Abstract

Low temperature infrared absorption in the region of intra–shell 4f-4f transitions of Ce3+ ions in bulk yttrium gallium garnet crystals reveals existence of different Ce3+ centers. In addition to the major center, related to Ce substituting yttrium, at least two other centers exist, most probably attributed to the rare-earth antisites, i.e. rare-earth ions at the Ga crystallographic positions. Temperature dependence of the visible absorption related to the 4f-5d transitions shows influence of thermal population of the second higher-lying level of the 2F5/2 ground state, located 159 cm−1 above the lowest level. 5d→4f luminescence of Ce3+ is observed at elevated pressure and shows signatures of pressure-induced crossing of the lowest 5d state of Ce3+ with the conduction band states.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chemical pressure effects on the spectroscopic properties of Nd3+-doped gallium nano-garnets

V. Monteseguro, M. Rathaiah, K. Linganna, A.D. Lozano-Gorrín, M.A. Hernández-Rodríguez, I.R. Martín, P. Babu, U.R. Rodríguez-Mendoza, F.J. Manjón, A. Muñoz, C.K. Jayasankar, V. Venkatramu, and V. Lavín
Opt. Mater. Express 5(8) 1661-1673 (2015)

Laser performance of ytterbium-doped gallium garnets: Yb:Re3Ga5O12 (Re = Y, Gd, Lu)

Wenjuan Han, Kui Wu, Xueping Tian, Linhua Xia, Huaijin Zhang, and Junhai Liu
Opt. Mater. Express 3(7) 920-927 (2013)

Spectroscopy of lanthanum lutetium gallium garnet crystals doped with chromium

Marek Grinberg, Benedykt Kukliński, Krzysztof Wiśniewski, Czesław Koepke, Tadeusz Łukasiewicz, Jarosław Kisielewski, Marek Świrkowicz, and Andrzej Suchocki
J. Opt. Soc. Am. B 20(3) 577-584 (2003)

References

  • View by:
  • |
  • |
  • |

  1. S. P. Keller and G. D. Tettit, “Visible luminescence of rare-earth yttrium gallium garnets,” Phys. Rev. 121(6), 1639–1648 (1961).
    [Crossref]
  2. K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Fujimoto, A. Fukabori, and A. Yoshikawa, “Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds,” J. Phys. D Appl. Phys. 44(50), 505104 (2011).
    [Crossref]
  3. Z. M. Seeley, N. J. Cherepy, and S. A. Payne, “Expanded phase stability of Gd-based garnet transparent ceramic scintillators,” J. Mater. Res. 29(19), 2332–2337 (2014).
    [Crossref]
  4. F. Yu, D. Yuan, X. Cheng, X. Duan, X. Wang, L. Kong, L. Wang, and Z. Li, “Preparation and characterization of yttrium garnet nanoparticles by citrate sol-gel method at low temperature,” Mater. Lett. 61(11–12), 2322–2324 (2007).
    [Crossref]
  5. W. Nie, G. Boulon, and A. Montail, “Zero-phonon lines and energy transfer between chromium (III) and neodymium (III) multisites in yttrium aluminium garnet (YAG),” Chem. Phys. Lett. 164(1), 106–112 (1989).
    [Crossref]
  6. V. V. Laguta, A. M. Slipenyuk, M. D. Glinchuk, I. P. Bykov, Y. Zorenko, M. Nikl, J. Rosa, and K. Nejezchleb, “Paramagnetic impurity defects in LuAG:Ce thick film scintillators,” Rad. Measur. 42(4–5), 835–838 (2007).
    [Crossref]
  7. C. R. Stanek, K. J. McClellan, M. R. Levy, C. Milanese, and R. W. Grimes, “The effect of intrinsic defects on RE3Al5O12 garnet scintillator performance,” Nucl. Instrum. Methods Phys. Res. A 579(1), 27–30 (2007).
    [Crossref]
  8. S. Geller and Z. Kristallogr, “Crystal chemistry of the garnets,” 125(1–6), 1–47 (1967).
  9. L. Suchow, M. Kokta, and V. J. Flynn, “New garnet compounds with trivalent rare-earth ions on both dodecahedral and octahedral sites,” J. Solid State Chem. 2(2), 137–143 (1970).
    [Crossref]
  10. C. D. Brandle and R. L. Barns, “Crystal stoichiometry of Czochralski grown rare-earth gallium garnets,” J. Cryst. Growth 26(1), 169–170 (1974).
    [Crossref]
  11. M. Kh. Ashurov, Yu. Voronko, V. V. Osiko, A. A. Sobol, and M. I. Timoshechkin, “Spectroscopic study of stoichiometry deviation in crystals with garnet structure,” Phys. Status Solidi42(1), 101–110 (1977) (a).
    [Crossref]
  12. Yu. K. Voronko, C. B. Gessen, A. B. Kudriavtsev, A. A. Sobol, E. B. Sorokin, C. N. Uszakov, and K. B. Tsymbal, Proc. of Institute of General Physics (IOFAN), 29, 3 (1991), in “Spectroscopy of oxide crystals for quantum electronics”, Moscow, Nauka, 1991.
  13. N. I. Agladze, Ch. C. Bagdasarov, E. A. Vinogradov, W. I. Zhekov, T. M. Murina, M. H. Popowa, and E. A. Fedorov, “Shape of spectral lines in garnets (Y1-xREx)3Al5O12,” Кристаллография33(4), 912–919 (1988) (in Russian).
  14. A. B. Munoz-Garcia, Z. Barandiaran, and L. Seijo, “Antisite defects in Ce-doped YAG (Y3Al5O12): first-principles study on structure and 4f-5d transitions,” J. Mater. Chem. 22(37), 19888–19897 (2012).
    [Crossref]
  15. A. Kamińska, A. Duzynska, M. Berkowski, S. Trushkin, and A. Suchocki, “Pressure-induced luminescence of cerium-doped gadolinium gallium garnet crystal,” Phys. Rev. B 85(15), 155111 (2012).
    [Crossref]
  16. X. Liu, X. Wang, and W. Shun, “Luminescence properties of the Ce3+ ion in yttrium gallium garnet,” Phys. Status Solidi101(2), K161–K165 (1987) (a).
    [Crossref]
  17. I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
    [Crossref]
  18. H. Przybylińska, C.-G. Ma, M. G. Brik, A. Kamińska, J. Szczepkowski, P. Sybilski, A. Wittlin, M. Berkowski, W. Jastrzębski, and A. Suchocki, “Evidence of multicenter structure of cerium ions in gadolinium gallium garnet crystals studied by infrared absorption spectroscopy,” Phys. Rev. B 87(4), 045114 (2013).
    [Crossref]
  19. H. Przybylinska, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, A. Wittlin, M. Berkowski, Yu. Zorenko, V. Gorbenko, H. Wrzesinski, and A. Suchocki, “Electronic structure of Ce3+ multicenters in yttrium aluminum garnets,” Appl. Phys. Lett. 102(24), 241112 (2013).
    [Crossref]
  20. H. Przybylińska, A. Wittlin, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, Yu. Zorenko, M. Nikl, V. Gorbenko, A. Fedorov, M. Kučera, and A. Suchocki, “Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+ multicenter structure,” Opt. Mater. 36(9), 1515–1519 (2014).
    [Crossref]
  21. A. Lupei, V. Lupei, C. Gheorghe, S. Hau, and A. Ikesue, “Multicenter in Ce3+ visible emission of YAG ceramics,” Opt. Mater. 37, 727–733 (2014).
    [Crossref]
  22. http://abulafia.mt.ic.ac.uk/shannon/ptable.php
  23. M. Nikl, J. Pejchal, E. Mihokova, J. A. Mares, H. Ogino, A. Yoshikawa, T. Fukuda, A. Vedda, and C. D’Ambrosio, “Antisite defect-free Lu3(GaxAl1-x)5O12:Pr scintillator,” Appl. Phys. Lett. 88(14), 141916 (2006).
    [Crossref]
  24. G. F. Herrmann, J. J. Pearson, K. A. Wickersheim, and R. A. Buchanan, “Crystal FIELD EFFECTS for Ce3+ and Yb3+ in the Garnets,” J. Appl. Phys. 37(3), 1312 (1966).
    [Crossref]
  25. B. Z. Malkin, in: A.A. Kaplyanskii and R.M. Macfarlane (Eds.), Spectroscopy of Solids Containing Rare Earth Ions (North-Holland Publishing Company, 1987), p. 13.
  26. L. Seijo and Z. Barandiarán, “Large splittings of the 4f shell of Ce3+ in garnets,” Phys. Chem. Chem. Phys. 16(8), 3830–3834 (2014).
    [Crossref] [PubMed]
  27. A. J. Wojtowicz, M. Kazmierczak, A. Lempicki, and R. H. Bartram, “Broadband impurity absorption and luminescence: experiment and line-shape calculations,” J. Opt. Soc. Am. B 6(6), 1106–1109 (1989).
    [Crossref]
  28. U. Hömmerich and K. L. Bray, “Direct observation of anticrossing behavior in a luminescent Ce3+-doped system,” Phys. Rev. B Condens. Matter 51(13), 8595–8598 (1995).
    [Crossref] [PubMed]
  29. V. Monteseguro, P. Rodríguez-Hernández, V. Lavín, F. J. Manjón, and A. Muñoz, “Electronic and elastic proeprties of yttrium gallium garnet under pressure from ab initio studies,” J. Appl. Phys. 113(18), 183505 (2013).
    [Crossref]

