Abstract

Novel polymer thermo-optic switch arrays were successfully designed and fabricated based on dielectric-loaded surface plasmon polariton waveguide (DLSPPW) structure. Highly fluorinated low-loss photopolymers and organic–inorganic grafting materials were used as the waveguide core and cladding, respectively. The low absorption loss characteristics and excellent thermal stabilities of the core and cladding materials were obtained. The proposed DLSPPW model was included of fluorinated polymer ridge with 4 × 4 μm2 size loaded on 60-nm thin gold stripe electrode heaters, organic-inorganic grafting material cladding and PMMA substrate. The operation of the device at signal wavelengths is controlled via the thermo-optic effect by electrically heating the gold stripes of dielectric-loaded surface plasmon polariton waveguides. The optimized structural properties of dielectric-loaded surface plasmon polariton waveguides were provided. The propagation loss of a 4-μm wide straight DLSPPW was measured as 0.55 dB∕cm at 1550 nm wavelength. The insertion loss of the device was measured to be about 4.5 dB. The switching rise and fall time of the device applied by 200 Hz square-wave voltage were obtained as 287.5 μs and 370.2 μs, respectively. The switching power was about 5.6 mW, and the extinction ratio was about 13.5 dB. The flexible low-loss multi-functional waveguide switch arrays are suitable for realizing large-scale optoelectronic integrated circuits.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermo-optic waveguide gate switch arrays based on direct UV-written highly fluorinated low-loss photopolymer

Xiaoyan Niu, Yang Zheng, Yunlong Gu, Changming Chen, Zhenzhen Cai, Zuosen Shi, Fei Wang, Xiaoqiang Sun, Zhanchen Cui, and Daming Zhang
Appl. Opt. 53(29) 6698-6705 (2014)

Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides

Jacek Gosciniak, Laurent Markey, Alain Dereux, and Sergey I. Bozhevolnyi
Opt. Express 20(15) 16300-16309 (2012)

Fluorinated photopolymer cascaded MMI-based integrated optical waveguide switching matrix with encoding functions

Ru Cheng, Daming Zhang, Jihou Wang, Chunxue Wang, Fengli Gao, Xiaoqiang Sun, Zuosen Shi, Zhanchen Cui, and Changming Chen
Opt. Express 27(9) 12883-12898 (2019)

