Abstract

GaP/AlGaP multilayers were grown directly on Si to form a single crystalline mirror with very low mechanical loss. The effects of growth initiation, nucleation layers, and growth variations on antiphase domains and overall film quality were investigated. Using the conditions which yielded smooth nucleation layers and fewer antiphase domains, GaP/AlGaP mirror pairs were grown. These epitaxially-integrated mirrors on Si have potential use in gravitational wave detection, relying on precision interferometric sensing, which requires extremely low mechanical loss in the optical cavities.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of growth temperature on the structural and optical properties of few-layer hexagonal boron nitride by molecular beam epitaxy

David Arto Laleyan, Kelsey Mengle, Songrui Zhao, Yongjie Wang, Emmanouil Kioupakis, and Zetian Mi
Opt. Express 26(18) 23031-23039 (2018)

1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates

Ting Wang, Huiyun Liu, Andrew Lee, Francesca Pozzi, and Alwyn Seeds
Opt. Express 19(12) 11381-11386 (2011)

High-performance near- and mid-infrared crystalline coatings

Garrett D. Cole, Wei Zhang, Bryce J. Bjork, David Follman, Paula Heu, Christoph Deutsch, Lindsay Sonderhouse, John Robinson, Chris Franz, Alexei Alexandrovski, Mark Notcutt, Oliver H. Heckl, Jun Ye, and Markus Aspelmeyer
Optica 3(6) 647-656 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Rowan, J. Hough, and D. Crooks, “Thermal noise and material issues for gravitational wave detectors,” Phys. Lett. A 347(1-3), 25–32 (2005).
    [Crossref]
  2. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
    [Crossref]
  3. G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
    [Crossref]
  4. A. V. Cumming, K. Craig, I. W. Martin, R. Bassiri, L. Cunningham, M. M. Fejer, J. S. Harris, K. Haughian, D. Heinert, B. Lantz, A. C. Lin, A. S. Markosyan, R. Nawrodt, R. Route, and S. Rowan, “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Gravity 32(3), 035002 (2015).
    [Crossref]
  5. P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D Part. Fields 42(8), 2437–2445 (1990).
    [Crossref] [PubMed]
  6. G. M. Harry, H. Armandula, E. Black, D. R. Crooks, G. Cagnoli, J. Hough, P. Murray, S. Reid, S. Rowan, P. Sneddon, M. M. Fejer, R. Route, and S. D. Penn, “Thermal noise from optical coatings in gravitational wave detectors,” Appl. Opt. 45(7), 1569–1574 (2006).
    [Crossref] [PubMed]
  7. P. Dumas, Y. J. Chabal, and P. Jakob, “Morphology of hydrogen-terminated Si (111) and Si (100) surface upon etching in HF and buffered-HF solutions,” Surf. Sci. 269-270, 867–878 (1992).
    [Crossref]
  8. L. Zhong, A. Hojo, Y. Matsushita, Y. Aiba, K. Hayashi, R. Takeda, H. Shirai, H. Saito, J. Matsushita, and J. Yoshikawa, “Evidence of spontaneous formation of steps on silicon (100),” Phys. Rev. B Condens. Matter 54(4), R2304–R2307 (1996).
    [Crossref] [PubMed]
  9. S. Wright, H. Kroemer, and M. Inada, “Molecular beam epitaxial growth of GaP on Si,” J. Appl. Phys. 55(8), 2916–2927 (1984).
    [Crossref]
  10. M. Sadeghi and S. Wang, “Growth of GaP on Si substrates by solid-source molecular beam epitaxy,” J. Cryst. Growth 227-228, 279–283 (2001).
    [Crossref]
  11. X. Yu, P. Kuo, K. Ma, O. Levi, M. Fejer, and J. Harris., “Single-phase growth studies of GaP on Si by solid-source molecular beam epitaxy,” J. Vac. Sci. Technol. B 22(3), 1450–1454 (2004).
    [Crossref]
  12. A. C. Lin, M. M. Fejer, and J. S. Harris, “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363, 258–263 (2013).
    [Crossref]
  13. G. Chen, D. Cheng, R. F. Hicks, A. M. Noori, S. L. Hayashi, M. S. Goorsky, R. Kanjolia, and R. Odedra, “Metalorganic vapor-phase epitaxy of III/V phosphides with tertiarybutylphosphine and tertiarybutylarsine,” J. Cryst. Growth 270(3-4), 322–328 (2004).
    [Crossref]
  14. J. Geisz, R. Reedy, B. Keyes, and W. Metzger, “Unintentional carbon and hydrogen incorporation in GaNP grown by metal-organic chemical vapor deposition,” J. Cryst. Growth 259(3), 223–231 (2003).
    [Crossref]
  15. T. Suzuki, T. Soga, T. Jimbo, and M. Umeno, “Growth mechanism of GaP on Si substrate by MOVPE,” J. Cryst. Growth 115(1-4), 158–163 (1991).
    [Crossref]
  16. V. K. Dixit, T. Ganguli, T. K. Sharma, S. D. Singh, R. Kumar, S. Porwal, P. Tiwari, A. Ingale, and S. M. Oak, “Effect of two-step growth process on structural, optical and electrical properties of MOVPE-grown GaP/Si,” J. Cryst. Growth 310(15), 3428–3435 (2008).
    [Crossref]
  17. K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
    [Crossref]
  18. T. J. Grassman, J. A. Carlin, B. Galiana, L. M. Yang, F. Yang, M. J. Mills, and S. A. Ringel, “Nucleation-related defect-free GaP/Si (100) heteroepitaxy via metal-organic chemical vapor deposition,” Appl. Phys. Lett. 102(14), 142102 (2013).
    [Crossref]
  19. B. Kunert, I. Nemeth, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films 517(1), 140–143 (2008).
    [Crossref]
  20. A. Pikhtin and D. Yas’Kov, “Dispersion of the index of refraction of gallium phosphide,” Sov. Phys. Sol. State 9(1), 107–109 (1967).
  21. T. Kuan and C. Chang, “Electron microscope studies of a Ge–GaAs superlattice grown by molecular beam epitaxy,” J. Appl. Phys. 54(8), 4408–4413 (1983).
    [Crossref]
  22. I. Nemeth, B. Kunert, W. Stolz, and K. Volz, “Ways to quantitatively detect antiphase disorder in GaP films grown on Si (001) by transmission electron microscopy,” J. Cryst. Growth 310(23), 4763–4767 (2008).
    [Crossref]
  23. A. Alexandrovski, M. Fejer, A. Markosyan, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
    [Crossref]
  24. K. Yamane, T. Kobayashi, Y. Furukawa, H. Okada, H. Yonezu, and A. Wakahara, “Growth of pit-free GaP on Si by suppression of a surface reaction at an initial growth stage,” J. Cryst. Growth 311(3), 794–797 (2009).
    [Crossref]
  25. O. Rubel and S. D. Baranovskii, “Formation Energies of Antiphase Boundaries in GaAs and GaP: An ab Initio Study,” Int. J. Mol. Sci. 10(12), 5104–5114 (2009).
    [Crossref] [PubMed]
  26. R. Bringans, “Arsenic passivation of Si and Ge surfaces,” Cr. Rev. Sol. State 17(4), 353–395 (1992).
    [Crossref]
  27. R. M. Tromp and M. C. Reuter, “Local dimer exchange in surfactant-mediated epitaxial growth,” Phys. Rev. Lett. 68(7), 954–957 (1992).
    [Crossref] [PubMed]
  28. G. Harry, M. Abernathy, A. Becerra-Toledo, H. Armandula, E. Black, K. Dooley, M. Eichenfeld, C. Nwabugwu, A. Villar, and D. Crooks, “Titania-doped tantala/silica coatings for gravitational-wave detection,” Class. Quantum Gravity 24(2), 405–415 (2007).
    [Crossref]