2015 (1)

I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
[Crossref]

2014 (4)

L. Seijo and Z. Barandiarán, “Large splittings of the 4f shell of Ce3+ in garnets,” Phys. Chem. Chem. Phys. 16(8), 3830–3834 (2014).
[Crossref] [PubMed]

H. Przybylińska, A. Wittlin, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, Yu. Zorenko, M. Nikl, V. Gorbenko, A. Fedorov, M. Kučera, and A. Suchocki, “Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+ multicenter structure,” Opt. Mater. 36(9), 1515–1519 (2014).
[Crossref]

A. Lupei, V. Lupei, C. Gheorghe, S. Hau, and A. Ikesue, “Multicenter in Ce3+ visible emission of YAG ceramics,” Opt. Mater. 37, 727–733 (2014).
[Crossref]

Z. M. Seeley, N. J. Cherepy, and S. A. Payne, “Expanded phase stability of Gd-based garnet transparent ceramic scintillators,” J. Mater. Res. 29(19), 2332–2337 (2014).
[Crossref]

2013 (3)

H. Przybylińska, C.-G. Ma, M. G. Brik, A. Kamińska, J. Szczepkowski, P. Sybilski, A. Wittlin, M. Berkowski, W. Jastrzębski, and A. Suchocki, “Evidence of multicenter structure of cerium ions in gadolinium gallium garnet crystals studied by infrared absorption spectroscopy,” Phys. Rev. B 87(4), 045114 (2013).
[Crossref]

H. Przybylinska, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, A. Wittlin, M. Berkowski, Yu. Zorenko, V. Gorbenko, H. Wrzesinski, and A. Suchocki, “Electronic structure of Ce3+ multicenters in yttrium aluminum garnets,” Appl. Phys. Lett. 102(24), 241112 (2013).
[Crossref]

V. Monteseguro, P. Rodríguez-Hernández, V. Lavín, F. J. Manjón, and A. Muñoz, “Electronic and elastic proeprties of yttrium gallium garnet under pressure from ab initio studies,” J. Appl. Phys. 113(18), 183505 (2013).
[Crossref]

2012 (2)

A. B. Munoz-Garcia, Z. Barandiaran, and L. Seijo, “Antisite defects in Ce-doped YAG (Y3Al5O12): first-principles study on structure and 4f-5d transitions,” J. Mater. Chem. 22(37), 19888–19897 (2012).
[Crossref]

A. Kamińska, A. Duzynska, M. Berkowski, S. Trushkin, and A. Suchocki, “Pressure-induced luminescence of cerium-doped gadolinium gallium garnet crystal,” Phys. Rev. B 85(15), 155111 (2012).
[Crossref]

2011 (1)

K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Fujimoto, A. Fukabori, and A. Yoshikawa, “Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds,” J. Phys. D Appl. Phys. 44(50), 505104 (2011).
[Crossref]

2007 (3)

F. Yu, D. Yuan, X. Cheng, X. Duan, X. Wang, L. Kong, L. Wang, and Z. Li, “Preparation and characterization of yttrium garnet nanoparticles by citrate sol-gel method at low temperature,” Mater. Lett. 61(11–12), 2322–2324 (2007).
[Crossref]

V. V. Laguta, A. M. Slipenyuk, M. D. Glinchuk, I. P. Bykov, Y. Zorenko, M. Nikl, J. Rosa, and K. Nejezchleb, “Paramagnetic impurity defects in LuAG:Ce thick film scintillators,” Rad. Measur. 42(4–5), 835–838 (2007).
[Crossref]

C. R. Stanek, K. J. McClellan, M. R. Levy, C. Milanese, and R. W. Grimes, “The effect of intrinsic defects on RE3Al5O12 garnet scintillator performance,” Nucl. Instrum. Methods Phys. Res. A 579(1), 27–30 (2007).
[Crossref]

2006 (1)

M. Nikl, J. Pejchal, E. Mihokova, J. A. Mares, H. Ogino, A. Yoshikawa, T. Fukuda, A. Vedda, and C. D’Ambrosio, “Antisite defect-free Lu3(GaxAl1-x)5O12:Pr scintillator,” Appl. Phys. Lett. 88(14), 141916 (2006).
[Crossref]

1995 (1)

U. Hömmerich and K. L. Bray, “Direct observation of anticrossing behavior in a luminescent Ce3+-doped system,” Phys. Rev. B Condens. Matter 51(13), 8595–8598 (1995).
[Crossref] [PubMed]

1989 (2)

A. J. Wojtowicz, M. Kazmierczak, A. Lempicki, and R. H. Bartram, “Broadband impurity absorption and luminescence: experiment and line-shape calculations,” J. Opt. Soc. Am. B 6(6), 1106–1109 (1989).
[Crossref]

W. Nie, G. Boulon, and A. Montail, “Zero-phonon lines and energy transfer between chromium (III) and neodymium (III) multisites in yttrium aluminium garnet (YAG),” Chem. Phys. Lett. 164(1), 106–112 (1989).
[Crossref]

1974 (1)

C. D. Brandle and R. L. Barns, “Crystal stoichiometry of Czochralski grown rare-earth gallium garnets,” J. Cryst. Growth 26(1), 169–170 (1974).
[Crossref]

1970 (1)

L. Suchow, M. Kokta, and V. J. Flynn, “New garnet compounds with trivalent rare-earth ions on both dodecahedral and octahedral sites,” J. Solid State Chem. 2(2), 137–143 (1970).
[Crossref]

1966 (1)

G. F. Herrmann, J. J. Pearson, K. A. Wickersheim, and R. A. Buchanan, “Crystal FIELD EFFECTS for Ce3+ and Yb3+ in the Garnets,” J. Appl. Phys. 37(3), 1312 (1966).
[Crossref]

1961 (1)

S. P. Keller and G. D. Tettit, “Visible luminescence of rare-earth yttrium gallium garnets,” Phys. Rev. 121(6), 1639–1648 (1961).
[Crossref]

Agladze, N. I.

N. I. Agladze, Ch. C. Bagdasarov, E. A. Vinogradov, W. I. Zhekov, T. M. Murina, M. H. Popowa, and E. A. Fedorov, “Shape of spectral lines in garnets (Y1-xREx)3Al5O12,” Кристаллография33(4), 912–919 (1988) (in Russian).

Ashurov, M. Kh.

M. Kh. Ashurov, Yu. Voronko, V. V. Osiko, A. A. Sobol, and M. I. Timoshechkin, “Spectroscopic study of stoichiometry deviation in crystals with garnet structure,” Phys. Status Solidi42(1), 101–110 (1977) (a).
[Crossref]

Bagdasarov, Ch. C.

N. I. Agladze, Ch. C. Bagdasarov, E. A. Vinogradov, W. I. Zhekov, T. M. Murina, M. H. Popowa, and E. A. Fedorov, “Shape of spectral lines in garnets (Y1-xREx)3Al5O12,” Кристаллография33(4), 912–919 (1988) (in Russian).

Barandiaran, Z.

A. B. Munoz-Garcia, Z. Barandiaran, and L. Seijo, “Antisite defects in Ce-doped YAG (Y3Al5O12): first-principles study on structure and 4f-5d transitions,” J. Mater. Chem. 22(37), 19888–19897 (2012).
[Crossref]

Barandiarán, Z.

L. Seijo and Z. Barandiarán, “Large splittings of the 4f shell of Ce3+ in garnets,” Phys. Chem. Chem. Phys. 16(8), 3830–3834 (2014).
[Crossref] [PubMed]

Barcz, A.