References

  • View by:
  • |
  • |
  • |

  1. F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP Monolithically Integrated Unicast and Multicast Wavelength Converter,” IEEE Photonics Technol. Lett. 25(22), 2178–2181 (2013).
    [Crossref]
  2. N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
    [Crossref] [PubMed]
  3. C. Chen, X. Niu, C. Han, Z. Shi, X. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Monolithic multi-functional integration of ROADM modules based on polymer photonic lightwave circuit,” Opt. Express 22(9), 10716–10727 (2014).
    [Crossref] [PubMed]
  4. C. Chen, X. Niu, C. Han, Z. Shi, X. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits,” Opt. Express 22(17), 19895–19911 (2014).
    [Crossref] [PubMed]
  5. J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express 20(15), 16300–16309 (2012).
    [Crossref]
  6. G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
    [Crossref]
  7. A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
    [Crossref]
  8. J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides,” Sci. Rep. 3, 1–8 (2013).
    [Crossref]
  9. X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures:Transfer matrix method for plasmonic devices,” J. Appl. Phys. 111(7), 073108 (2012).
    [Crossref]
  10. Z. Zhu, C. E. Garcia-Ortiz, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Compact and broadband directional coupling and demultiplexingin dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect,” Appl. Phys. Lett. 103(6), 061108 (2013).
    [Crossref]
  11. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24(11), 4391–4402 (2006).
    [Crossref]
  12. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90(21), 211101 (2007).
    [Crossref]
  13. J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Thermo-optic control of dielectric-loaded plasmonic Mach-Zehnder interferometers and directional coupler switches,” Nanotechnology 23(44), 444008 (2012).
    [Crossref] [PubMed]
  14. V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36(21), 4278–4280 (2011).
    [Crossref] [PubMed]
  15. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
    [Crossref]
  16. D. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012), doi:.
    [Crossref]
  17. J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Norbert Grote, and N. Keil “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,”,” IEEE Photonics Technol. Lett. 24(19), 1718–1721 (2012).
    [Crossref]
  18. D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
    [Crossref]
  19. J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Opt. Lett. 35(7), 1013–1015 (2010).
    [Crossref] [PubMed]
  20. G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
    [Crossref]
  21. N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-Effective Multimode Polymer Waveguides for High-Speed On-Board Optical Interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
    [Crossref]
  22. T. Gorman, S. Haxha, and J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009).
    [Crossref]
  23. C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
    [Crossref]
  24. L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
    [Crossref] [PubMed]
  25. C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
    [Crossref]
  26. J. Gosciniak, M. G. Nielsen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded plasmonic waveguides with internal Wheatstone bridges,” Opt. Express 21(5), 5300–5308 (2013).
    [Crossref] [PubMed]
  27. H.-J. Lim and M.-S. Kwon, “Efficient Coupling Between Photonic and Dielectric-Loaded Surface Plasmon Polariton Waveguides With the Same Core Material,” IEEE Photonics J. 6(3), 4800809 (2014).
    [Crossref]
  28. Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
    [Crossref]
  29. Z. Cai, H. Yu, Y. Zhang, M. Li, X. Niu, Z. Shi, Z. Cui, C. Chen, and D. Zhang, “Synthesis and characterization of novel fluorinated polycarbonate negative-type photoresist for optical waveguide,” Polymer (Guildf.) 61, 140–146 (2015).
    [Crossref]
  30. C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
    [Crossref]
  31. A. Purniawan, P. J. French, G. Pandraud, and P. M. Sarro, “TiO2 ALD Nanolayer as Evanescent Waveguide for Biomedical Sensor Applications,” Procedia Eng. 5, 1131–1135 (2010).
    [Crossref]
  32. A. Purniawan, G. Pandraud, P. J. French, and P. M. Sarro, “TiO2 freestanding thin film as evanescent waveguide sensor for biomedical application,” in Proc. 16th Int. Solid-State Sensors, Actuat. Microsyst. Conf. 2506–2509 (2011).
  33. J. Liu, F. Qiu, G. Cao, Q. Shen, Z. Cao, and D. Yang, “Preparation, thermo-optic property and transmission loss of chiral azobenzene polyurethane,” J. Appl. Polym. Sci. 121(5), 2567–2572 (2011).
    [Crossref]
  34. K. Kawano, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equations (Wiley 2001).
  35. N. Keil, H. H. Yao, and C. Zawadzki, “Athermal polarisation independent arrayedwaveguide grating AWG multiplexer using an allpolymer approach,” Appl. Phys. B, Lasers Opt. 73(5-6), 619–622 (2001).
    [Crossref]
  36. S.-H. Nam, J. Wook, and J.-J. Kim, “Temperature-insensitive flexible polymer wavelength filter fabricated on polymer substrates,” Appl. Phys. Lett. 87(23), 233504 (2005).
    [Crossref]

2015 (1)

Z. Cai, H. Yu, Y. Zhang, M. Li, X. Niu, Z. Shi, Z. Cui, C. Chen, and D. Zhang, “Synthesis and characterization of novel fluorinated polycarbonate negative-type photoresist for optical waveguide,” Polymer (Guildf.) 61, 140–146 (2015).
[Crossref]

2014 (3)

2013 (7)

J. Gosciniak, M. G. Nielsen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded plasmonic waveguides with internal Wheatstone bridges,” Opt. Express 21(5), 5300–5308 (2013).
[Crossref] [PubMed]

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
[Crossref]

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP Monolithically Integrated Unicast and Multicast Wavelength Converter,” IEEE Photonics Technol. Lett. 25(22), 2178–2181 (2013).
[Crossref]

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
[Crossref]

J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides,” Sci. Rep. 3, 1–8 (2013).
[Crossref]