2015 (1)

A. V. Cumming, K. Craig, I. W. Martin, R. Bassiri, L. Cunningham, M. M. Fejer, J. S. Harris, K. Haughian, D. Heinert, B. Lantz, A. C. Lin, A. S. Markosyan, R. Nawrodt, R. Route, and S. Rowan, “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Gravity 32(3), 035002 (2015).
[Crossref]

2013 (3)

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

A. C. Lin, M. M. Fejer, and J. S. Harris, “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363, 258–263 (2013).
[Crossref]

T. J. Grassman, J. A. Carlin, B. Galiana, L. M. Yang, F. Yang, M. J. Mills, and S. A. Ringel, “Nucleation-related defect-free GaP/Si (100) heteroepitaxy via metal-organic chemical vapor deposition,” Appl. Phys. Lett. 102(14), 142102 (2013).
[Crossref]

2012 (1)

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

2011 (1)

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

2009 (3)

A. Alexandrovski, M. Fejer, A. Markosyan, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[Crossref]

K. Yamane, T. Kobayashi, Y. Furukawa, H. Okada, H. Yonezu, and A. Wakahara, “Growth of pit-free GaP on Si by suppression of a surface reaction at an initial growth stage,” J. Cryst. Growth 311(3), 794–797 (2009).
[Crossref]

O. Rubel and S. D. Baranovskii, “Formation Energies of Antiphase Boundaries in GaAs and GaP: An ab Initio Study,” Int. J. Mol. Sci. 10(12), 5104–5114 (2009).
[Crossref] [PubMed]

2008 (3)

B. Kunert, I. Nemeth, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films 517(1), 140–143 (2008).
[Crossref]

V. K. Dixit, T. Ganguli, T. K. Sharma, S. D. Singh, R. Kumar, S. Porwal, P. Tiwari, A. Ingale, and S. M. Oak, “Effect of two-step growth process on structural, optical and electrical properties of MOVPE-grown GaP/Si,” J. Cryst. Growth 310(15), 3428–3435 (2008).
[Crossref]

I. Nemeth, B. Kunert, W. Stolz, and K. Volz, “Ways to quantitatively detect antiphase disorder in GaP films grown on Si (001) by transmission electron microscopy,” J. Cryst. Growth 310(23), 4763–4767 (2008).
[Crossref]

2007 (1)

G. Harry, M. Abernathy, A. Becerra-Toledo, H. Armandula, E. Black, K. Dooley, M. Eichenfeld, C. Nwabugwu, A. Villar, and D. Crooks, “Titania-doped tantala/silica coatings for gravitational-wave detection,” Class. Quantum Gravity 24(2), 405–415 (2007).
[Crossref]

2006 (1)

2005 (1)

S. Rowan, J. Hough, and D. Crooks, “Thermal noise and material issues for gravitational wave detectors,” Phys. Lett. A 347(1-3), 25–32 (2005).
[Crossref]

2004 (2)

X. Yu, P. Kuo, K. Ma, O. Levi, M. Fejer, and J. Harris., “Single-phase growth studies of GaP on Si by solid-source molecular beam epitaxy,” J. Vac. Sci. Technol. B 22(3), 1450–1454 (2004).
[Crossref]

G. Chen, D. Cheng, R. F. Hicks, A. M. Noori, S. L. Hayashi, M. S. Goorsky, R. Kanjolia, and R. Odedra, “Metalorganic vapor-phase epitaxy of III/V phosphides with tertiarybutylphosphine and tertiarybutylarsine,” J. Cryst. Growth 270(3-4), 322–328 (2004).
[Crossref]

2003 (1)

J. Geisz, R. Reedy, B. Keyes, and W. Metzger, “Unintentional carbon and hydrogen incorporation in GaNP grown by metal-organic chemical vapor deposition,” J. Cryst. Growth 259(3), 223–231 (2003).
[Crossref]

2001 (1)

M. Sadeghi and S. Wang, “Growth of GaP on Si substrates by solid-source molecular beam epitaxy,” J. Cryst. Growth 227-228, 279–283 (2001).
[Crossref]

1996 (1)

L. Zhong, A. Hojo, Y. Matsushita, Y. Aiba, K. Hayashi, R. Takeda, H. Shirai, H. Saito, J. Matsushita, and J. Yoshikawa, “Evidence of spontaneous formation of steps on silicon (100),” Phys. Rev. B Condens. Matter 54(4), R2304–R2307 (1996).
[Crossref] [PubMed]

1992 (3)

P. Dumas, Y. J. Chabal, and P. Jakob, “Morphology of hydrogen-terminated Si (111) and Si (100) surface upon etching in HF and buffered-HF solutions,” Surf. Sci. 269-270, 867–878 (1992).
[Crossref]

R. Bringans, “Arsenic passivation of Si and Ge surfaces,” Cr. Rev. Sol. State 17(4), 353–395 (1992).
[Crossref]

R. M. Tromp and M. C. Reuter, “Local dimer exchange in surfactant-mediated epitaxial growth,” Phys. Rev. Lett. 68(7), 954–957 (1992).
[Crossref] [PubMed]

1991 (1)

T. Suzuki, T. Soga, T. Jimbo, and M. Umeno, “Growth mechanism of GaP on Si substrate by MOVPE,” J. Cryst. Growth 115(1-4), 158–163 (1991).
[Crossref]

1990 (1)

P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D Part. Fields 42(8), 2437–2445 (1990).
[Crossref] [PubMed]

1984 (1)

S. Wright, H. Kroemer, and M. Inada, “Molecular beam epitaxial growth of GaP on Si,” J. Appl. Phys. 55(8), 2916–2927 (1984).
[Crossref]

1983 (1)

T. Kuan and C. Chang, “Electron microscope studies of a Ge–GaAs superlattice grown by molecular beam epitaxy,” J. Appl. Phys. 54(8), 4408–4413 (1983).
[Crossref]

1967 (1)

A. Pikhtin and D. Yas’Kov, “Dispersion of the index of refraction of gallium phosphide,” Sov. Phys. Sol. State 9(1), 107–109 (1967).

Abernathy, M.

G. Harry, M. Abernathy, A. Becerra-Toledo, H. Armandula, E. Black, K. Dooley, M. Eichenfeld, C. Nwabugwu, A. Villar, and D. Crooks, “Titania-doped tantala/silica coatings for gravitational-wave detection,” Class. Quantum Gravity 24(2), 405–415 (2007).
[Crossref]

Aiba, Y.

L. Zhong, A. Hojo, Y. Matsushita, Y. Aiba, K. Hayashi, R. Takeda, H. Shirai, H. Saito, J. Matsushita, and J. Yoshikawa, “Evidence of spontaneous formation of steps on silicon (100),” Phys. Rev. B Condens. Matter 54(4), R2304–R2307 (1996).
[Crossref] [PubMed]

Alexandrovski, A.

A. Alexandrovski, M. Fejer, A. Markosyan, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[Crossref]

Armandula, H.