I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
[Crossref]

Barns, R. L.

C. D. Brandle and R. L. Barns, “Crystal stoichiometry of Czochralski grown rare-earth gallium garnets,” J. Cryst. Growth 26(1), 169–170 (1974).
[Crossref]

Bartram, R. H.

Barzowska, J.

I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
[Crossref]

Berkowski, M.

I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
[Crossref]

H. Przybylińska, C.-G. Ma, M. G. Brik, A. Kamińska, J. Szczepkowski, P. Sybilski, A. Wittlin, M. Berkowski, W. Jastrzębski, and A. Suchocki, “Evidence of multicenter structure of cerium ions in gadolinium gallium garnet crystals studied by infrared absorption spectroscopy,” Phys. Rev. B 87(4), 045114 (2013).
[Crossref]

H. Przybylinska, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, A. Wittlin, M. Berkowski, Yu. Zorenko, V. Gorbenko, H. Wrzesinski, and A. Suchocki, “Electronic structure of Ce3+ multicenters in yttrium aluminum garnets,” Appl. Phys. Lett. 102(24), 241112 (2013).
[Crossref]

A. Kamińska, A. Duzynska, M. Berkowski, S. Trushkin, and A. Suchocki, “Pressure-induced luminescence of cerium-doped gadolinium gallium garnet crystal,” Phys. Rev. B 85(15), 155111 (2012).
[Crossref]

Boulon, G.

W. Nie, G. Boulon, and A. Montail, “Zero-phonon lines and energy transfer between chromium (III) and neodymium (III) multisites in yttrium aluminium garnet (YAG),” Chem. Phys. Lett. 164(1), 106–112 (1989).
[Crossref]

Brandle, C. D.

C. D. Brandle and R. L. Barns, “Crystal stoichiometry of Czochralski grown rare-earth gallium garnets,” J. Cryst. Growth 26(1), 169–170 (1974).
[Crossref]

Bray, K. L.

U. Hömmerich and K. L. Bray, “Direct observation of anticrossing behavior in a luminescent Ce3+-doped system,” Phys. Rev. B Condens. Matter 51(13), 8595–8598 (1995).
[Crossref] [PubMed]

Brik, M. G.

I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
[Crossref]

H. Przybylińska, A. Wittlin, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, Yu. Zorenko, M. Nikl, V. Gorbenko, A. Fedorov, M. Kučera, and A. Suchocki, “Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+ multicenter structure,” Opt. Mater. 36(9), 1515–1519 (2014).
[Crossref]

H. Przybylinska, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, A. Wittlin, M. Berkowski, Yu. Zorenko, V. Gorbenko, H. Wrzesinski, and A. Suchocki, “Electronic structure of Ce3+ multicenters in yttrium aluminum garnets,” Appl. Phys. Lett. 102(24), 241112 (2013).
[Crossref]

H. Przybylińska, C.-G. Ma, M. G. Brik, A. Kamińska, J. Szczepkowski, P. Sybilski, A. Wittlin, M. Berkowski, W. Jastrzębski, and A. Suchocki, “Evidence of multicenter structure of cerium ions in gadolinium gallium garnet crystals studied by infrared absorption spectroscopy,” Phys. Rev. B 87(4), 045114 (2013).
[Crossref]

Buchanan, R. A.

G. F. Herrmann, J. J. Pearson, K. A. Wickersheim, and R. A. Buchanan, “Crystal FIELD EFFECTS for Ce3+ and Yb3+ in the Garnets,” J. Appl. Phys. 37(3), 1312 (1966).
[Crossref]

Bykov, I. P.

V. V. Laguta, A. M. Slipenyuk, M. D. Glinchuk, I. P. Bykov, Y. Zorenko, M. Nikl, J. Rosa, and K. Nejezchleb, “Paramagnetic impurity defects in LuAG:Ce thick film scintillators,” Rad. Measur. 42(4–5), 835–838 (2007).
[Crossref]

Cheng, X.

F. Yu, D. Yuan, X. Cheng, X. Duan, X. Wang, L. Kong, L. Wang, and Z. Li, “Preparation and characterization of yttrium garnet nanoparticles by citrate sol-gel method at low temperature,” Mater. Lett. 61(11–12), 2322–2324 (2007).
[Crossref]

Cherepy, N. J.

Z. M. Seeley, N. J. Cherepy, and S. A. Payne, “Expanded phase stability of Gd-based garnet transparent ceramic scintillators,” J. Mater. Res. 29(19), 2332–2337 (2014).
[Crossref]

D’Ambrosio, C.

M. Nikl, J. Pejchal, E. Mihokova, J. A. Mares, H. Ogino, A. Yoshikawa, T. Fukuda, A. Vedda, and C. D’Ambrosio, “Antisite defect-free Lu3(GaxAl1-x)5O12:Pr scintillator,” Appl. Phys. Lett. 88(14), 141916 (2006).
[Crossref]

Domagala, J.

I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
[Crossref]

Duan, X.

F. Yu, D. Yuan, X. Cheng, X. Duan, X. Wang, L. Kong, L. Wang, and Z. Li, “Preparation and characterization of yttrium garnet nanoparticles by citrate sol-gel method at low temperature,” Mater. Lett. 61(11–12), 2322–2324 (2007).
[Crossref]

Duzynska, A.

A. Kamińska, A. Duzynska, M. Berkowski, S. Trushkin, and A. Suchocki, “Pressure-induced luminescence of cerium-doped gadolinium gallium garnet crystal,” Phys. Rev. B 85(15), 155111 (2012).
[Crossref]

Endo, T.

K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Fujimoto, A. Fukabori, and A. Yoshikawa, “Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds,” J. Phys. D Appl. Phys. 44(50), 505104 (2011).
[Crossref]

Fedorov, A.

H. Przybylińska, A. Wittlin, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, Yu. Zorenko, M. Nikl, V. Gorbenko, A. Fedorov, M. Kučera, and A. Suchocki, “Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+ multicenter structure,” Opt. Mater. 36(9), 1515–1519 (2014).
[Crossref]

Fedorov, E. A.

N. I. Agladze, Ch. C. Bagdasarov, E. A. Vinogradov, W. I. Zhekov, T. M. Murina, M. H. Popowa, and E. A. Fedorov, “Shape of spectral lines in garnets (Y1-xREx)3Al5O12,” Кристаллография33(4), 912–919 (1988) (in Russian).

Flynn, V. J.

L. Suchow, M. Kokta, and V. J. Flynn, “New garnet compounds with trivalent rare-earth ions on both dodecahedral and octahedral sites,” J. Solid State Chem. 2(2), 137–143 (1970).
[Crossref]

Fujimoto, Y.

K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Fujimoto, A. Fukabori, and A. Yoshikawa, “Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds,” J. Phys. D Appl. Phys. 44(50), 505104 (2011).
[Crossref]

Fukabori, A.

K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Fujimoto, A. Fukabori, and A. Yoshikawa, “Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds,” J. Phys. D Appl. Phys. 44(50), 505104 (2011).
[Crossref]

Fukuda, T.

M. Nikl, J. Pejchal, E. Mihokova, J. A. Mares, H. Ogino, A. Yoshikawa, T. Fukuda, A. Vedda, and C. D’Ambrosio, “Antisite defect-free Lu3(GaxAl1-x)5O12:Pr scintillator,” Appl. Phys. Lett. 88(14), 141916 (2006).
[Crossref]

Geller, S.

S. Geller and Z. Kristallogr, “Crystal chemistry of the garnets,” 125(1–6), 1–47 (1967).

Gheorghe, C.

A. Lupei, V. Lupei, C. Gheorghe, S. Hau, and A. Ikesue, “Multicenter in Ce3+ visible emission of YAG ceramics,” Opt. Mater. 37, 727–733 (2014).
[Crossref]

Glinchuk, M. D.

V. V. Laguta, A. M. Slipenyuk, M. D. Glinchuk, I. P. Bykov, Y. Zorenko, M. Nikl, J. Rosa, and K. Nejezchleb, “Paramagnetic impurity defects in LuAG:Ce thick film scintillators,” Rad. Measur. 42(4–5), 835–838 (2007).
[Crossref]

Gorbenko, V.