Z. Zhu, C. E. Garcia-Ortiz, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Compact and broadband directional coupling and demultiplexingin dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect,” Appl. Phys. Lett. 103(6), 061108 (2013).
[Crossref]

2012 (7)

D. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012), doi:.
[Crossref]

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Norbert Grote, and N. Keil “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,”,” IEEE Photonics Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures:Transfer matrix method for plasmonic devices,” J. Appl. Phys. 111(7), 073108 (2012).
[Crossref]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express 20(15), 16300–16309 (2012).
[Crossref]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Thermo-optic control of dielectric-loaded plasmonic Mach-Zehnder interferometers and directional coupler switches,” Nanotechnology 23(44), 444008 (2012).
[Crossref] [PubMed]

2011 (5)

J. Liu, F. Qiu, G. Cao, Q. Shen, Z. Cao, and D. Yang, “Preparation, thermo-optic property and transmission loss of chiral azobenzene polyurethane,” J. Appl. Polym. Sci. 121(5), 2567–2572 (2011).
[Crossref]

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36(21), 4278–4280 (2011).
[Crossref] [PubMed]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[Crossref]

2010 (3)

A. Purniawan, P. J. French, G. Pandraud, and P. M. Sarro, “TiO2 ALD Nanolayer as Evanescent Waveguide for Biomedical Sensor Applications,” Procedia Eng. 5, 1131–1135 (2010).
[Crossref]

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Opt. Lett. 35(7), 1013–1015 (2010).
[Crossref] [PubMed]

2009 (2)

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-Effective Multimode Polymer Waveguides for High-Speed On-Board Optical Interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

T. Gorman, S. Haxha, and J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009).
[Crossref]

2008 (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

2007 (2)

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90(21), 211101 (2007).
[Crossref]

2006 (1)

2005 (1)

S.-H. Nam, J. Wook, and J.-J. Kim, “Temperature-insensitive flexible polymer wavelength filter fabricated on polymer substrates,” Appl. Phys. Lett. 87(23), 233504 (2005).
[Crossref]

2001 (1)

N. Keil, H. H. Yao, and C. Zawadzki, “Athermal polarisation independent arrayedwaveguide grating AWG multiplexer using an allpolymer approach,” Appl. Phys. B, Lasers Opt. 73(5-6), 619–622 (2001).
[Crossref]

Albrektsen, O.

Andriolli, N.

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP Monolithically Integrated Unicast and Multicast Wavelength Converter,” IEEE Photonics Technol. Lett. 25(22), 2178–2181 (2013).
[Crossref]

Apostolopoulos, D.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
[Crossref]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Assefa, S.

Avramopoulos, H.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
[Crossref]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Back, J.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Bale, D. H.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

Bamiedakis, N.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-Effective Multimode Polymer Waveguides for High-Speed On-Board Optical Interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Baus, M.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Bauter, J.

D. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012), doi:.
[Crossref]

Beals, J.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-Effective Multimode Polymer Waveguides for High-Speed On-Board Optical Interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Berini, P.

Bontempi, F.

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP Monolithically Integrated Unicast and Multicast Wavelength Converter,” IEEE Photonics Technol. Lett. 25(22), 2178–2181 (2013).
[Crossref]

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

Bowers, J. E.

D. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012), doi:.
[Crossref]

Bozhevolnyi, S.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Bozhevolnyi, S. I.

Z. Zhu, C. E. Garcia-Ortiz, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Compact and broadband directional coupling and demultiplexingin dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect,” Appl. Phys. Lett. 103(6), 061108 (2013).
[Crossref]

J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides,” Sci. Rep. 3, 1–8 (2013).
[Crossref]

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
[Crossref]

J. Gosciniak, M. G. Nielsen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded plasmonic waveguides with internal Wheatstone bridges,” Opt. Express 21(5), 5300–5308 (2013).
[Crossref] [PubMed]

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express 20(15), 16300–16309 (2012).
[Crossref]

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Thermo-optic control of dielectric-loaded plasmonic Mach-Zehnder interferometers and directional coupler switches,” Nanotechnology 23(44), 444008 (2012).
[Crossref] [PubMed]

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36(21), 4278–4280 (2011).
[Crossref] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Cai, Z.

