 Nanoparticles,” Adv. Funct. Mater. 22(20), 4275–4283 (2012).
[Crossref]

Qian, J.

Q. Zhan, S. He, J. Qian, H. Cheng, and F. Cai, “Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield,” Theranostics 3(5), 306–316 (2013).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Qiu, H.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Robinson, J. P.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Romanowski, M.

C. F. Gainer, U. Utzinger, and M. Romanowski, “Scanning two-photon microscopy with upconverting lanthanide nanoparticles via Richardson-Lucy deconvolution,” J. Biomed. Opt. 17(7), 0760031 (2012).
[Crossref] [PubMed]

Sakhno, O. V.

T. Ninjbadgar, G. Garnweitner, A. Börger, L. M. Goldenberg, O. V. Sakhno, and J. Stumpe, “Synthesis of Luminescent ZrO2: Eu3+ Nanoparticles and Their Holographic Sub‐Micrometer Patterning in Polymer Composites,” Adv. Funct. Mater. 19(11), 1819–1825 (2009).
[Crossref]

G. Garnweitner, L. M. Goldenberg, O. V. Sakhno, M. Antonietti, M. Niederberger, and J. Stumpe, “Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography,” Small 3(9), 1626–1632 (2007).
[Crossref] [PubMed]

Sanii, B.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

Sato, K.

K. Sato, H. Abe, and S. Ohara, “Selective growth of monoclinic and tetragonal zirconia nanocrystals,” J. Am. Chem. Soc. 132(8), 2538–2539 (2010).
[Crossref] [PubMed]

Schartner, E. P.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Schuck, P. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Shen, J.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Shi, Y.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Somesfalean, G.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

G. Chen, Y. Zhang, G. Somesfalean, Z. Zhang, Q. Sun, and F. Wang, “Two-color upconversion in rare-earth-ion-doped ZrO 2 nanocrystals,” Appl. Phys. Lett. 89(16), 163105 (2006).
[Crossref]

Stumpe, J.

T. Ninjbadgar, G. Garnweitner, A. Börger, L. M. Goldenberg, O. V. Sakhno, and J. Stumpe, “Synthesis of Luminescent ZrO2: Eu3+ Nanoparticles and Their Holographic Sub‐Micrometer Patterning in Polymer Composites,” Adv. Funct. Mater. 19(11), 1819–1825 (2009).
[Crossref]

G. Garnweitner, L. M. Goldenberg, O. V. Sakhno, M. Antonietti, M. Niederberger, and J. Stumpe, “Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography,” Small 3(9), 1626–1632 (2007).
[Crossref] [PubMed]

Sun, L.

Q. Lü, F. Guo, L. Sun, A. Li, and L. Zhao, “Surface modification of ZrO2: Er3+ nanoparticles to attenuate aggregation and enhance upconversion fluorescence,” J. Phys. Chem. C 112(8), 2836–2844 (2008).
[Crossref]

Sun, Q.

G. Chen, Y. Zhang, G. Somesfalean, Z. Zhang, Q. Sun, and F. Wang, “Two-color upconversion in rare-earth-ion-doped ZrO 2 nanocrystals,” Appl. Phys. Lett. 89(16), 163105 (2006).
[Crossref]

Sun, Y.

Y. Liu, M. Chen, T. Cao, Y. Sun, C. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref] [PubMed]

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

Sundaresan, G.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Sunna, A.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Tsay, J. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Tu, D.

Y. Liu, S. Zhou, D. Tu, Z. Chen, M. Huang, H. Zhu, E. Ma, and X. Chen, “Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging,” J. Am. Chem. Soc. 134(36), 15083–15090 (2012).
[Crossref] [PubMed]

Urban, J. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

Utzinger, U.

C. F. Gainer, U. Utzinger, and M. Romanowski, “Scanning two-photon microscopy with upconverting lanthanide nanoparticles via Richardson-Lucy deconvolution,” J. Biomed. Opt. 17(7), 0760031 (2012).
[Crossref] [PubMed]

Van Veggel, F. C.

J. Pichaandi, J.-C. Boyer, K. R. Delaney, and F. C. Van Veggel, “Two-photon upconversion laser (scanning and wide-field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: a critical evaluation of their performance and potential in bioimaging,” J. Phys. Chem. C 115(39), 19054–19064 (2011).
[Crossref]

Vetrone, F.