H. Przybylińska, A. Wittlin, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, Yu. Zorenko, M. Nikl, V. Gorbenko, A. Fedorov, M. Kučera, and A. Suchocki, “Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+ multicenter structure,” Opt. Mater. 36(9), 1515–1519 (2014).
[Crossref]

H. Przybylinska, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, A. Wittlin, M. Berkowski, Yu. Zorenko, V. Gorbenko, H. Wrzesinski, and A. Suchocki, “Electronic structure of Ce3+ multicenters in yttrium aluminum garnets,” Appl. Phys. Lett. 102(24), 241112 (2013).
[Crossref]

Grimes, R. W.

C. R. Stanek, K. J. McClellan, M. R. Levy, C. Milanese, and R. W. Grimes, “The effect of intrinsic defects on RE3Al5O12 garnet scintillator performance,” Nucl. Instrum. Methods Phys. Res. A 579(1), 27–30 (2007).
[Crossref]

Grinberg, M.

I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
[Crossref]

Hau, S.

A. Lupei, V. Lupei, C. Gheorghe, S. Hau, and A. Ikesue, “Multicenter in Ce3+ visible emission of YAG ceramics,” Opt. Mater. 37, 727–733 (2014).
[Crossref]

Herrmann, G. F.

G. F. Herrmann, J. J. Pearson, K. A. Wickersheim, and R. A. Buchanan, “Crystal FIELD EFFECTS for Ce3+ and Yb3+ in the Garnets,” J. Appl. Phys. 37(3), 1312 (1966).
[Crossref]

Hömmerich, U.

U. Hömmerich and K. L. Bray, “Direct observation of anticrossing behavior in a luminescent Ce3+-doped system,” Phys. Rev. B Condens. Matter 51(13), 8595–8598 (1995).
[Crossref] [PubMed]

Ikesue, A.

A. Lupei, V. Lupei, C. Gheorghe, S. Hau, and A. Ikesue, “Multicenter in Ce3+ visible emission of YAG ceramics,” Opt. Mater. 37, 727–733 (2014).
[Crossref]

Jastrzebski, W.

H. Przybylińska, C.-G. Ma, M. G. Brik, A. Kamińska, J. Szczepkowski, P. Sybilski, A. Wittlin, M. Berkowski, W. Jastrzębski, and A. Suchocki, “Evidence of multicenter structure of cerium ions in gadolinium gallium garnet crystals studied by infrared absorption spectroscopy,” Phys. Rev. B 87(4), 045114 (2013).
[Crossref]

Kamada, K.

K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Fujimoto, A. Fukabori, and A. Yoshikawa, “Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds,” J. Phys. D Appl. Phys. 44(50), 505104 (2011).
[Crossref]

Kaminska, A.

I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
[Crossref]

H. Przybylińska, A. Wittlin, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, Yu. Zorenko, M. Nikl, V. Gorbenko, A. Fedorov, M. Kučera, and A. Suchocki, “Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+ multicenter structure,” Opt. Mater. 36(9), 1515–1519 (2014).
[Crossref]

H. Przybylińska, C.-G. Ma, M. G. Brik, A. Kamińska, J. Szczepkowski, P. Sybilski, A. Wittlin, M. Berkowski, W. Jastrzębski, and A. Suchocki, “Evidence of multicenter structure of cerium ions in gadolinium gallium garnet crystals studied by infrared absorption spectroscopy,” Phys. Rev. B 87(4), 045114 (2013).
[Crossref]

H. Przybylinska, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, A. Wittlin, M. Berkowski, Yu. Zorenko, V. Gorbenko, H. Wrzesinski, and A. Suchocki, “Electronic structure of Ce3+ multicenters in yttrium aluminum garnets,” Appl. Phys. Lett. 102(24), 241112 (2013).
[Crossref]

A. Kamińska, A. Duzynska, M. Berkowski, S. Trushkin, and A. Suchocki, “Pressure-induced luminescence of cerium-doped gadolinium gallium garnet crystal,” Phys. Rev. B 85(15), 155111 (2012).
[Crossref]

Kazmierczak, M.

Keller, S. P.

S. P. Keller and G. D. Tettit, “Visible luminescence of rare-earth yttrium gallium garnets,” Phys. Rev. 121(6), 1639–1648 (1961).
[Crossref]

Kokta, M.

L. Suchow, M. Kokta, and V. J. Flynn, “New garnet compounds with trivalent rare-earth ions on both dodecahedral and octahedral sites,” J. Solid State Chem. 2(2), 137–143 (1970).
[Crossref]

Kong, L.

F. Yu, D. Yuan, X. Cheng, X. Duan, X. Wang, L. Kong, L. Wang, and Z. Li, “Preparation and characterization of yttrium garnet nanoparticles by citrate sol-gel method at low temperature,” Mater. Lett. 61(11–12), 2322–2324 (2007).
[Crossref]

Kristallogr, Z.

S. Geller and Z. Kristallogr, “Crystal chemistry of the garnets,” 125(1–6), 1–47 (1967).

Kucera, M.

H. Przybylińska, A. Wittlin, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, Yu. Zorenko, M. Nikl, V. Gorbenko, A. Fedorov, M. Kučera, and A. Suchocki, “Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+ multicenter structure,” Opt. Mater. 36(9), 1515–1519 (2014).
[Crossref]

Laguta, V. V.

V. V. Laguta, A. M. Slipenyuk, M. D. Glinchuk, I. P. Bykov, Y. Zorenko, M. Nikl, J. Rosa, and K. Nejezchleb, “Paramagnetic impurity defects in LuAG:Ce thick film scintillators,” Rad. Measur. 42(4–5), 835–838 (2007).
[Crossref]

Lavín, V.

V. Monteseguro, P. Rodríguez-Hernández, V. Lavín, F. J. Manjón, and A. Muñoz, “Electronic and elastic proeprties of yttrium gallium garnet under pressure from ab initio studies,” J. Appl. Phys. 113(18), 183505 (2013).
[Crossref]

Lempicki, A.

Levy, M. R.

C. R. Stanek, K. J. McClellan, M. R. Levy, C. Milanese, and R. W. Grimes, “The effect of intrinsic defects on RE3Al5O12 garnet scintillator performance,” Nucl. Instrum. Methods Phys. Res. A 579(1), 27–30 (2007).
[Crossref]

Li, Z.

F. Yu, D. Yuan, X. Cheng, X. Duan, X. Wang, L. Kong, L. Wang, and Z. Li, “Preparation and characterization of yttrium garnet nanoparticles by citrate sol-gel method at low temperature,” Mater. Lett. 61(11–12), 2322–2324 (2007).
[Crossref]

Liu, X.

X. Liu, X. Wang, and W. Shun, “Luminescence properties of the Ce3+ ion in yttrium gallium garnet,” Phys. Status Solidi101(2), K161–K165 (1987) (a).
[Crossref]

Lupei, A.

A. Lupei, V. Lupei, C. Gheorghe, S. Hau, and A. Ikesue, “Multicenter in Ce3+ visible emission of YAG ceramics,” Opt. Mater. 37, 727–733 (2014).
[Crossref]

Lupei, V.

A. Lupei, V. Lupei, C. Gheorghe, S. Hau, and A. Ikesue, “Multicenter in Ce3+ visible emission of YAG ceramics,” Opt. Mater. 37, 727–733 (2014).
[Crossref]

Ma, C.-G.

I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
[Crossref]

H. Przybylińska, A. Wittlin, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, Yu. Zorenko, M. Nikl, V. Gorbenko, A. Fedorov, M. Kučera, and A. Suchocki, “Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+ multicenter structure,” Opt. Mater. 36(9), 1515–1519 (2014).
[Crossref]

H. Przybylińska, C.-G. Ma, M. G. Brik, A. Kamińska, J. Szczepkowski, P. Sybilski, A. Wittlin, M. Berkowski, W. Jastrzębski, and A. Suchocki, “Evidence of multicenter structure of cerium ions in gadolinium gallium garnet crystals studied by infrared absorption spectroscopy,” Phys. Rev. B 87(4), 045114 (2013).
[Crossref]

H. Przybylinska, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, A. Wittlin, M. Berkowski, Yu. Zorenko, V. Gorbenko, H. Wrzesinski, and A. Suchocki, “Electronic structure of Ce3+ multicenters in yttrium aluminum garnets,” Appl. Phys. Lett. 102(24), 241112 (2013).
[Crossref]

Mahlik, S.

I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
[Crossref]

Manjón, F. J.

V. Monteseguro, P. Rodríguez-Hernández, V. Lavín, F. J. Manjón, and A. Muñoz, “Electronic and elastic proeprties of yttrium gallium garnet under pressure from ab initio studies,” J. Appl. Phys. 113(18), 183505 (2013).
[Crossref]

Mares, J. A.