Z. Cai, H. Yu, Y. Zhang, M. Li, X. Niu, Z. Shi, Z. Cui, C. Chen, and D. Zhang, “Synthesis and characterization of novel fluorinated polycarbonate negative-type photoresist for optical waveguide,” Polymer (Guildf.) 61, 140–146 (2015).
[Crossref]

Cao, G.

J. Liu, F. Qiu, G. Cao, Q. Shen, Z. Cao, and D. Yang, “Preparation, thermo-optic property and transmission loss of chiral azobenzene polyurethane,” J. Appl. Polym. Sci. 121(5), 2567–2572 (2011).
[Crossref]

Cao, Z.

J. Liu, F. Qiu, G. Cao, Q. Shen, Z. Cao, and D. Yang, “Preparation, thermo-optic property and transmission loss of chiral azobenzene polyurethane,” J. Appl. Polym. Sci. 121(5), 2567–2572 (2011).
[Crossref]

Chen, C.

Z. Cai, H. Yu, Y. Zhang, M. Li, X. Niu, Z. Shi, Z. Cui, C. Chen, and D. Zhang, “Synthesis and characterization of novel fluorinated polycarbonate negative-type photoresist for optical waveguide,” Polymer (Guildf.) 61, 140–146 (2015).
[Crossref]

C. Chen, X. Niu, C. Han, Z. Shi, X. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Monolithic multi-functional integration of ROADM modules based on polymer photonic lightwave circuit,” Opt. Express 22(9), 10716–10727 (2014).
[Crossref] [PubMed]

C. Chen, X. Niu, C. Han, Z. Shi, X. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits,” Opt. Express 22(17), 19895–19911 (2014).
[Crossref] [PubMed]

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
[Crossref]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

Clapp, T. V.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-Effective Multimode Polymer Waveguides for High-Speed On-Board Optical Interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Contestabile, G.

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP Monolithically Integrated Unicast and Multicast Wavelength Converter,” IEEE Photonics Technol. Lett. 25(22), 2178–2181 (2013).
[Crossref]

Coppola, G.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[Crossref]

Cui, Z.

Z. Cai, H. Yu, Y. Zhang, M. Li, X. Niu, Z. Shi, Z. Cui, C. Chen, and D. Zhang, “Synthesis and characterization of novel fluorinated polycarbonate negative-type photoresist for optical waveguide,” Polymer (Guildf.) 61, 140–146 (2015).
[Crossref]

C. Chen, X. Niu, C. Han, Z. Shi, X. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Monolithic multi-functional integration of ROADM modules based on polymer photonic lightwave circuit,” Opt. Express 22(9), 10716–10727 (2014).
[Crossref] [PubMed]

C. Chen, X. Niu, C. Han, Z. Shi, X. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits,” Opt. Express 22(17), 19895–19911 (2014).
[Crossref] [PubMed]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Dai, D.

D. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012), doi:.
[Crossref]

Dalton, L. R.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

DeGroot, J. V.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-Effective Multimode Polymer Waveguides for High-Speed On-Board Optical Interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Dentai, A. G.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Dereux, A.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
[Crossref]

J. Gosciniak, M. G. Nielsen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded plasmonic waveguides with internal Wheatstone bridges,” Opt. Express 21(5), 5300–5308 (2013).
[Crossref] [PubMed]

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express 20(15), 16300–16309 (2012).
[Crossref]

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Thermo-optic control of dielectric-loaded plasmonic Mach-Zehnder interferometers and directional coupler switches,” Nanotechnology 23(44), 444008 (2012).
[Crossref] [PubMed]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Dominic, V. G.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Evans, P. W.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Faralli, S.

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP Monolithically Integrated Unicast and Multicast Wavelength Converter,” IEEE Photonics Technol. Lett. 25(22), 2178–2181 (2013).
[Crossref]

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

Fei, X.

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

French, P. J.