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active‐core/active‐shell approach: A strategy to enhance the upconversion luminescence in lanthanide‐doped nanoparticles,” Adv. Funct. Mater. 19(18), 2924–2929 (2009).
[Crossref]

Wang, D.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Wang, F.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

G. Chen, Y. Zhang, G. Somesfalean, Z. Zhang, Q. Sun, and F. Wang, “Two-color upconversion in rare-earth-ion-doped ZrO 2 nanocrystals,” Appl. Phys. Lett. 89(16), 163105 (2006).
[Crossref]

Wang, H.

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF₄:Yb³⁺, Er³⁺ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Weiss, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Weissleder, R.

S. A. Hilderbrand and R. Weissleder, “Near-infrared fluorescence: application to in vivo molecular imaging,” Curr. Opin. Chem. Biol. 14(1), 71–79 (2010).
[Crossref] [PubMed]

Whitesides, G. M.

G. M. Whitesides, “The ‘right’ size in nanobiotechnology,” Nat. Biotechnol. 21(10), 1161–1165 (2003).
[Crossref] [PubMed]

Wong, W.-T.

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF₄:Yb³⁺, Er³⁺ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Wu, A. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Wu, R.

Wu, T.

L. Q. Chen, S. J. Xiao, L. Peng, T. Wu, J. Ling, Y. F. Li, and C. Z. Huang, “Aptamer-based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis,” J. Phys. Chem. B 114(10), 3655–3659 (2010).
[Crossref] [PubMed]

Xi, P.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Xiao, S. J.

L. Q. Chen, S. J. Xiao, P. P. Hu, L. Peng, J. Ma, L. F. Luo, Y. F. Li, and C. Z. Huang, “Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics,” Anal. Chem. 84(7), 3099–3110 (2012).
[Crossref] [PubMed]

L. Q. Chen, S. J. Xiao, L. Peng, T. Wu, J. Ling, Y. F. Li, and C. Z. Huang, “Aptamer-based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis,” J. Phys. Chem. B 114(10), 3655–3659 (2010).
[Crossref] [PubMed]

Xu, Z.

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF₄:Yb³⁺, Er³⁺ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Yang, D.

D. Yang, Y. Dai, J. Liu, Y. Zhou, Y. Chen, C. Li, P. Ma, and J. Lin, “Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes,” Biomaterials 35(6), 2011–2023 (2014).
[Crossref] [PubMed]

Yang, H.

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[Crossref] [PubMed]

Yang, T.

Y. Liu, M. Chen, T. Cao, Y. Sun, C. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref] [PubMed]

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

Yang, X.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Yao, L.

Y. Liu, M. Chen, T. Cao, Y. Sun, C. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref] [PubMed]

Ye, X.

A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa, and C. B. Murray, “A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals,” J. Am. Chem. Soc. 133(4), 998–1006 (2011).
[Crossref] [PubMed]

Yu, M.

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[Crossref] [PubMed]

Zhan, C.

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[Crossref] [PubMed]

Zhan, Q.

J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, and S. He, “Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF 4: Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW,” Biomed. Opt. Express 6(5), 1857–1866 (2015).
[Crossref]

Q. Zhan, S. He, J. Qian, H. Cheng, and F. Cai, “Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield,” Theranostics 3(5), 306–316 (2013).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Zhang, L.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Zhang, R.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Zhang, X.

Zhang, Y.

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF₄:Yb³⁺, Er³⁺ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Z. Li, Y. Zhang, and S. Jiang, “Multicolor core/shell‐structured upconversion fluorescent nanoparticles,” Adv. Mater. 20(24), 4765–4769 (2008).
[Crossref]

G. Chen, Y. Zhang, G. Somesfalean, Z. Zhang, Q. Sun, and F. Wang, “Two-color upconversion in rare-earth-ion-doped ZrO 2 nanocrystals,” Appl. Phys. Lett. 89(16), 163105 (2006).
[Crossref]

Zhang, Z.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

G. Chen, Y. Zhang, G. Somesfalean, Z. Zhang, Q. Sun, and F. Wang, “Two-color upconversion in rare-earth-ion-doped ZrO 2 nanocrystals,” Appl. Phys. Lett. 89(16), 163105 (2006).
[Crossref]

Zhao, J.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Zhao, L.