G. Harry, M. Abernathy, A. Becerra-Toledo, H. Armandula, E. Black, K. Dooley, M. Eichenfeld, C. Nwabugwu, A. Villar, and D. Crooks, “Titania-doped tantala/silica coatings for gravitational-wave detection,” Class. Quantum Gravity 24(2), 405–415 (2007).
[Crossref]

G. M. Harry, H. Armandula, E. Black, D. R. Crooks, G. Cagnoli, J. Hough, P. Murray, S. Reid, S. Rowan, P. Sneddon, M. M. Fejer, R. Route, and S. D. Penn, “Thermal noise from optical coatings in gravitational wave detectors,” Appl. Opt. 45(7), 1569–1574 (2006).
[Crossref] [PubMed]

Aspelmeyer, M.

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Baranovskii, S. D.

O. Rubel and S. D. Baranovskii, “Formation Energies of Antiphase Boundaries in GaAs and GaP: An ab Initio Study,” Int. J. Mol. Sci. 10(12), 5104–5114 (2009).
[Crossref] [PubMed]

Bassiri, R.

A. V. Cumming, K. Craig, I. W. Martin, R. Bassiri, L. Cunningham, M. M. Fejer, J. S. Harris, K. Haughian, D. Heinert, B. Lantz, A. C. Lin, A. S. Markosyan, R. Nawrodt, R. Route, and S. Rowan, “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Gravity 32(3), 035002 (2015).
[Crossref]

Becerra-Toledo, A.

G. Harry, M. Abernathy, A. Becerra-Toledo, H. Armandula, E. Black, K. Dooley, M. Eichenfeld, C. Nwabugwu, A. Villar, and D. Crooks, “Titania-doped tantala/silica coatings for gravitational-wave detection,” Class. Quantum Gravity 24(2), 405–415 (2007).
[Crossref]

Beyer, A.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

Black, E.

G. Harry, M. Abernathy, A. Becerra-Toledo, H. Armandula, E. Black, K. Dooley, M. Eichenfeld, C. Nwabugwu, A. Villar, and D. Crooks, “Titania-doped tantala/silica coatings for gravitational-wave detection,” Class. Quantum Gravity 24(2), 405–415 (2007).
[Crossref]

G. M. Harry, H. Armandula, E. Black, D. R. Crooks, G. Cagnoli, J. Hough, P. Murray, S. Reid, S. Rowan, P. Sneddon, M. M. Fejer, R. Route, and S. D. Penn, “Thermal noise from optical coatings in gravitational wave detectors,” Appl. Opt. 45(7), 1569–1574 (2006).
[Crossref] [PubMed]

Bringans, R.

R. Bringans, “Arsenic passivation of Si and Ge surfaces,” Cr. Rev. Sol. State 17(4), 353–395 (1992).
[Crossref]

Cagnoli, G.

Carlin, J. A.

T. J. Grassman, J. A. Carlin, B. Galiana, L. M. Yang, F. Yang, M. J. Mills, and S. A. Ringel, “Nucleation-related defect-free GaP/Si (100) heteroepitaxy via metal-organic chemical vapor deposition,” Appl. Phys. Lett. 102(14), 142102 (2013).
[Crossref]

Chabal, Y. J.

P. Dumas, Y. J. Chabal, and P. Jakob, “Morphology of hydrogen-terminated Si (111) and Si (100) surface upon etching in HF and buffered-HF solutions,” Surf. Sci. 269-270, 867–878 (1992).
[Crossref]

Chang, C.

T. Kuan and C. Chang, “Electron microscope studies of a Ge–GaAs superlattice grown by molecular beam epitaxy,” J. Appl. Phys. 54(8), 4408–4413 (1983).
[Crossref]

Chen, G.

G. Chen, D. Cheng, R. F. Hicks, A. M. Noori, S. L. Hayashi, M. S. Goorsky, R. Kanjolia, and R. Odedra, “Metalorganic vapor-phase epitaxy of III/V phosphides with tertiarybutylphosphine and tertiarybutylarsine,” J. Cryst. Growth 270(3-4), 322–328 (2004).
[Crossref]

Chen, L.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Cheng, D.

G. Chen, D. Cheng, R. F. Hicks, A. M. Noori, S. L. Hayashi, M. S. Goorsky, R. Kanjolia, and R. Odedra, “Metalorganic vapor-phase epitaxy of III/V phosphides with tertiarybutylphosphine and tertiarybutylarsine,” J. Cryst. Growth 270(3-4), 322–328 (2004).
[Crossref]

Cole, G. D.

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Craig, K.

A. V. Cumming, K. Craig, I. W. Martin, R. Bassiri, L. Cunningham, M. M. Fejer, J. S. Harris, K. Haughian, D. Heinert, B. Lantz, A. C. Lin, A. S. Markosyan, R. Nawrodt, R. Route, and S. Rowan, “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Gravity 32(3), 035002 (2015).
[Crossref]

Crooks, D.

G. Harry, M. Abernathy, A. Becerra-Toledo, H. Armandula, E. Black, K. Dooley, M. Eichenfeld, C. Nwabugwu, A. Villar, and D. Crooks, “Titania-doped tantala/silica coatings for gravitational-wave detection,” Class. Quantum Gravity 24(2), 405–415 (2007).
[Crossref]

S. Rowan, J. Hough, and D. Crooks, “Thermal noise and material issues for gravitational wave detectors,” Phys. Lett. A 347(1-3), 25–32 (2005).
[Crossref]

Crooks, D. R.

Cumming, A. V.

A. V. Cumming, K. Craig, I. W. Martin, R. Bassiri, L. Cunningham, M. M. Fejer, J. S. Harris, K. Haughian, D. Heinert, B. Lantz, A. C. Lin, A. S. Markosyan, R. Nawrodt, R. Route, and S. Rowan, “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Gravity 32(3), 035002 (2015).
[Crossref]

Cunningham, L.

A. V. Cumming, K. Craig, I. W. Martin, R. Bassiri, L. Cunningham, M. M. Fejer, J. S. Harris, K. Haughian, D. Heinert, B. Lantz, A. C. Lin, A. S. Markosyan, R. Nawrodt, R. Route, and S. Rowan, “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Gravity 32(3), 035002 (2015).
[Crossref]

Dixit, V. K.

V. K. Dixit, T. Ganguli, T. K. Sharma, S. D. Singh, R. Kumar, S. Porwal, P. Tiwari, A. Ingale, and S. M. Oak, “Effect of two-step growth process on structural, optical and electrical properties of MOVPE-grown GaP/Si,” J. Cryst. Growth 310(15), 3428–3435 (2008).
[Crossref]

Dooley, K.

G. Harry, M. Abernathy, A. Becerra-Toledo, H. Armandula, E. Black, K. Dooley, M. Eichenfeld, C. Nwabugwu, A. Villar, and D. Crooks, “Titania-doped tantala/silica coatings for gravitational-wave detection,” Class. Quantum Gravity 24(2), 405–415 (2007).
[Crossref]

Dumas, P.

P. Dumas, Y. J. Chabal, and P. Jakob, “Morphology of hydrogen-terminated Si (111) and Si (100) surface upon etching in HF and buffered-HF solutions,” Surf. Sci. 269-270, 867–878 (1992).
[Crossref]

Eichenfeld, M.

G. Harry, M. Abernathy, A. Becerra-Toledo, H. Armandula, E. Black, K. Dooley, M. Eichenfeld, C. Nwabugwu, A. Villar, and D. Crooks, “Titania-doped tantala/silica coatings for gravitational-wave detection,” Class. Quantum Gravity 24(2), 405–415 (2007).
[Crossref]

Fejer, M.