A. Purniawan, P. J. French, G. Pandraud, and P. M. Sarro, “TiO2 ALD Nanolayer as Evanescent Waveguide for Biomedical Sensor Applications,” Procedia Eng. 5, 1131–1135 (2010).
[Crossref]

Gagnon, G.

Garcia-Ortiz, C. E.

Z. Zhu, C. E. Garcia-Ortiz, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Compact and broadband directional coupling and demultiplexingin dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect,” Appl. Phys. Lett. 103(6), 061108 (2013).
[Crossref]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Giannoulis, G.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Gorman, T.

T. Gorman, S. Haxha, and J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009).
[Crossref]

Gosciniak, J.

J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides,” Sci. Rep. 3, 1–8 (2013).
[Crossref]

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
[Crossref]

J. Gosciniak, M. G. Nielsen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded plasmonic waveguides with internal Wheatstone bridges,” Opt. Express 21(5), 5300–5308 (2013).
[Crossref] [PubMed]

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express 20(15), 16300–16309 (2012).
[Crossref]

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Thermo-optic control of dielectric-loaded plasmonic Mach-Zehnder interferometers and directional coupler switches,” Nanotechnology 23(44), 444008 (2012).
[Crossref] [PubMed]

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36(21), 4278–4280 (2011).
[Crossref] [PubMed]

Green, W. M. J.

Grote, N.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Norbert Grote, and N. Keil “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,”,” IEEE Photonics Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Grubb, S. G.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Han, C.

Han, Z.

Z. Zhu, C. E. Garcia-Ortiz, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Compact and broadband directional coupling and demultiplexingin dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect,” Appl. Phys. Lett. 103(6), 061108 (2013).
[Crossref]

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36(21), 4278–4280 (2011).
[Crossref] [PubMed]

Hassan, K.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
[Crossref]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Haxha, S.

T. Gorman, S. Haxha, and J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009).
[Crossref]

He, X. Y.

X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures:Transfer matrix method for plasmonic devices,” J. Appl. Phys. 111(7), 073108 (2012).
[Crossref]

Hu, J.

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

Hurtt, S. K.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Iodice, M.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[Crossref]

Joyner, C. H.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Ju, J. J.

T. Gorman, S. Haxha, and J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009).
[Crossref]

Kalavrouziotis, D.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
[Crossref]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Karl, M.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Kato, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Kauffman, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Keil, N.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Norbert Grote, and N. Keil “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,”,” IEEE Photonics Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

N. Keil, H. H. Yao, and C. Zawadzki, “Athermal polarisation independent arrayedwaveguide grating AWG multiplexer using an allpolymer approach,” Appl. Phys. B, Lasers Opt. 73(5-6), 619–622 (2001).
[Crossref]

Keshmiri, H.

Kim, J.-J.

S.-H. Nam, J. Wook, and J.-J. Kim, “Temperature-insensitive flexible polymer wavelength filter fabricated on polymer substrates,” Appl. Phys. Lett. 87(23), 233504 (2005).
[Crossref]

Kish, F. A.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90(21), 211101 (2007).
[Crossref]

Kriezis, E. E.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Kroh, M.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Norbert Grote, and N. Keil “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,”,” IEEE Photonics Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Kumar, A.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
[Crossref]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Kwon, M.-S.

H.-J. Lim and M.-S. Kwon, “Efficient Coupling Between Photonic and Dielectric-Loaded Surface Plasmon Polariton Waveguides With the Same Core Material,” IEEE Photonics J. 6(3), 4800809 (2014).
[Crossref]

Lahoud, N.

Lambert, D. J. H.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Leosson, K.

Li, M.

Z. Cai, H. Yu, Y. Zhang, M. Li, X. Niu, Z. Shi, Z. Cui, C. Chen, and D. Zhang, “Synthesis and characterization of novel fluorinated polycarbonate negative-type photoresist for optical waveguide,” Polymer (Guildf.) 61, 140–146 (2015).
[Crossref]

Lim, H.-J.