Q. Lü, F. Guo, L. Sun, A. Li, and L. Zhao, “Surface modification of ZrO2: Er3+ nanoparticles to attenuate aggregation and enhance upconversion fluorescence,” J. Phys. Chem. C 112(8), 2836–2844 (2008).
[Crossref]

Zhou, J.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Zhou, S.

Y. Liu, S. Zhou, D. Tu, Z. Chen, M. Huang, H. Zhu, E. Ma, and X. Chen, “Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging,” J. Am. Chem. Soc. 134(36), 15083–15090 (2012).
[Crossref] [PubMed]

Zhou, Y.

D. Yang, Y. Dai, J. Liu, Y. Zhou, Y. Chen, C. Li, P. Ma, and J. Lin, “Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes,” Biomaterials 35(6), 2011–2023 (2014).
[Crossref] [PubMed]

Zhu, H.

Y. Liu, S. Zhou, D. Tu, Z. Chen, M. Huang, H. Zhu, E. Ma, and X. Chen, “Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging,” J. Am. Chem. Soc. 134(36), 15083–15090 (2012).
[Crossref] [PubMed]

Zvyagin, A. V.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

ACS Nano (3)

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF₄:Yb³⁺, Er³⁺ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (3)

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active‐core/active‐shell approach: A strategy to enhance the upconversion luminescence in lanthanide‐doped nanoparticles,” Adv. Funct. Mater. 19(18), 2924–2929 (2009).
[Crossref]

T. Ninjbadgar, G. Garnweitner, A. Börger, L. M. Goldenberg, O. V. Sakhno, and J. Stumpe, “Synthesis of Luminescent ZrO2: Eu3+ Nanoparticles and Their Holographic Sub‐Micrometer Patterning in Polymer Composites,” Adv. Funct. Mater. 19(11), 1819–1825 (2009).
[Crossref]

X. Bai, A. Pucci, V. T. Freitas, R. A. Ferreira, and N. Pinna, “One‐Step Synthesis and Optical Properties of Benzoate‐and Biphenolate‐Capped ZrO2 Nanoparticles,” Adv. Funct. Mater. 22(20), 4275–4283 (2012).
[Crossref]

Adv. Mater. (2)

J. M. Klostranec and W. C. Chan, “Quantum dots in biological and biomedical research: recent progress and present challenges,” Adv. Mater. 18(15), 1953–1964 (2006).
[Crossref]

Z. Li, Y. Zhang, and S. Jiang, “Multicolor core/shell‐structured upconversion fluorescent nanoparticles,” Adv. Mater. 20(24), 4765–4769 (2008).
[Crossref]

Anal. Chem. (2)

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[Crossref] [PubMed]

L. Q. Chen, S. J. Xiao, P. P. Hu, L. Peng, J. Ma, L. F. Luo, Y. F. Li, and C. Z. Huang, “Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics,” Anal. Chem. 84(7), 3099–3110 (2012).
[Crossref] [PubMed]

Analyst (Lond.) (1)

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

N. Pinna and M. Niederberger, “Surfactant-free nonaqueous synthesis of metal oxide nanostructures,” Angew. Chem. Int. Ed. Engl. 47(29), 5292–5304 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

G. Chen, Y. Zhang, G. Somesfalean, Z. Zhang, Q. Sun, and F. Wang, “Two-color upconversion in rare-earth-ion-doped ZrO 2 nanocrystals,” Appl. Phys. Lett. 89(16), 163105 (2006).
[Crossref]

Biomaterials (1)

D. Yang, Y. Dai, J. Liu, Y. Zhou, Y. Chen, C. Li, P. Ma, and J. Lin, “Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes,” Biomaterials 35(6), 2011–2023 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Chem. Mater. (1)

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[Crossref]

Chem. Rev. (1)

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Curr. Opin. Chem. Biol. (1)

S. A. Hilderbrand and R. Weissleder, “Near-infrared fluorescence: application to in vivo molecular imaging,” Curr. Opin. Chem. Biol. 14(1), 71–79 (2010).
[Crossref] [PubMed]

J. Am. Chem. Soc. (5)

Y. Liu, S. Zhou, D. Tu, Z. Chen, M. Huang, H. Zhu, E. Ma, and X. Chen, “Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging,” J. Am. Chem. Soc. 134(36), 15083–15090 (2012).
[Crossref] [PubMed]