M. Nikl, J. Pejchal, E. Mihokova, J. A. Mares, H. Ogino, A. Yoshikawa, T. Fukuda, A. Vedda, and C. D’Ambrosio, “Antisite defect-free Lu3(GaxAl1-x)5O12:Pr scintillator,” Appl. Phys. Lett. 88(14), 141916 (2006).
[Crossref]

McClellan, K. J.

C. R. Stanek, K. J. McClellan, M. R. Levy, C. Milanese, and R. W. Grimes, “The effect of intrinsic defects on RE3Al5O12 garnet scintillator performance,” Nucl. Instrum. Methods Phys. Res. A 579(1), 27–30 (2007).
[Crossref]

Mihokova, E.

M. Nikl, J. Pejchal, E. Mihokova, J. A. Mares, H. Ogino, A. Yoshikawa, T. Fukuda, A. Vedda, and C. D’Ambrosio, “Antisite defect-free Lu3(GaxAl1-x)5O12:Pr scintillator,” Appl. Phys. Lett. 88(14), 141916 (2006).
[Crossref]

Milanese, C.

C. R. Stanek, K. J. McClellan, M. R. Levy, C. Milanese, and R. W. Grimes, “The effect of intrinsic defects on RE3Al5O12 garnet scintillator performance,” Nucl. Instrum. Methods Phys. Res. A 579(1), 27–30 (2007).
[Crossref]

Montail, A.

W. Nie, G. Boulon, and A. Montail, “Zero-phonon lines and energy transfer between chromium (III) and neodymium (III) multisites in yttrium aluminium garnet (YAG),” Chem. Phys. Lett. 164(1), 106–112 (1989).
[Crossref]

Monteseguro, V.

V. Monteseguro, P. Rodríguez-Hernández, V. Lavín, F. J. Manjón, and A. Muñoz, “Electronic and elastic proeprties of yttrium gallium garnet under pressure from ab initio studies,” J. Appl. Phys. 113(18), 183505 (2013).
[Crossref]

Muñoz, A.

V. Monteseguro, P. Rodríguez-Hernández, V. Lavín, F. J. Manjón, and A. Muñoz, “Electronic and elastic proeprties of yttrium gallium garnet under pressure from ab initio studies,” J. Appl. Phys. 113(18), 183505 (2013).
[Crossref]

Munoz-Garcia, A. B.

A. B. Munoz-Garcia, Z. Barandiaran, and L. Seijo, “Antisite defects in Ce-doped YAG (Y3Al5O12): first-principles study on structure and 4f-5d transitions,” J. Mater. Chem. 22(37), 19888–19897 (2012).
[Crossref]

Murina, T. M.

N. I. Agladze, Ch. C. Bagdasarov, E. A. Vinogradov, W. I. Zhekov, T. M. Murina, M. H. Popowa, and E. A. Fedorov, “Shape of spectral lines in garnets (Y1-xREx)3Al5O12,” Кристаллография33(4), 912–919 (1988) (in Russian).

Nejezchleb, K.

V. V. Laguta, A. M. Slipenyuk, M. D. Glinchuk, I. P. Bykov, Y. Zorenko, M. Nikl, J. Rosa, and K. Nejezchleb, “Paramagnetic impurity defects in LuAG:Ce thick film scintillators,” Rad. Measur. 42(4–5), 835–838 (2007).
[Crossref]

Nie, W.

W. Nie, G. Boulon, and A. Montail, “Zero-phonon lines and energy transfer between chromium (III) and neodymium (III) multisites in yttrium aluminium garnet (YAG),” Chem. Phys. Lett. 164(1), 106–112 (1989).
[Crossref]

Nikl, M.

H. Przybylińska, A. Wittlin, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, Yu. Zorenko, M. Nikl, V. Gorbenko, A. Fedorov, M. Kučera, and A. Suchocki, “Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+ multicenter structure,” Opt. Mater. 36(9), 1515–1519 (2014).
[Crossref]

K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Fujimoto, A. Fukabori, and A. Yoshikawa, “Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds,” J. Phys. D Appl. Phys. 44(50), 505104 (2011).
[Crossref]

V. V. Laguta, A. M. Slipenyuk, M. D. Glinchuk, I. P. Bykov, Y. Zorenko, M. Nikl, J. Rosa, and K. Nejezchleb, “Paramagnetic impurity defects in LuAG:Ce thick film scintillators,” Rad. Measur. 42(4–5), 835–838 (2007).
[Crossref]

M. Nikl, J. Pejchal, E. Mihokova, J. A. Mares, H. Ogino, A. Yoshikawa, T. Fukuda, A. Vedda, and C. D’Ambrosio, “Antisite defect-free Lu3(GaxAl1-x)5O12:Pr scintillator,” Appl. Phys. Lett. 88(14), 141916 (2006).
[Crossref]

Ogino, H.

M. Nikl, J. Pejchal, E. Mihokova, J. A. Mares, H. Ogino, A. Yoshikawa, T. Fukuda, A. Vedda, and C. D’Ambrosio, “Antisite defect-free Lu3(GaxAl1-x)5O12:Pr scintillator,” Appl. Phys. Lett. 88(14), 141916 (2006).
[Crossref]

Osiko, V. V.

M. Kh. Ashurov, Yu. Voronko, V. V. Osiko, A. A. Sobol, and M. I. Timoshechkin, “Spectroscopic study of stoichiometry deviation in crystals with garnet structure,” Phys. Status Solidi42(1), 101–110 (1977) (a).
[Crossref]

Payne, S. A.

Z. M. Seeley, N. J. Cherepy, and S. A. Payne, “Expanded phase stability of Gd-based garnet transparent ceramic scintillators,” J. Mater. Res. 29(19), 2332–2337 (2014).
[Crossref]

Pearson, J. J.

G. F. Herrmann, J. J. Pearson, K. A. Wickersheim, and R. A. Buchanan, “Crystal FIELD EFFECTS for Ce3+ and Yb3+ in the Garnets,” J. Appl. Phys. 37(3), 1312 (1966).
[Crossref]

Pejchal, J.

K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Fujimoto, A. Fukabori, and A. Yoshikawa, “Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds,” J. Phys. D Appl. Phys. 44(50), 505104 (2011).
[Crossref]

M. Nikl, J. Pejchal, E. Mihokova, J. A. Mares, H. Ogino, A. Yoshikawa, T. Fukuda, A. Vedda, and C. D’Ambrosio, “Antisite defect-free Lu3(GaxAl1-x)5O12:Pr scintillator,” Appl. Phys. Lett. 88(14), 141916 (2006).
[Crossref]

Popowa, M. H.

N. I. Agladze, Ch. C. Bagdasarov, E. A. Vinogradov, W. I. Zhekov, T. M. Murina, M. H. Popowa, and E. A. Fedorov, “Shape of spectral lines in garnets (Y1-xREx)3Al5O12,” Кристаллография33(4), 912–919 (1988) (in Russian).

Przybylinska, H.

I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
[Crossref]

H. Przybylińska, A. Wittlin, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, Yu. Zorenko, M. Nikl, V. Gorbenko, A. Fedorov, M. Kučera, and A. Suchocki, “Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+ multicenter structure,” Opt. Mater. 36(9), 1515–1519 (2014).
[Crossref]

H. Przybylińska, C.-G. Ma, M. G. Brik, A. Kamińska, J. Szczepkowski, P. Sybilski, A. Wittlin, M. Berkowski, W. Jastrzębski, and A. Suchocki, “Evidence of multicenter structure of cerium ions in gadolinium gallium garnet crystals studied by infrared absorption spectroscopy,” Phys. Rev. B 87(4), 045114 (2013).
[Crossref]

H. Przybylinska, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, A. Wittlin, M. Berkowski, Yu. Zorenko, V. Gorbenko, H. Wrzesinski, and A. Suchocki, “Electronic structure of Ce3+ multicenters in yttrium aluminum garnets,” Appl. Phys. Lett. 102(24), 241112 (2013).
[Crossref]

Rodríguez-Hernández, P.

V. Monteseguro, P. Rodríguez-Hernández, V. Lavín, F. J. Manjón, and A. Muñoz, “Electronic and elastic proeprties of yttrium gallium garnet under pressure from ab initio studies,” J. Appl. Phys. 113(18), 183505 (2013).
[Crossref]

Rosa, J.