H.-J. Lim and M.-S. Kwon, “Efficient Coupling Between Photonic and Dielectric-Loaded Surface Plasmon Polariton Waveguides With the Same Core Material,” IEEE Photonics J. 6(3), 4800809 (2014).
[Crossref]

Liu, J.

J. Liu, F. Qiu, G. Cao, Q. Shen, Z. Cao, and D. Yang, “Preparation, thermo-optic property and transmission loss of chiral azobenzene polyurethane,” J. Appl. Polym. Sci. 121(5), 2567–2572 (2011).
[Crossref]

Markey, L.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
[Crossref]

J. Gosciniak, M. G. Nielsen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded plasmonic waveguides with internal Wheatstone bridges,” Opt. Express 21(5), 5300–5308 (2013).
[Crossref] [PubMed]

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express 20(15), 16300–16309 (2012).
[Crossref]

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Thermo-optic control of dielectric-loaded plasmonic Mach-Zehnder interferometers and directional coupler switches,” Nanotechnology 23(44), 444008 (2012).
[Crossref] [PubMed]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Mathur, A.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Matiss, A.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Norbert Grote, and N. Keil “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,”,” IEEE Photonics Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Mattiussi, G. A.

Mehuys, D. G.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Melle, S.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Missey, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Mitchell, M. L.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Murthy, S.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Nagarajan, R.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Nam, S.-H.

S.-H. Nam, J. Wook, and J.-J. Kim, “Temperature-insensitive flexible polymer wavelength filter fabricated on polymer substrates,” Appl. Phys. Lett. 87(23), 233504 (2005).
[Crossref]

Nielsen, M. G.

Nilsson, A. C.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Niu, X.

Pandraud, G.

A. Purniawan, P. J. French, G. Pandraud, and P. M. Sarro, “TiO2 ALD Nanolayer as Evanescent Waveguide for Biomedical Sensor Applications,” Procedia Eng. 5, 1131–1135 (2010).
[Crossref]

Papaioannou, S.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
[Crossref]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Penty, R. V.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-Effective Multimode Polymer Waveguides for High-Speed On-Board Optical Interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Perkins, D.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Pitilakis, A. K.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Pleros, N.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
[Crossref]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Pleumeekers, J. L.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Purniawan, A.

A. Purniawan, P. J. French, G. Pandraud, and P. M. Sarro, “TiO2 ALD Nanolayer as Evanescent Waveguide for Biomedical Sensor Applications,” Procedia Eng. 5, 1131–1135 (2010).
[Crossref]

Qiu, F.

J. Liu, F. Qiu, G. Cao, Q. Shen, Z. Cao, and D. Yang, “Preparation, thermo-optic property and transmission loss of chiral azobenzene polyurethane,” J. Appl. Polym. Sci. 121(5), 2567–2572 (2011).
[Crossref]

Radko, I. P.

Z. Zhu, C. E. Garcia-Ortiz, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Compact and broadband directional coupling and demultiplexingin dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect,” Appl. Phys. Lett. 103(6), 061108 (2013).
[Crossref]

Reffle, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Rendina, I.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[Crossref]

Richter, T.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Norbert Grote, and N. Keil “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,”,” IEEE Photonics Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Salvatore, R. A.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Sarro, P. M.

A. Purniawan, P. J. French, G. Pandraud, and P. M. Sarro, “TiO2 ALD Nanolayer as Evanescent Waveguide for Biomedical Sensor Applications,” Procedia Eng. 5, 1131–1135 (2010).
[Crossref]

Schneider, R. P.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Schubert, C.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Norbert Grote, and N. Keil “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,”,” IEEE Photonics Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Shen, Q.

J. Liu, F. Qiu, G. Cao, Q. Shen, Z. Cao, and D. Yang, “Preparation, thermo-optic property and transmission loss of chiral azobenzene polyurethane,” J. Appl. Polym. Sci. 121(5), 2567–2572 (2011).
[Crossref]

Shi, Z.