K. Sato, H. Abe, and S. Ohara, “Selective growth of monoclinic and tetragonal zirconia nanocrystals,” J. Am. Chem. Soc. 132(8), 2538–2539 (2010).
[Crossref] [PubMed]

Y. Liu, M. Chen, T. Cao, Y. Sun, C. Li, Q. Liu, T. Yang, L. Yao, W. Feng, and F. Li, “A Cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury,” J. Am. Chem. Soc. 135(26), 9869–9876 (2013).
[Crossref] [PubMed]

Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc. 133(43), 17122–17125 (2011).
[Crossref] [PubMed]

A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa, and C. B. Murray, “A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals,” J. Am. Chem. Soc. 133(4), 998–1006 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

C. F. Gainer, U. Utzinger, and M. Romanowski, “Scanning two-photon microscopy with upconverting lanthanide nanoparticles via Richardson-Lucy deconvolution,” J. Biomed. Opt. 17(7), 0760031 (2012).
[Crossref] [PubMed]

J. Phys. Chem. B (3)

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
[Crossref]

L. Q. Chen, S. J. Xiao, L. Peng, T. Wu, J. Ling, Y. F. Li, and C. Z. Huang, “Aptamer-based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis,” J. Phys. Chem. B 114(10), 3655–3659 (2010).
[Crossref] [PubMed]

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+:ZrO2 Nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
[Crossref]

J. Phys. Chem. C (2)

Q. Lü, F. Guo, L. Sun, A. Li, and L. Zhao, “Surface modification of ZrO2: Er3+ nanoparticles to attenuate aggregation and enhance upconversion fluorescence,” J. Phys. Chem. C 112(8), 2836–2844 (2008).
[Crossref]

J. Pichaandi, J.-C. Boyer, K. R. Delaney, and F. C. Van Veggel, “Two-photon upconversion laser (scanning and wide-field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: a critical evaluation of their performance and potential in bioimaging,” J. Phys. Chem. C 115(39), 19054–19064 (2011).
[Crossref]

Nano Lett. (2)

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

A. M. Derfus, W. C. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett. 4(1), 11–18 (2004).
[Crossref]

Nat. Biotechnol. (1)

G. M. Whitesides, “The ‘right’ size in nanobiotechnology,” Nat. Biotechnol. 21(10), 1161–1165 (2003).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Science (1)

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Small (1)

G. Garnweitner, L. M. Goldenberg, O. V. Sakhno, M. Antonietti, M. Niederberger, and J. Stumpe, “Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography,” Small 3(9), 1626–1632 (2007).
[Crossref] [PubMed]

Theranostics (1)

Q. Zhan, S. He, J. Qian, H. Cheng, and F. Cai, “Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield,” Theranostics 3(5), 306–316 (2013).
[Crossref] [PubMed]

Other (1)