V. V. Laguta, A. M. Slipenyuk, M. D. Glinchuk, I. P. Bykov, Y. Zorenko, M. Nikl, J. Rosa, and K. Nejezchleb, “Paramagnetic impurity defects in LuAG:Ce thick film scintillators,” Rad. Measur. 42(4–5), 835–838 (2007).
[Crossref]

Seeley, Z. M.

Z. M. Seeley, N. J. Cherepy, and S. A. Payne, “Expanded phase stability of Gd-based garnet transparent ceramic scintillators,” J. Mater. Res. 29(19), 2332–2337 (2014).
[Crossref]

Seijo, L.

L. Seijo and Z. Barandiarán, “Large splittings of the 4f shell of Ce3+ in garnets,” Phys. Chem. Chem. Phys. 16(8), 3830–3834 (2014).
[Crossref] [PubMed]

A. B. Munoz-Garcia, Z. Barandiaran, and L. Seijo, “Antisite defects in Ce-doped YAG (Y3Al5O12): first-principles study on structure and 4f-5d transitions,” J. Mater. Chem. 22(37), 19888–19897 (2012).
[Crossref]

Shun, W.

X. Liu, X. Wang, and W. Shun, “Luminescence properties of the Ce3+ ion in yttrium gallium garnet,” Phys. Status Solidi101(2), K161–K165 (1987) (a).
[Crossref]

Slipenyuk, A. M.

V. V. Laguta, A. M. Slipenyuk, M. D. Glinchuk, I. P. Bykov, Y. Zorenko, M. Nikl, J. Rosa, and K. Nejezchleb, “Paramagnetic impurity defects in LuAG:Ce thick film scintillators,” Rad. Measur. 42(4–5), 835–838 (2007).
[Crossref]

Sobol, A. A.

M. Kh. Ashurov, Yu. Voronko, V. V. Osiko, A. A. Sobol, and M. I. Timoshechkin, “Spectroscopic study of stoichiometry deviation in crystals with garnet structure,” Phys. Status Solidi42(1), 101–110 (1977) (a).
[Crossref]

Stanek, C. R.

C. R. Stanek, K. J. McClellan, M. R. Levy, C. Milanese, and R. W. Grimes, “The effect of intrinsic defects on RE3Al5O12 garnet scintillator performance,” Nucl. Instrum. Methods Phys. Res. A 579(1), 27–30 (2007).
[Crossref]

Suchocki, A.

I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
[Crossref]

H. Przybylińska, A. Wittlin, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, Yu. Zorenko, M. Nikl, V. Gorbenko, A. Fedorov, M. Kučera, and A. Suchocki, “Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+ multicenter structure,” Opt. Mater. 36(9), 1515–1519 (2014).
[Crossref]

H. Przybylinska, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, A. Wittlin, M. Berkowski, Yu. Zorenko, V. Gorbenko, H. Wrzesinski, and A. Suchocki, “Electronic structure of Ce3+ multicenters in yttrium aluminum garnets,” Appl. Phys. Lett. 102(24), 241112 (2013).
[Crossref]

H. Przybylińska, C.-G. Ma, M. G. Brik, A. Kamińska, J. Szczepkowski, P. Sybilski, A. Wittlin, M. Berkowski, W. Jastrzębski, and A. Suchocki, “Evidence of multicenter structure of cerium ions in gadolinium gallium garnet crystals studied by infrared absorption spectroscopy,” Phys. Rev. B 87(4), 045114 (2013).
[Crossref]

A. Kamińska, A. Duzynska, M. Berkowski, S. Trushkin, and A. Suchocki, “Pressure-induced luminescence of cerium-doped gadolinium gallium garnet crystal,” Phys. Rev. B 85(15), 155111 (2012).
[Crossref]

Suchow, L.

L. Suchow, M. Kokta, and V. J. Flynn, “New garnet compounds with trivalent rare-earth ions on both dodecahedral and octahedral sites,” J. Solid State Chem. 2(2), 137–143 (1970).
[Crossref]

Sugak, D.

I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
[Crossref]

Sybilski, P.

H. Przybylińska, A. Wittlin, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, Yu. Zorenko, M. Nikl, V. Gorbenko, A. Fedorov, M. Kučera, and A. Suchocki, “Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+ multicenter structure,” Opt. Mater. 36(9), 1515–1519 (2014).
[Crossref]

H. Przybylińska, C.-G. Ma, M. G. Brik, A. Kamińska, J. Szczepkowski, P. Sybilski, A. Wittlin, M. Berkowski, W. Jastrzębski, and A. Suchocki, “Evidence of multicenter structure of cerium ions in gadolinium gallium garnet crystals studied by infrared absorption spectroscopy,” Phys. Rev. B 87(4), 045114 (2013).
[Crossref]

H. Przybylinska, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, A. Wittlin, M. Berkowski, Yu. Zorenko, V. Gorbenko, H. Wrzesinski, and A. Suchocki, “Electronic structure of Ce3+ multicenters in yttrium aluminum garnets,” Appl. Phys. Lett. 102(24), 241112 (2013).
[Crossref]

Syvorotka, I. I.

I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
[Crossref]

Szczepkowski, J.

H. Przybylińska, C.-G. Ma, M. G. Brik, A. Kamińska, J. Szczepkowski, P. Sybilski, A. Wittlin, M. Berkowski, W. Jastrzębski, and A. Suchocki, “Evidence of multicenter structure of cerium ions in gadolinium gallium garnet crystals studied by infrared absorption spectroscopy,” Phys. Rev. B 87(4), 045114 (2013).
[Crossref]

Tettit, G. D.

S. P. Keller and G. D. Tettit, “Visible luminescence of rare-earth yttrium gallium garnets,” Phys. Rev. 121(6), 1639–1648 (1961).
[Crossref]

Timoshechkin, M. I.

M. Kh. Ashurov, Yu. Voronko, V. V. Osiko, A. A. Sobol, and M. I. Timoshechkin, “Spectroscopic study of stoichiometry deviation in crystals with garnet structure,” Phys. Status Solidi42(1), 101–110 (1977) (a).
[Crossref]

Trushkin, S.

A. Kamińska, A. Duzynska, M. Berkowski, S. Trushkin, and A. Suchocki, “Pressure-induced luminescence of cerium-doped gadolinium gallium garnet crystal,” Phys. Rev. B 85(15), 155111 (2012).
[Crossref]

Tsutumi, K.

K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Fujimoto, A. Fukabori, and A. Yoshikawa, “Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds,” J. Phys. D Appl. Phys. 44(50), 505104 (2011).
[Crossref]

Vedda, A.

M. Nikl, J. Pejchal, E. Mihokova, J. A. Mares, H. Ogino, A. Yoshikawa, T. Fukuda, A. Vedda, and C. D’Ambrosio, “Antisite defect-free Lu3(GaxAl1-x)5O12:Pr scintillator,” Appl. Phys. Lett. 88(14), 141916 (2006).
[Crossref]

Vinogradov, E. A.

N. I. Agladze, Ch. C. Bagdasarov, E. A. Vinogradov, W. I. Zhekov, T. M. Murina, M. H. Popowa, and E. A. Fedorov, “Shape of spectral lines in garnets (Y1-xREx)3Al5O12,” Кристаллография33(4), 912–919 (1988) (in Russian).

Voronko, Yu.

M. Kh. Ashurov, Yu. Voronko, V. V. Osiko, A. A. Sobol, and M. I. Timoshechkin, “Spectroscopic study of stoichiometry deviation in crystals with garnet structure,” Phys. Status Solidi42(1), 101–110 (1977) (a).
[Crossref]

Wang, L.

F. Yu, D. Yuan, X. Cheng, X. Duan, X. Wang, L. Kong, L. Wang, and Z. Li, “Preparation and characterization of yttrium garnet nanoparticles by citrate sol-gel method at low temperature,” Mater. Lett. 61(11–12), 2322–2324 (2007).
[Crossref]

Wang, X.

F. Yu, D. Yuan, X. Cheng, X. Duan, X. Wang, L. Kong, L. Wang, and Z. Li, “Preparation and characterization of yttrium garnet nanoparticles by citrate sol-gel method at low temperature,” Mater. Lett. 61(11–12), 2322–2324 (2007).
[Crossref]

X. Liu, X. Wang, and W. Shun, “Luminescence properties of the Ce3+ ion in yttrium gallium garnet,” Phys. Status Solidi101(2), K161–K165 (1987) (a).
[Crossref]

Wickersheim, K. A.