A. Alexandrovski, M. Fejer, A. Markosyan, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[Crossref]

X. Yu, P. Kuo, K. Ma, O. Levi, M. Fejer, and J. Harris., “Single-phase growth studies of GaP on Si by solid-source molecular beam epitaxy,” J. Vac. Sci. Technol. B 22(3), 1450–1454 (2004).
[Crossref]

Fejer, M. M.

A. V. Cumming, K. Craig, I. W. Martin, R. Bassiri, L. Cunningham, M. M. Fejer, J. S. Harris, K. Haughian, D. Heinert, B. Lantz, A. C. Lin, A. S. Markosyan, R. Nawrodt, R. Route, and S. Rowan, “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Gravity 32(3), 035002 (2015).
[Crossref]

A. C. Lin, M. M. Fejer, and J. S. Harris, “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363, 258–263 (2013).
[Crossref]

G. M. Harry, H. Armandula, E. Black, D. R. Crooks, G. Cagnoli, J. Hough, P. Murray, S. Reid, S. Rowan, P. Sneddon, M. M. Fejer, R. Route, and S. D. Penn, “Thermal noise from optical coatings in gravitational wave detectors,” Appl. Opt. 45(7), 1569–1574 (2006).
[Crossref] [PubMed]

Furukawa, Y.

K. Yamane, T. Kobayashi, Y. Furukawa, H. Okada, H. Yonezu, and A. Wakahara, “Growth of pit-free GaP on Si by suppression of a surface reaction at an initial growth stage,” J. Cryst. Growth 311(3), 794–797 (2009).
[Crossref]

Galiana, B.

T. J. Grassman, J. A. Carlin, B. Galiana, L. M. Yang, F. Yang, M. J. Mills, and S. A. Ringel, “Nucleation-related defect-free GaP/Si (100) heteroepitaxy via metal-organic chemical vapor deposition,” Appl. Phys. Lett. 102(14), 142102 (2013).
[Crossref]

Ganguli, T.

V. K. Dixit, T. Ganguli, T. K. Sharma, S. D. Singh, R. Kumar, S. Porwal, P. Tiwari, A. Ingale, and S. M. Oak, “Effect of two-step growth process on structural, optical and electrical properties of MOVPE-grown GaP/Si,” J. Cryst. Growth 310(15), 3428–3435 (2008).
[Crossref]

Geisz, J.

J. Geisz, R. Reedy, B. Keyes, and W. Metzger, “Unintentional carbon and hydrogen incorporation in GaNP grown by metal-organic chemical vapor deposition,” J. Cryst. Growth 259(3), 223–231 (2003).
[Crossref]

Goorsky, M. S.

G. Chen, D. Cheng, R. F. Hicks, A. M. Noori, S. L. Hayashi, M. S. Goorsky, R. Kanjolia, and R. Odedra, “Metalorganic vapor-phase epitaxy of III/V phosphides with tertiarybutylphosphine and tertiarybutylarsine,” J. Cryst. Growth 270(3-4), 322–328 (2004).
[Crossref]

Grassman, T. J.

T. J. Grassman, J. A. Carlin, B. Galiana, L. M. Yang, F. Yang, M. J. Mills, and S. A. Ringel, “Nucleation-related defect-free GaP/Si (100) heteroepitaxy via metal-organic chemical vapor deposition,” Appl. Phys. Lett. 102(14), 142102 (2013).
[Crossref]

Grebing, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Hagemann, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Harris, J.

X. Yu, P. Kuo, K. Ma, O. Levi, M. Fejer, and J. Harris., “Single-phase growth studies of GaP on Si by solid-source molecular beam epitaxy,” J. Vac. Sci. Technol. B 22(3), 1450–1454 (2004).
[Crossref]

Harris, J. S.

A. V. Cumming, K. Craig, I. W. Martin, R. Bassiri, L. Cunningham, M. M. Fejer, J. S. Harris, K. Haughian, D. Heinert, B. Lantz, A. C. Lin, A. S. Markosyan, R. Nawrodt, R. Route, and S. Rowan, “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Gravity 32(3), 035002 (2015).
[Crossref]

A. C. Lin, M. M. Fejer, and J. S. Harris, “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363, 258–263 (2013).
[Crossref]

Harry, G.

G. Harry, M. Abernathy, A. Becerra-Toledo, H. Armandula, E. Black, K. Dooley, M. Eichenfeld, C. Nwabugwu, A. Villar, and D. Crooks, “Titania-doped tantala/silica coatings for gravitational-wave detection,” Class. Quantum Gravity 24(2), 405–415 (2007).
[Crossref]

Harry, G. M.

Haughian, K.

A. V. Cumming, K. Craig, I. W. Martin, R. Bassiri, L. Cunningham, M. M. Fejer, J. S. Harris, K. Haughian, D. Heinert, B. Lantz, A. C. Lin, A. S. Markosyan, R. Nawrodt, R. Route, and S. Rowan, “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Gravity 32(3), 035002 (2015).
[Crossref]

Hayashi, K.

L. Zhong, A. Hojo, Y. Matsushita, Y. Aiba, K. Hayashi, R. Takeda, H. Shirai, H. Saito, J. Matsushita, and J. Yoshikawa, “Evidence of spontaneous formation of steps on silicon (100),” Phys. Rev. B Condens. Matter 54(4), R2304–R2307 (1996).
[Crossref] [PubMed]

Hayashi, S. L.

G. Chen, D. Cheng, R. F. Hicks, A. M. Noori, S. L. Hayashi, M. S. Goorsky, R. Kanjolia, and R. Odedra, “Metalorganic vapor-phase epitaxy of III/V phosphides with tertiarybutylphosphine and tertiarybutylarsine,” J. Cryst. Growth 270(3-4), 322–328 (2004).
[Crossref]

Heinert, D.

A. V. Cumming, K. Craig, I. W. Martin, R. Bassiri, L. Cunningham, M. M. Fejer, J. S. Harris, K. Haughian, D. Heinert, B. Lantz, A. C. Lin, A. S. Markosyan, R. Nawrodt, R. Route, and S. Rowan, “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Gravity 32(3), 035002 (2015).
[Crossref]

Hicks, R. F.

G. Chen, D. Cheng, R. F. Hicks, A. M. Noori, S. L. Hayashi, M. S. Goorsky, R. Kanjolia, and R. Odedra, “Metalorganic vapor-phase epitaxy of III/V phosphides with tertiarybutylphosphine and tertiarybutylarsine,” J. Cryst. Growth 270(3-4), 322–328 (2004).
[Crossref]

Hojo, A.

L. Zhong, A. Hojo, Y. Matsushita, Y. Aiba, K. Hayashi, R. Takeda, H. Shirai, H. Saito, J. Matsushita, and J. Yoshikawa, “Evidence of spontaneous formation of steps on silicon (100),” Phys. Rev. B Condens. Matter 54(4), R2304–R2307 (1996).
[Crossref] [PubMed]

Hough, J.

Inada, M.

S. Wright, H. Kroemer, and M. Inada, “Molecular beam epitaxial growth of GaP on Si,” J. Appl. Phys. 55(8), 2916–2927 (1984).
[Crossref]

Ingale, A.

V. K. Dixit, T. Ganguli, T. K. Sharma, S. D. Singh, R. Kumar, S. Porwal, P. Tiwari, A. Ingale, and S. M. Oak, “Effect of two-step growth process on structural, optical and electrical properties of MOVPE-grown GaP/Si,” J. Cryst. Growth 310(15), 3428–3435 (2008).
[Crossref]

Jakob, P.