X. Luo, R. Yuminami, T. Sakurai, and K. Akimoto, “Effect of Er3+ Concentration on Upconversion in Hexagonal-Phase NaYF4: Er3+ Nanocrystals,” in Journal of Physics: Conference Series, (IOP Publishing, 2013), 012054.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Size comparison and 3D structure: (a) Size comparison of ZrO2-Ln3+nanoparticles and GFP(green fluorescent protein), three proteins—streptavidin (SA), maltose binding protein (MBP), GNRs, gold nanorods (about 20 nm in width and 80 nm in length), General NPs, about 20 nm, and NaYF4 NPs, which are used in this paper (about 10 nm); ZrO2 NDs (about 4 nm) and the magnified 3-D core-shell structure.
Fig. 2
Fig. 2 Schematic diagram for the setup of the proposed spectroscopy, lifetime and imaging system. A tunable solid Ti: sapphire laser (Mira HP, Coherent, USA) working at 925 nm CW laser mode was utilized in this experiment. This in vitro cell UC imaging experiment was implemented in the multiphoton laser scanning microscopy system (FV10MPE-S, Olympus). Luminescence decay measurements of the emission from UCNDs were performed by modulating the excitation laser with a chopper (Stanford, model SR540). The modulation frequency was 1 KHz, time-window 1 ms for luminescence decay measurement. The measured photon counts from the PMT and the trigger signal from the chopper were recorded simultaneously by a time-correlated single photon counter (TCSPC) (NanoHarp, Picoquant).
Fig. 3
Fig. 3 (a) TEM of ZrO2:20% Yb3+, 2% Er3+ (core) and histogram of the size distribution (inset). (b) EDS analysis of the core NDs. (c) TEM of ZrO2:20% Yb3+, 2% Er3+@NaYF4: 2% Yb3+ (core/shell), and histogram of the size distribution (inset at bottom right). (d) EDS analysis of the core/shell NDs. (e) Emission spectra of (I) core-shell UCNDs,(II) core UCNDs and (III) absorption spectrum of core-shell UCNDs. (f) The photos of ZrO2−Ln3+ core UCNDs (upper left) and core-shell UCNDs (upper right) dispersed in hexane. The emission photos were taken by a Canon camera under a 2 W laser excitation.
Fig. 4
Fig. 4 (a) Emission spectra of ZrO2−Ln3+ core-shell UCNDs and NaYF4−Ln3+ core-shell UCNPs. (b) TEM of ZrO2:20% Yb3+, 2% Er3+@NaYF4: 2% Yb3+ and (c) TEM of NaYF4:20%Yb3+, 2% Er3+@NaYF4. (d) Time-course plot from a single ZrO2−Ln3+ core-shell UCND with laser illumination for 10 min and (e) 1 s.
Fig. 5
Fig. 5 (a) Emission spectra of ZrO2−Ln3+ core UCNDs with different reaction time durations. (b) XRD patterns of ZrO2−Ln3+ core UCNDs with different reaction time durations. The green vertical line indicates the standard PDF value. (c) TEM of ZrO2−Ln3+ core UCNDs which were heated for 48 h in oven. (d) TEM of ZrO2−Ln3+ core UCNDs which were heated for 72 h in the oven.
Fig. 6
Fig. 6 (a) Emission spectra of a series of ZrO2: 20% Yb3+, 2% Er3+@ NaYF4:2% Yb3+nanodots with varied Er3+ concentrations from 0.5% to 20%. (b) Luminescent decay data of a series ZrO2:Yb3+, Er3+@NaYF4: 2% Yb3+ UCNDs with varying Er3+concentrations under the925 nm excitation. Both of the excitation irradiance was 3.0 × 105 W cm−2.
Fig. 7
Fig. 7 (a) - (e) Multiphoton scanning luminescence images of UCNDs doped with different Er3+ concentrations. All the images were gained at the same dwelling time of 12.5 μs/pixel. Dashed circles indicate the points which were chosen to show the linecuts in (f). All the data were collected using a 3.0 × 105 W/cm2 excitation intensity. The scale bar is 150 μm. (f) Normalized intensity profile obtained from halfway line along with the long tail of a series concentration of Er3+-doped UCNDs. (g) 3D scanning imaging of ZrO2:20% Yb3+, 0.5% Er3+@ NaYF4:2% Yb3+ at a speed of 12.5 μs/pixel. (h) 3D scanning imaging of ZrO2:20% Yb3+, 0.5% Er3+@ NaYF4:2% Yb3+ at a speed of 200 μs/pixel. (i) 3D scanning imaging of ZrO2:20% Yb3+, 15% Er3+@ NaYF4:2% Yb3+ at a speed of 12.5 μs/pixel. These three images were all taken by 30 layers, and each layer was covering 512 × 512 pixels. The height of the 3D images is 127 μm.
Fig. 8
Fig. 8 Schematic illustration showing the detailed process of proteins-targeted aptamer-mediated bioimaging.
Fig. 9
Fig. 9 (a) Zeta potential of different layers of modified UCNDs, (b) FTIR spectra of (I) OA-UCNDs, (II) ligand-free UCNDs (III) PAH-UCNDs.
Fig. 10
Fig. 10 (a) –(d) In vitro cancer cell imaging using 925 nm laser excited UCNDs: images of HepG2 cells separately incubated with (a) nothing, (b) PBS pre-incubated and with SA-PAH-PAA-ZrO2-Ln3+@NaYF4:Yb3+, (c) Bio-Aptamer pre-incubated and then with PAH-PAA-ZrO2-Ln3+ @ NaYF4:Yb3+, and (d) Bio-Aptamer pre-incubated and then with SA- PAH-PAA -ZrO2-Ln3+@NaYF4:Yb3+. Bright field (first column), green imaging (second column), red imaging (third column) and overlay image. The scale bar is 30 μm.

Metrics