G. F. Herrmann, J. J. Pearson, K. A. Wickersheim, and R. A. Buchanan, “Crystal FIELD EFFECTS for Ce3+ and Yb3+ in the Garnets,” J. Appl. Phys. 37(3), 1312 (1966).
[Crossref]

Wierzbicka, A.

I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
[Crossref]

Wittlin, A.

I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
[Crossref]

H. Przybylińska, A. Wittlin, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, Yu. Zorenko, M. Nikl, V. Gorbenko, A. Fedorov, M. Kučera, and A. Suchocki, “Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+ multicenter structure,” Opt. Mater. 36(9), 1515–1519 (2014).
[Crossref]

H. Przybylińska, C.-G. Ma, M. G. Brik, A. Kamińska, J. Szczepkowski, P. Sybilski, A. Wittlin, M. Berkowski, W. Jastrzębski, and A. Suchocki, “Evidence of multicenter structure of cerium ions in gadolinium gallium garnet crystals studied by infrared absorption spectroscopy,” Phys. Rev. B 87(4), 045114 (2013).
[Crossref]

H. Przybylinska, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, A. Wittlin, M. Berkowski, Yu. Zorenko, V. Gorbenko, H. Wrzesinski, and A. Suchocki, “Electronic structure of Ce3+ multicenters in yttrium aluminum garnets,” Appl. Phys. Lett. 102(24), 241112 (2013).
[Crossref]

Wojtowicz, A. J.

Wrzesinski, H.

H. Przybylinska, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, A. Wittlin, M. Berkowski, Yu. Zorenko, V. Gorbenko, H. Wrzesinski, and A. Suchocki, “Electronic structure of Ce3+ multicenters in yttrium aluminum garnets,” Appl. Phys. Lett. 102(24), 241112 (2013).
[Crossref]

Yanagida, T.

K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Fujimoto, A. Fukabori, and A. Yoshikawa, “Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds,” J. Phys. D Appl. Phys. 44(50), 505104 (2011).
[Crossref]

Yoshikawa, A.

K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Fujimoto, A. Fukabori, and A. Yoshikawa, “Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds,” J. Phys. D Appl. Phys. 44(50), 505104 (2011).
[Crossref]

M. Nikl, J. Pejchal, E. Mihokova, J. A. Mares, H. Ogino, A. Yoshikawa, T. Fukuda, A. Vedda, and C. D’Ambrosio, “Antisite defect-free Lu3(GaxAl1-x)5O12:Pr scintillator,” Appl. Phys. Lett. 88(14), 141916 (2006).
[Crossref]

Yu, F.

F. Yu, D. Yuan, X. Cheng, X. Duan, X. Wang, L. Kong, L. Wang, and Z. Li, “Preparation and characterization of yttrium garnet nanoparticles by citrate sol-gel method at low temperature,” Mater. Lett. 61(11–12), 2322–2324 (2007).
[Crossref]

Yuan, D.

F. Yu, D. Yuan, X. Cheng, X. Duan, X. Wang, L. Kong, L. Wang, and Z. Li, “Preparation and characterization of yttrium garnet nanoparticles by citrate sol-gel method at low temperature,” Mater. Lett. 61(11–12), 2322–2324 (2007).
[Crossref]

Zhekov, W. I.

N. I. Agladze, Ch. C. Bagdasarov, E. A. Vinogradov, W. I. Zhekov, T. M. Murina, M. H. Popowa, and E. A. Fedorov, “Shape of spectral lines in garnets (Y1-xREx)3Al5O12,” Кристаллография33(4), 912–919 (1988) (in Russian).

Zorenko, Y.

V. V. Laguta, A. M. Slipenyuk, M. D. Glinchuk, I. P. Bykov, Y. Zorenko, M. Nikl, J. Rosa, and K. Nejezchleb, “Paramagnetic impurity defects in LuAG:Ce thick film scintillators,” Rad. Measur. 42(4–5), 835–838 (2007).
[Crossref]

Zorenko, Yu.

H. Przybylińska, A. Wittlin, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, Yu. Zorenko, M. Nikl, V. Gorbenko, A. Fedorov, M. Kučera, and A. Suchocki, “Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+ multicenter structure,” Opt. Mater. 36(9), 1515–1519 (2014).
[Crossref]

H. Przybylinska, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, A. Wittlin, M. Berkowski, Yu. Zorenko, V. Gorbenko, H. Wrzesinski, and A. Suchocki, “Electronic structure of Ce3+ multicenters in yttrium aluminum garnets,” Appl. Phys. Lett. 102(24), 241112 (2013).
[Crossref]

Zytkiewicz, Z.

I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
[Crossref]

Appl. Phys. Lett. (2)

H. Przybylinska, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, A. Wittlin, M. Berkowski, Yu. Zorenko, V. Gorbenko, H. Wrzesinski, and A. Suchocki, “Electronic structure of Ce3+ multicenters in yttrium aluminum garnets,” Appl. Phys. Lett. 102(24), 241112 (2013).
[Crossref]

M. Nikl, J. Pejchal, E. Mihokova, J. A. Mares, H. Ogino, A. Yoshikawa, T. Fukuda, A. Vedda, and C. D’Ambrosio, “Antisite defect-free Lu3(GaxAl1-x)5O12:Pr scintillator,” Appl. Phys. Lett. 88(14), 141916 (2006).
[Crossref]

Chem. Phys. Lett. (1)

W. Nie, G. Boulon, and A. Montail, “Zero-phonon lines and energy transfer between chromium (III) and neodymium (III) multisites in yttrium aluminium garnet (YAG),” Chem. Phys. Lett. 164(1), 106–112 (1989).
[Crossref]

J. Appl. Phys. (2)

G. F. Herrmann, J. J. Pearson, K. A. Wickersheim, and R. A. Buchanan, “Crystal FIELD EFFECTS for Ce3+ and Yb3+ in the Garnets,” J. Appl. Phys. 37(3), 1312 (1966).
[Crossref]

V. Monteseguro, P. Rodríguez-Hernández, V. Lavín, F. J. Manjón, and A. Muñoz, “Electronic and elastic proeprties of yttrium gallium garnet under pressure from ab initio studies,” J. Appl. Phys. 113(18), 183505 (2013).
[Crossref]

J. Cryst. Growth (1)

C. D. Brandle and R. L. Barns, “Crystal stoichiometry of Czochralski grown rare-earth gallium garnets,” J. Cryst. Growth 26(1), 169–170 (1974).
[Crossref]

J. Lumin. (1)

I. I. Syvorotka, D. Sugak, A. Wierzbicka, A. Wittlin, H. Przybylińska, J. Barzowska, A. Barcz, M. Berkowski, J. Domagała, S. Mahlik, M. Grinberg, C.-G. Ma, M. G. Brik, A. Kamińska, Z. Zytkiewicz, and A. Suchocki, “Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers,” J. Lumin. 164, 31–37 (2015).
[Crossref]

J. Mater. Chem. (1)

A. B. Munoz-Garcia, Z. Barandiaran, and L. Seijo, “Antisite defects in Ce-doped YAG (Y3Al5O12): first-principles study on structure and 4f-5d transitions,” J. Mater. Chem. 22(37), 19888–19897 (2012).
[Crossref]

J. Mater. Res. (1)

Z. M. Seeley, N. J. Cherepy, and S. A. Payne, “Expanded phase stability of Gd-based garnet transparent ceramic scintillators,” J. Mater. Res. 29(19), 2332–2337 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Fujimoto, A. Fukabori, and A. Yoshikawa, “Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds,” J. Phys. D Appl. Phys. 44(50), 505104 (2011).
[Crossref]

J. Solid State Chem. (1)

L. Suchow, M. Kokta, and V. J. Flynn, “New garnet compounds with trivalent rare-earth ions on both dodecahedral and octahedral sites,” J. Solid State Chem. 2(2), 137–143 (1970).
[Crossref]

Mater. Lett. (1)

F. Yu, D. Yuan, X. Cheng, X. Duan, X. Wang, L. Kong, L. Wang, and Z. Li, “Preparation and characterization of yttrium garnet nanoparticles by citrate sol-gel method at low temperature,” Mater. Lett. 61(11–12), 2322–2324 (2007).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

C. R. Stanek, K. J. McClellan, M. R. Levy, C. Milanese, and R. W. Grimes, “The effect of intrinsic defects on RE3Al5O12 garnet scintillator performance,” Nucl. Instrum. Methods Phys. Res. A 579(1), 27–30 (2007).
[Crossref]

Opt. Mater. (2)