P. Dumas, Y. J. Chabal, and P. Jakob, “Morphology of hydrogen-terminated Si (111) and Si (100) surface upon etching in HF and buffered-HF solutions,” Surf. Sci. 269-270, 867–878 (1992).
[Crossref]

Jimbo, T.

T. Suzuki, T. Soga, T. Jimbo, and M. Umeno, “Growth mechanism of GaP on Si substrate by MOVPE,” J. Cryst. Growth 115(1-4), 158–163 (1991).
[Crossref]

Kanjolia, R.

G. Chen, D. Cheng, R. F. Hicks, A. M. Noori, S. L. Hayashi, M. S. Goorsky, R. Kanjolia, and R. Odedra, “Metalorganic vapor-phase epitaxy of III/V phosphides with tertiarybutylphosphine and tertiarybutylarsine,” J. Cryst. Growth 270(3-4), 322–328 (2004).
[Crossref]

Kessler, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Keyes, B.

J. Geisz, R. Reedy, B. Keyes, and W. Metzger, “Unintentional carbon and hydrogen incorporation in GaNP grown by metal-organic chemical vapor deposition,” J. Cryst. Growth 259(3), 223–231 (2003).
[Crossref]

Kobayashi, T.

K. Yamane, T. Kobayashi, Y. Furukawa, H. Okada, H. Yonezu, and A. Wakahara, “Growth of pit-free GaP on Si by suppression of a surface reaction at an initial growth stage,” J. Cryst. Growth 311(3), 794–797 (2009).
[Crossref]

Kroemer, H.

S. Wright, H. Kroemer, and M. Inada, “Molecular beam epitaxial growth of GaP on Si,” J. Appl. Phys. 55(8), 2916–2927 (1984).
[Crossref]

Kuan, T.

T. Kuan and C. Chang, “Electron microscope studies of a Ge–GaAs superlattice grown by molecular beam epitaxy,” J. Appl. Phys. 54(8), 4408–4413 (1983).
[Crossref]

Kumar, R.

V. K. Dixit, T. Ganguli, T. K. Sharma, S. D. Singh, R. Kumar, S. Porwal, P. Tiwari, A. Ingale, and S. M. Oak, “Effect of two-step growth process on structural, optical and electrical properties of MOVPE-grown GaP/Si,” J. Cryst. Growth 310(15), 3428–3435 (2008).
[Crossref]

Kunert, B.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

B. Kunert, I. Nemeth, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films 517(1), 140–143 (2008).
[Crossref]

I. Nemeth, B. Kunert, W. Stolz, and K. Volz, “Ways to quantitatively detect antiphase disorder in GaP films grown on Si (001) by transmission electron microscopy,” J. Cryst. Growth 310(23), 4763–4767 (2008).
[Crossref]

Kuo, P.

X. Yu, P. Kuo, K. Ma, O. Levi, M. Fejer, and J. Harris., “Single-phase growth studies of GaP on Si by solid-source molecular beam epitaxy,” J. Vac. Sci. Technol. B 22(3), 1450–1454 (2004).
[Crossref]

Lantz, B.

A. V. Cumming, K. Craig, I. W. Martin, R. Bassiri, L. Cunningham, M. M. Fejer, J. S. Harris, K. Haughian, D. Heinert, B. Lantz, A. C. Lin, A. S. Markosyan, R. Nawrodt, R. Route, and S. Rowan, “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Gravity 32(3), 035002 (2015).
[Crossref]

Legero, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Levi, O.

X. Yu, P. Kuo, K. Ma, O. Levi, M. Fejer, and J. Harris., “Single-phase growth studies of GaP on Si by solid-source molecular beam epitaxy,” J. Vac. Sci. Technol. B 22(3), 1450–1454 (2004).
[Crossref]

Lin, A. C.

A. V. Cumming, K. Craig, I. W. Martin, R. Bassiri, L. Cunningham, M. M. Fejer, J. S. Harris, K. Haughian, D. Heinert, B. Lantz, A. C. Lin, A. S. Markosyan, R. Nawrodt, R. Route, and S. Rowan, “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Gravity 32(3), 035002 (2015).
[Crossref]

A. C. Lin, M. M. Fejer, and J. S. Harris, “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363, 258–263 (2013).
[Crossref]

Ma, K.

X. Yu, P. Kuo, K. Ma, O. Levi, M. Fejer, and J. Harris., “Single-phase growth studies of GaP on Si by solid-source molecular beam epitaxy,” J. Vac. Sci. Technol. B 22(3), 1450–1454 (2004).
[Crossref]

Markosyan, A.

A. Alexandrovski, M. Fejer, A. Markosyan, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[Crossref]

Markosyan, A. S.

A. V. Cumming, K. Craig, I. W. Martin, R. Bassiri, L. Cunningham, M. M. Fejer, J. S. Harris, K. Haughian, D. Heinert, B. Lantz, A. C. Lin, A. S. Markosyan, R. Nawrodt, R. Route, and S. Rowan, “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Gravity 32(3), 035002 (2015).
[Crossref]

Martin, I. W.

A. V. Cumming, K. Craig, I. W. Martin, R. Bassiri, L. Cunningham, M. M. Fejer, J. S. Harris, K. Haughian, D. Heinert, B. Lantz, A. C. Lin, A. S. Markosyan, R. Nawrodt, R. Route, and S. Rowan, “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Gravity 32(3), 035002 (2015).
[Crossref]

Martin, M.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Martin, M. J.

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Matsushita, J.

L. Zhong, A. Hojo, Y. Matsushita, Y. Aiba, K. Hayashi, R. Takeda, H. Shirai, H. Saito, J. Matsushita, and J. Yoshikawa, “Evidence of spontaneous formation of steps on silicon (100),” Phys. Rev. B Condens. Matter 54(4), R2304–R2307 (1996).
[Crossref] [PubMed]

Matsushita, Y.

L. Zhong, A. Hojo, Y. Matsushita, Y. Aiba, K. Hayashi, R. Takeda, H. Shirai, H. Saito, J. Matsushita, and J. Yoshikawa, “Evidence of spontaneous formation of steps on silicon (100),” Phys. Rev. B Condens. Matter 54(4), R2304–R2307 (1996).
[Crossref] [PubMed]

Metzger, W.

J. Geisz, R. Reedy, B. Keyes, and W. Metzger, “Unintentional carbon and hydrogen incorporation in GaNP grown by metal-organic chemical vapor deposition,” J. Cryst. Growth 259(3), 223–231 (2003).
[Crossref]

Mills, M. J.

T. J. Grassman, J. A. Carlin, B. Galiana, L. M. Yang, F. Yang, M. J. Mills, and S. A. Ringel, “Nucleation-related defect-free GaP/Si (100) heteroepitaxy via metal-organic chemical vapor deposition,” Appl. Phys. Lett. 102(14), 142102 (2013).
[Crossref]

Murray, P.

Nawrodt, R.

A. V. Cumming, K. Craig, I. W. Martin, R. Bassiri, L. Cunningham, M. M. Fejer, J. S. Harris, K. Haughian, D. Heinert, B. Lantz, A. C. Lin, A. S. Markosyan, R. Nawrodt, R. Route, and S. Rowan, “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Gravity 32(3), 035002 (2015).
[Crossref]

Nemeth, I.