H. Przybylińska, A. Wittlin, C.-G. Ma, M. G. Brik, A. Kamińska, P. Sybilski, Yu. Zorenko, M. Nikl, V. Gorbenko, A. Fedorov, M. Kučera, and A. Suchocki, “Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+ multicenter structure,” Opt. Mater. 36(9), 1515–1519 (2014).
[Crossref]

A. Lupei, V. Lupei, C. Gheorghe, S. Hau, and A. Ikesue, “Multicenter in Ce3+ visible emission of YAG ceramics,” Opt. Mater. 37, 727–733 (2014).
[Crossref]

Phys. Chem. Chem. Phys. (1)

L. Seijo and Z. Barandiarán, “Large splittings of the 4f shell of Ce3+ in garnets,” Phys. Chem. Chem. Phys. 16(8), 3830–3834 (2014).
[Crossref] [PubMed]

Phys. Rev. (1)

S. P. Keller and G. D. Tettit, “Visible luminescence of rare-earth yttrium gallium garnets,” Phys. Rev. 121(6), 1639–1648 (1961).
[Crossref]

Phys. Rev. B (2)

A. Kamińska, A. Duzynska, M. Berkowski, S. Trushkin, and A. Suchocki, “Pressure-induced luminescence of cerium-doped gadolinium gallium garnet crystal,” Phys. Rev. B 85(15), 155111 (2012).
[Crossref]

H. Przybylińska, C.-G. Ma, M. G. Brik, A. Kamińska, J. Szczepkowski, P. Sybilski, A. Wittlin, M. Berkowski, W. Jastrzębski, and A. Suchocki, “Evidence of multicenter structure of cerium ions in gadolinium gallium garnet crystals studied by infrared absorption spectroscopy,” Phys. Rev. B 87(4), 045114 (2013).
[Crossref]

Phys. Rev. B Condens. Matter (1)

U. Hömmerich and K. L. Bray, “Direct observation of anticrossing behavior in a luminescent Ce3+-doped system,” Phys. Rev. B Condens. Matter 51(13), 8595–8598 (1995).
[Crossref] [PubMed]

Rad. Measur. (1)

V. V. Laguta, A. M. Slipenyuk, M. D. Glinchuk, I. P. Bykov, Y. Zorenko, M. Nikl, J. Rosa, and K. Nejezchleb, “Paramagnetic impurity defects in LuAG:Ce thick film scintillators,” Rad. Measur. 42(4–5), 835–838 (2007).
[Crossref]

Other (7)

S. Geller and Z. Kristallogr, “Crystal chemistry of the garnets,” 125(1–6), 1–47 (1967).

X. Liu, X. Wang, and W. Shun, “Luminescence properties of the Ce3+ ion in yttrium gallium garnet,” Phys. Status Solidi101(2), K161–K165 (1987) (a).
[Crossref]

M. Kh. Ashurov, Yu. Voronko, V. V. Osiko, A. A. Sobol, and M. I. Timoshechkin, “Spectroscopic study of stoichiometry deviation in crystals with garnet structure,” Phys. Status Solidi42(1), 101–110 (1977) (a).
[Crossref]

Yu. K. Voronko, C. B. Gessen, A. B. Kudriavtsev, A. A. Sobol, E. B. Sorokin, C. N. Uszakov, and K. B. Tsymbal, Proc. of Institute of General Physics (IOFAN), 29, 3 (1991), in “Spectroscopy of oxide crystals for quantum electronics”, Moscow, Nauka, 1991.

N. I. Agladze, Ch. C. Bagdasarov, E. A. Vinogradov, W. I. Zhekov, T. M. Murina, M. H. Popowa, and E. A. Fedorov, “Shape of spectral lines in garnets (Y1-xREx)3Al5O12,” Кристаллография33(4), 912–919 (1988) (in Russian).

B. Z. Malkin, in: A.A. Kaplyanskii and R.M. Macfarlane (Eds.), Spectroscopy of Solids Containing Rare Earth Ions (North-Holland Publishing Company, 1987), p. 13.

http://abulafia.mt.ic.ac.uk/shannon/ptable.php

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 YGG:Ce absorption spectrum measured at 13 K in the region of Ce3+ 4f → 4f transitions.
Fig. 2
Fig. 2 Absorption spectrum of the YGG:Ce crystal, measured at 13 K in the region of Ce3+ 4f → 4f transitions between levels #1 and #7.
Fig. 3
Fig. 3 Room temperature absorption spectrum in the region of 4f-4f transitions of YGG:Ce(0.5%) crystal.
Fig. 4
Fig. 4 Temperature dependence of the UV and VIS absorption spectra of the YGG:Ce(0.5%) crystal.
Fig. 5
Fig. 5 Temperature dependence of the dipole matrix element for the two lowest f-d transition bands of YGG:Ce (0.5 mol. %). The solid lines are computer fits of Eqs. (9) to the data.
Fig. 6
Fig. 6 The pressure dependence of the PL spectra of Ce3+ in the YGG crystal. The narrow emission lines around 14000 cm−1 are due to the ruby pressure gauge. The luminescence transitions from the level #8 of the 5d state to the 2 F 7 / 2 and 2 F 5 / 2 sublevels of the 4f ground state are indicated by arrows.
Fig. 7
Fig. 7 The pressure dependence of the PL peak energies of the YGG:Ce (0.5%) crystal. The solid line is the best fit of the model to the experimental data.
Fig. 8
Fig. 8 Full width at half of maxima (FWHM) of the fitted PL luminescence 5d-4f bands as a function of pressure. Squares - higher energy band, circles – lower energy band, triangles – average.

Tables (3)

Tables Icon

Table 1 The calculated (Ecalc) and observed (Eexp) 4f crystal field energy levels of Ce3+ ions in YGG (cm−1).

Tables Icon

Table 2 The energy parameters (cm−1) for Ce3+ ions in YGG in the framework of exchange-charge model (ECM) [18]

Tables Icon

Table 3 The relative values of the Skl coefficients in Eqs. (2) obtained from the computer fits.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

H (4f 1 ) = E a v g + ζ 4 f s f l f + B 0 2 ( f ) C 0 ( 2 ) + B 2 2 ( f ) ( C 2 ( 2 ) + C 2 ( 2 ) ) + B 0 4 ( f ) C 0 ( 4 ) + B 2 4 ( f ) ( C 2 ( 4 ) + C 2 ( 4 ) ) + B 4 4 ( f ) ( C 4 ( 4 ) + C 4 ( 4 ) ) , + B 0 6 ( f ) C 0 ( 6 ) + B 2 6 ( f ) ( C 2 ( 6 ) + C 2 ( 6 ) ) + B 4 6 ( f ) ( C 4 ( 6 ) + C 4 ( 6 ) )
H (5d 1 ) = Δ E ( fd ) + ζ 5 d s d l d + B 0 2 ( d ) C 0 ( 2 ) + B 2 2 ( d ) ( C 2 ( 2 ) + C 2 ( 2 ) ) , + B 0 4 ( d ) C 0 ( 4 ) + B 2 4 ( d ) ( C 2 ( 4 ) + C 2 ( 4 ) ) + B 4 4 ( d ) ( C 4 ( 4 ) + C 4 ( 4 ) )
B q k ( n l ) = B q ( pc ) k ( n l ) + B q ( ec ) k ( n l )
B q ( pc ) k ( n l ) = e 2 n l | r k | n l i q i β k ( 1 ) k C q k ( θ i , φ i ) / R i k + 1 ,
B q ( ec ) k ( n l ) = e 2 2 ( 2 k + 1 ) 2 l + 1 L S k n l ( R L ) ( 1 ) k C q k ( θ L , φ L ) / R L .
S k n l ( R L ) = G s n l S s n l ( R L ) 2 + G σ n l S σ n l ( R L ) 2 + γ k n l G π n l S π n l ( R L ) 2
B q ( c o r r ) 2 ( n l ) = α B q ( p c ) 2 ( n l ) .
M = αωdω
I ( 352 n m ) = A 352 S 19 ϑ 19 + S 29 ϑ 29 exp ( Δ E k B T ) 1 + exp ( Δ E k B T ) ; I ( 416 n m ) = A 416 S 18 ϑ 18 + S 28 ϑ 28 exp ( Δ E k B T ) 1 + exp ( Δ E k B T ) .
E P L ( 0 ) =   E 5 d 1 ( 0 ) + 1 2 [ p ( k 5 d + k C B ) Δ E ( 0 ) [ Δ E ( 0 ) + p ( k 5 d + k C B ) ] 2 + 4 V 2 ] ,

Metrics