I. Nemeth, B. Kunert, W. Stolz, and K. Volz, “Ways to quantitatively detect antiphase disorder in GaP films grown on Si (001) by transmission electron microscopy,” J. Cryst. Growth 310(23), 4763–4767 (2008).
[Crossref]

B. Kunert, I. Nemeth, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films 517(1), 140–143 (2008).
[Crossref]

Nmeth, I.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

Noori, A. M.

G. Chen, D. Cheng, R. F. Hicks, A. M. Noori, S. L. Hayashi, M. S. Goorsky, R. Kanjolia, and R. Odedra, “Metalorganic vapor-phase epitaxy of III/V phosphides with tertiarybutylphosphine and tertiarybutylarsine,” J. Cryst. Growth 270(3-4), 322–328 (2004).
[Crossref]

Nwabugwu, C.

G. Harry, M. Abernathy, A. Becerra-Toledo, H. Armandula, E. Black, K. Dooley, M. Eichenfeld, C. Nwabugwu, A. Villar, and D. Crooks, “Titania-doped tantala/silica coatings for gravitational-wave detection,” Class. Quantum Gravity 24(2), 405–415 (2007).
[Crossref]

Oak, S. M.

V. K. Dixit, T. Ganguli, T. K. Sharma, S. D. Singh, R. Kumar, S. Porwal, P. Tiwari, A. Ingale, and S. M. Oak, “Effect of two-step growth process on structural, optical and electrical properties of MOVPE-grown GaP/Si,” J. Cryst. Growth 310(15), 3428–3435 (2008).
[Crossref]

Odedra, R.

G. Chen, D. Cheng, R. F. Hicks, A. M. Noori, S. L. Hayashi, M. S. Goorsky, R. Kanjolia, and R. Odedra, “Metalorganic vapor-phase epitaxy of III/V phosphides with tertiarybutylphosphine and tertiarybutylarsine,” J. Cryst. Growth 270(3-4), 322–328 (2004).
[Crossref]

Ohlmann, J.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

Okada, H.

K. Yamane, T. Kobayashi, Y. Furukawa, H. Okada, H. Yonezu, and A. Wakahara, “Growth of pit-free GaP on Si by suppression of a surface reaction at an initial growth stage,” J. Cryst. Growth 311(3), 794–797 (2009).
[Crossref]

Penn, S. D.

Pikhtin, A.

A. Pikhtin and D. Yas’Kov, “Dispersion of the index of refraction of gallium phosphide,” Sov. Phys. Sol. State 9(1), 107–109 (1967).

Porwal, S.

V. K. Dixit, T. Ganguli, T. K. Sharma, S. D. Singh, R. Kumar, S. Porwal, P. Tiwari, A. Ingale, and S. M. Oak, “Effect of two-step growth process on structural, optical and electrical properties of MOVPE-grown GaP/Si,” J. Cryst. Growth 310(15), 3428–3435 (2008).
[Crossref]

Reedy, R.

J. Geisz, R. Reedy, B. Keyes, and W. Metzger, “Unintentional carbon and hydrogen incorporation in GaNP grown by metal-organic chemical vapor deposition,” J. Cryst. Growth 259(3), 223–231 (2003).
[Crossref]

Reid, S.

Reinhard, S.

B. Kunert, I. Nemeth, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films 517(1), 140–143 (2008).
[Crossref]

Reuter, M. C.

R. M. Tromp and M. C. Reuter, “Local dimer exchange in surfactant-mediated epitaxial growth,” Phys. Rev. Lett. 68(7), 954–957 (1992).
[Crossref] [PubMed]

Riehle, F.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Ringel, S. A.

T. J. Grassman, J. A. Carlin, B. Galiana, L. M. Yang, F. Yang, M. J. Mills, and S. A. Ringel, “Nucleation-related defect-free GaP/Si (100) heteroepitaxy via metal-organic chemical vapor deposition,” Appl. Phys. Lett. 102(14), 142102 (2013).
[Crossref]

Route, R.

A. V. Cumming, K. Craig, I. W. Martin, R. Bassiri, L. Cunningham, M. M. Fejer, J. S. Harris, K. Haughian, D. Heinert, B. Lantz, A. C. Lin, A. S. Markosyan, R. Nawrodt, R. Route, and S. Rowan, “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Gravity 32(3), 035002 (2015).
[Crossref]

A. Alexandrovski, M. Fejer, A. Markosyan, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[Crossref]

G. M. Harry, H. Armandula, E. Black, D. R. Crooks, G. Cagnoli, J. Hough, P. Murray, S. Reid, S. Rowan, P. Sneddon, M. M. Fejer, R. Route, and S. D. Penn, “Thermal noise from optical coatings in gravitational wave detectors,” Appl. Opt. 45(7), 1569–1574 (2006).
[Crossref] [PubMed]

Rowan, S.

A. V. Cumming, K. Craig, I. W. Martin, R. Bassiri, L. Cunningham, M. M. Fejer, J. S. Harris, K. Haughian, D. Heinert, B. Lantz, A. C. Lin, A. S. Markosyan, R. Nawrodt, R. Route, and S. Rowan, “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Gravity 32(3), 035002 (2015).
[Crossref]

G. M. Harry, H. Armandula, E. Black, D. R. Crooks, G. Cagnoli, J. Hough, P. Murray, S. Reid, S. Rowan, P. Sneddon, M. M. Fejer, R. Route, and S. D. Penn, “Thermal noise from optical coatings in gravitational wave detectors,” Appl. Opt. 45(7), 1569–1574 (2006).
[Crossref] [PubMed]

S. Rowan, J. Hough, and D. Crooks, “Thermal noise and material issues for gravitational wave detectors,” Phys. Lett. A 347(1-3), 25–32 (2005).
[Crossref]

Rubel, O.

O. Rubel and S. D. Baranovskii, “Formation Energies of Antiphase Boundaries in GaAs and GaP: An ab Initio Study,” Int. J. Mol. Sci. 10(12), 5104–5114 (2009).
[Crossref] [PubMed]

Sadeghi, M.

M. Sadeghi and S. Wang, “Growth of GaP on Si substrates by solid-source molecular beam epitaxy,” J. Cryst. Growth 227-228, 279–283 (2001).
[Crossref]

Saito, H.

L. Zhong, A. Hojo, Y. Matsushita, Y. Aiba, K. Hayashi, R. Takeda, H. Shirai, H. Saito, J. Matsushita, and J. Yoshikawa, “Evidence of spontaneous formation of steps on silicon (100),” Phys. Rev. B Condens. Matter 54(4), R2304–R2307 (1996).
[Crossref] [PubMed]

Saulson, P. R.

P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D Part. Fields 42(8), 2437–2445 (1990).
[Crossref] [PubMed]

Sharma, T. K.

V. K. Dixit, T. Ganguli, T. K. Sharma, S. D. Singh, R. Kumar, S. Porwal, P. Tiwari, A. Ingale, and S. M. Oak, “Effect of two-step growth process on structural, optical and electrical properties of MOVPE-grown GaP/Si,” J. Cryst. Growth 310(15), 3428–3435 (2008).
[Crossref]

Shirai, H.

L. Zhong, A. Hojo, Y. Matsushita, Y. Aiba, K. Hayashi, R. Takeda, H. Shirai, H. Saito, J. Matsushita, and J. Yoshikawa, “Evidence of spontaneous formation of steps on silicon (100),” Phys. Rev. B Condens. Matter 54(4), R2304–R2307 (1996).
[Crossref] [PubMed]

Singh, S. D.

V. K. Dixit, T. Ganguli, T. K. Sharma, S. D. Singh, R. Kumar, S. Porwal, P. Tiwari, A. Ingale, and S. M. Oak, “Effect of two-step growth process on structural, optical and electrical properties of MOVPE-grown GaP/Si,” J. Cryst. Growth 310(15), 3428–3435 (2008).
[Crossref]

Sneddon, P.

Soga, T.

T. Suzuki, T. Soga, T. Jimbo, and M. Umeno, “Growth mechanism of GaP on Si substrate by MOVPE,” J. Cryst. Growth 115(1-4), 158–163 (1991).
[Crossref]

Sterr, U.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Stolz, W.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

B. Kunert, I. Nemeth, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films 517(1), 140–143 (2008).
[Crossref]

I. Nemeth, B. Kunert, W. Stolz, and K. Volz, “Ways to quantitatively detect antiphase disorder in GaP films grown on Si (001) by transmission electron microscopy,” J. Cryst. Growth 310(23), 4763–4767 (2008).
[Crossref]

Suzuki, T.

T. Suzuki, T. Soga, T. Jimbo, and M. Umeno, “Growth mechanism of GaP on Si substrate by MOVPE,” J. Cryst. Growth 115(1-4), 158–163 (1991).
[Crossref]

Takeda, R.

L. Zhong, A. Hojo, Y. Matsushita, Y. Aiba, K. Hayashi, R. Takeda, H. Shirai, H. Saito, J. Matsushita, and J. Yoshikawa, “Evidence of spontaneous formation of steps on silicon (100),” Phys. Rev. B Condens. Matter 54(4), R2304–R2307 (1996).
[Crossref] [PubMed]

Tiwari, P.

V. K. Dixit, T. Ganguli, T. K. Sharma, S. D. Singh, R. Kumar, S. Porwal, P. Tiwari, A. Ingale, and S. M. Oak, “Effect of two-step growth process on structural, optical and electrical properties of MOVPE-grown GaP/Si,” J. Cryst. Growth 310(15), 3428–3435 (2008).
[Crossref]

Tromp, R. M.

R. M. Tromp and M. C. Reuter, “Local dimer exchange in surfactant-mediated epitaxial growth,” Phys. Rev. Lett. 68(7), 954–957 (1992).
[Crossref] [PubMed]

Umeno, M.

T. Suzuki, T. Soga, T. Jimbo, and M. Umeno, “Growth mechanism of GaP on Si substrate by MOVPE,” J. Cryst. Growth 115(1-4), 158–163 (1991).
[Crossref]

Villar, A.

G. Harry, M. Abernathy, A. Becerra-Toledo, H. Armandula, E. Black, K. Dooley, M. Eichenfeld, C. Nwabugwu, A. Villar, and D. Crooks, “Titania-doped tantala/silica coatings for gravitational-wave detection,” Class. Quantum Gravity 24(2), 405–415 (2007).
[Crossref]

Volz, K.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

B. Kunert, I. Nemeth, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films 517(1), 140–143 (2008).
[Crossref]

I. Nemeth, B. Kunert, W. Stolz, and K. Volz, “Ways to quantitatively detect antiphase disorder in GaP films grown on Si (001) by transmission electron microscopy,” J. Cryst. Growth 310(23), 4763–4767 (2008).
[Crossref]

Wakahara, A.

K. Yamane, T. Kobayashi, Y. Furukawa, H. Okada, H. Yonezu, and A. Wakahara, “Growth of pit-free GaP on Si by suppression of a surface reaction at an initial growth stage,” J. Cryst. Growth 311(3), 794–797 (2009).
[Crossref]

Wang, S.

M. Sadeghi and S. Wang, “Growth of GaP on Si substrates by solid-source molecular beam epitaxy,” J. Cryst. Growth 227-228, 279–283 (2001).
[Crossref]

Witte, W.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

Wright, S.

S. Wright, H. Kroemer, and M. Inada, “Molecular beam epitaxial growth of GaP on Si,” J. Appl. Phys. 55(8), 2916–2927 (1984).
[Crossref]

Yamane, K.

K. Yamane, T. Kobayashi, Y. Furukawa, H. Okada, H. Yonezu, and A. Wakahara, “Growth of pit-free GaP on Si by suppression of a surface reaction at an initial growth stage,” J. Cryst. Growth 311(3), 794–797 (2009).
[Crossref]

Yang, F.

T. J. Grassman, J. A. Carlin, B. Galiana, L. M. Yang, F. Yang, M. J. Mills, and S. A. Ringel, “Nucleation-related defect-free GaP/Si (100) heteroepitaxy via metal-organic chemical vapor deposition,” Appl. Phys. Lett. 102(14), 142102 (2013).
[Crossref]

Yang, L. M.

T. J. Grassman, J. A. Carlin, B. Galiana, L. M. Yang, F. Yang, M. J. Mills, and S. A. Ringel, “Nucleation-related defect-free GaP/Si (100) heteroepitaxy via metal-organic chemical vapor deposition,” Appl. Phys. Lett. 102(14), 142102 (2013).
[Crossref]

Yas’Kov, D.

A. Pikhtin and D. Yas’Kov, “Dispersion of the index of refraction of gallium phosphide,” Sov. Phys. Sol. State 9(1), 107–109 (1967).

Ye, J.

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Yonezu, H.

K. Yamane, T. Kobayashi, Y. Furukawa, H. Okada, H. Yonezu, and A. Wakahara, “Growth of pit-free GaP on Si by suppression of a surface reaction at an initial growth stage,” J. Cryst. Growth 311(3), 794–797 (2009).
[Crossref]

Yoshikawa, J.

L. Zhong, A. Hojo, Y. Matsushita, Y. Aiba, K. Hayashi, R. Takeda, H. Shirai, H. Saito, J. Matsushita, and J. Yoshikawa, “Evidence of spontaneous formation of steps on silicon (100),” Phys. Rev. B Condens. Matter 54(4), R2304–R2307 (1996).
[Crossref] [PubMed]

Yu, X.

X. Yu, P. Kuo, K. Ma, O. Levi, M. Fejer, and J. Harris., “Single-phase growth studies of GaP on Si by solid-source molecular beam epitaxy,” J. Vac. Sci. Technol. B 22(3), 1450–1454 (2004).
[Crossref]

Zhang, W.

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Zhong, L.

L. Zhong, A. Hojo, Y. Matsushita, Y. Aiba, K. Hayashi, R. Takeda, H. Shirai, H. Saito, J. Matsushita, and J. Yoshikawa, “Evidence of spontaneous formation of steps on silicon (100),” Phys. Rev. B Condens. Matter 54(4), R2304–R2307 (1996).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. J. Grassman, J. A. Carlin, B. Galiana, L. M. Yang, F. Yang, M. J. Mills, and S. A. Ringel, “Nucleation-related defect-free GaP/Si (100) heteroepitaxy via metal-organic chemical vapor deposition,” Appl. Phys. Lett. 102(14), 142102 (2013).
[Crossref]

Class. Quantum Gravity (2)

A. V. Cumming, K. Craig, I. W. Martin, R. Bassiri, L. Cunningham, M. M. Fejer, J. S. Harris, K. Haughian, D. Heinert, B. Lantz, A. C. Lin, A. S. Markosyan, R. Nawrodt, R. Route, and S. Rowan, “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Gravity 32(3), 035002 (2015).
[Crossref]

G. Harry, M. Abernathy, A. Becerra-Toledo, H. Armandula, E. Black, K. Dooley, M. Eichenfeld, C. Nwabugwu, A. Villar, and D. Crooks, “Titania-doped tantala/silica coatings for gravitational-wave detection,” Class. Quantum Gravity 24(2), 405–415 (2007).
[Crossref]

Cr. Rev. Sol. State (1)

R. Bringans, “Arsenic passivation of Si and Ge surfaces,” Cr. Rev. Sol. State 17(4), 353–395 (1992).
[Crossref]

Int. J. Mol. Sci. (1)

O. Rubel and S. D. Baranovskii, “Formation Energies of Antiphase Boundaries in GaAs and GaP: An ab Initio Study,” Int. J. Mol. Sci. 10(12), 5104–5114 (2009).
[Crossref] [PubMed]

J. Appl. Phys. (2)

T. Kuan and C. Chang, “Electron microscope studies of a Ge–GaAs superlattice grown by molecular beam epitaxy,” J. Appl. Phys. 54(8), 4408–4413 (1983).
[Crossref]

S. Wright, H. Kroemer, and M. Inada, “Molecular beam epitaxial growth of GaP on Si,” J. Appl. Phys. 55(8), 2916–2927 (1984).
[Crossref]

J. Cryst. Growth (9)

M. Sadeghi and S. Wang, “Growth of GaP on Si substrates by solid-source molecular beam epitaxy,” J. Cryst. Growth 227-228, 279–283 (2001).
[Crossref]

A. C. Lin, M. M. Fejer, and J. S. Harris, “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363, 258–263 (2013).
[Crossref]

G. Chen, D. Cheng, R. F. Hicks, A. M. Noori, S. L. Hayashi, M. S. Goorsky, R. Kanjolia, and R. Odedra, “Metalorganic vapor-phase epitaxy of III/V phosphides with tertiarybutylphosphine and tertiarybutylarsine,” J. Cryst. Growth 270(3-4), 322–328 (2004).
[Crossref]

J. Geisz, R. Reedy, B. Keyes, and W. Metzger, “Unintentional carbon and hydrogen incorporation in GaNP grown by metal-organic chemical vapor deposition,” J. Cryst. Growth 259(3), 223–231 (2003).
[Crossref]

T. Suzuki, T. Soga, T. Jimbo, and M. Umeno, “Growth mechanism of GaP on Si substrate by MOVPE,” J. Cryst. Growth 115(1-4), 158–163 (1991).
[Crossref]

V. K. Dixit, T. Ganguli, T. K. Sharma, S. D. Singh, R. Kumar, S. Porwal, P. Tiwari, A. Ingale, and S. M. Oak, “Effect of two-step growth process on structural, optical and electrical properties of MOVPE-grown GaP/Si,” J. Cryst. Growth 310(15), 3428–3435 (2008).
[Crossref]

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

I. Nemeth, B. Kunert, W. Stolz, and K. Volz, “Ways to quantitatively detect antiphase disorder in GaP films grown on Si (001) by transmission electron microscopy,” J. Cryst. Growth 310(23), 4763–4767 (2008).
[Crossref]

K. Yamane, T. Kobayashi, Y. Furukawa, H. Okada, H. Yonezu, and A. Wakahara, “Growth of pit-free GaP on Si by suppression of a surface reaction at an initial growth stage,” J. Cryst. Growth 311(3), 794–797 (2009).
[Crossref]

J. Vac. Sci. Technol. B (1)

X. Yu, P. Kuo, K. Ma, O. Levi, M. Fejer, and J. Harris., “Single-phase growth studies of GaP on Si by solid-source molecular beam epitaxy,” J. Vac. Sci. Technol. B 22(3), 1450–1454 (2004).
[Crossref]

Nat. Photonics (2)

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Phys. Lett. A (1)

S. Rowan, J. Hough, and D. Crooks, “Thermal noise and material issues for gravitational wave detectors,” Phys. Lett. A 347(1-3), 25–32 (2005).
[Crossref]

Phys. Rev. B Condens. Matter (1)

L. Zhong, A. Hojo, Y. Matsushita, Y. Aiba, K. Hayashi, R. Takeda, H. Shirai, H. Saito, J. Matsushita, and J. Yoshikawa, “Evidence of spontaneous formation of steps on silicon (100),” Phys. Rev. B Condens. Matter 54(4), R2304–R2307 (1996).
[Crossref] [PubMed]

Phys. Rev. D Part. Fields (1)

P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D Part. Fields 42(8), 2437–2445 (1990).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

R. M. Tromp and M. C. Reuter, “Local dimer exchange in surfactant-mediated epitaxial growth,” Phys. Rev. Lett. 68(7), 954–957 (1992).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Alexandrovski, M. Fejer, A. Markosyan, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[Crossref]

Sov. Phys. Sol. State (1)

A. Pikhtin and D. Yas’Kov, “Dispersion of the index of refraction of gallium phosphide,” Sov. Phys. Sol. State 9(1), 107–109 (1967).

Surf. Sci. (1)

P. Dumas, Y. J. Chabal, and P. Jakob, “Morphology of hydrogen-terminated Si (111) and Si (100) surface upon etching in HF and buffered-HF solutions,” Surf. Sci. 269-270, 867–878 (1992).
[Crossref]

Thin Solid Films (1)

B. Kunert, I. Nemeth, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films 517(1), 140–143 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 1x1 μm2 AFM images of GaP and Al0.5Ga0.5P nucleation layers with growth variations: (a) 4 ML GaP by MEE, (b) 2 ML GaP by MBE followed by 4 ML GaP by MEE, (c) 2 ML GaP by MBE followed by 10 ML GaP by MEE, (d) 2 ML GaP by MBE followed by 10 ML GaP by MEE (at 325°C), (e) 4 ML AlGaP by MEE, (f) 2 ML AlGaP by MBE followed by 4 ML AlGaP by MEE, and (g) 2 ML AlGaP by MBE followed by 10 ML AlGaP by MEE. All samples were nucleated at a high temperature (525°C) with the exception of sample (d). TEM images show the interface between the Si substrate and (h) GaP nucleation layer in sample b and (i) AlGaP nucleation layer in sample f. The AlGaP nucleation layer yields an abrupt and uniform interface.
Fig. 2
Fig. 2 (110) cross-section TEM of GaP on Si with an (a) As-initiated AlGaP nucleation layer and a magnified image of the interface and (b) P-initiated AlGaP nucleation layer. Blue, vertical arrows point to antiphase domains and black, horizontal arrows point to stacking faults in the GaP buffer layer. P-initiation yields antiphase domains which propagate to the film surface.
Fig. 3
Fig. 3 (a) TEM cross-section of the AlGaP/GaP mirror structure on Si indicating abrupt and smooth interfaces and (b) 83% reflectivity achieved for a 10-pair mirror as expected from calculations. Red point is the experimental measurement; blue curve is calculated by transfer matrix method and AlGaP dispersion relations in [20].
Fig. 4
Fig. 4 XRD RSM data shows evidence of strain relaxation along the (a) 004 symmetric and (b) 224 asymmetric scans. Based on the ~0.4% mismatch between GaP/AlGaP and Si, the peak positions in reciprocal space are expected to be separated, as seen in this data, and implies that dislocations were generated to allow film relaxation.

Tables (1)

Tables Icon

Table 1 List of samples with 1x1 μm2 rms roughness values taken from the corresponding AFM data in Fig. 1. AlGaP nucleation layers consistently yield surfaces with lower rms roughness.

Metrics