Z. Cai, H. Yu, Y. Zhang, M. Li, X. Niu, Z. Shi, Z. Cui, C. Chen, and D. Zhang, “Synthesis and characterization of novel fluorinated polycarbonate negative-type photoresist for optical waveguide,” Polymer (Guildf.) 61, 140–146 (2015).
[Crossref]

C. Chen, X. Niu, C. Han, Z. Shi, X. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Monolithic multi-functional integration of ROADM modules based on polymer photonic lightwave circuit,” Opt. Express 22(9), 10716–10727 (2014).
[Crossref] [PubMed]

C. Chen, X. Niu, C. Han, Z. Shi, X. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits,” Opt. Express 22(17), 19895–19911 (2014).
[Crossref] [PubMed]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

Sirleto, L.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[Crossref]

Steffan, A.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Norbert Grote, and N. Keil “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,”,” IEEE Photonics Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Sullivan, P. A.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

Sun, X.

C. Chen, X. Niu, C. Han, Z. Shi, X. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits,” Opt. Express 22(17), 19895–19911 (2014).
[Crossref] [PubMed]

C. Chen, X. Niu, C. Han, Z. Shi, X. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Monolithic multi-functional integration of ROADM modules based on polymer photonic lightwave circuit,” Opt. Express 22(9), 10716–10727 (2014).
[Crossref] [PubMed]

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
[Crossref]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Tekin, T.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
[Crossref]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Theurer, A.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Norbert Grote, and N. Keil “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,”,” IEEE Photonics Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Tsilipakos, O.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Van Campenhout, J.

Van Leeuwen, M. F.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Vlasov, Y. A.

Volkov, V. S.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
[Crossref]

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36(21), 4278–4280 (2011).
[Crossref] [PubMed]

Vyrsokinos, K.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
[Crossref]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Waldow, M.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
[Crossref]

Wan, Y.

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

Wang, F.

C. Chen, X. Niu, C. Han, Z. Shi, X. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Monolithic multi-functional integration of ROADM modules based on polymer photonic lightwave circuit,” Opt. Express 22(9), 10716–10727 (2014).
[Crossref] [PubMed]

C. Chen, X. Niu, C. Han, Z. Shi, X. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits,” Opt. Express 22(17), 19895–19911 (2014).
[Crossref] [PubMed]

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
[Crossref]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Wang, H.

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Wang, J.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Norbert Grote, and N. Keil “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,”,” IEEE Photonics Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Wang, L.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
[Crossref]

Wang, Q. J.

X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures:Transfer matrix method for plasmonic devices,” J. Appl. Phys. 111(7), 073108 (2012).
[Crossref]

Wang, X.

Webjorn, J.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Weeber, J.-C.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
[Crossref]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Welch, D. F.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

White, I. H.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-Effective Multimode Polymer Waveguides for High-Speed On-Board Optical Interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Wook, J.

S.-H. Nam, J. Wook, and J.-J. Kim, “Temperature-insensitive flexible polymer wavelength filter fabricated on polymer substrates,” Appl. Phys. Lett. 87(23), 233504 (2005).
[Crossref]

Yang, D.

J. Liu, F. Qiu, G. Cao, Q. Shen, Z. Cao, and D. Yang, “Preparation, thermo-optic property and transmission loss of chiral azobenzene polyurethane,” J. Appl. Polym. Sci. 121(5), 2567–2572 (2011).
[Crossref]

Yao, H. H.

N. Keil, H. H. Yao, and C. Zawadzki, “Athermal polarisation independent arrayedwaveguide grating AWG multiplexer using an allpolymer approach,” Appl. Phys. B, Lasers Opt. 73(5-6), 619–622 (2001).
[Crossref]

Yu, H.

Z. Cai, H. Yu, Y. Zhang, M. Li, X. Niu, Z. Shi, Z. Cui, C. Chen, and D. Zhang, “Synthesis and characterization of novel fluorinated polycarbonate negative-type photoresist for optical waveguide,” Polymer (Guildf.) 61, 140–146 (2015).
[Crossref]

Yu, S. F.

X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures:Transfer matrix method for plasmonic devices,” J. Appl. Phys. 111(7), 073108 (2012).
[Crossref]

Zawadzki, C.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Norbert Grote, and N. Keil “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,”,” IEEE Photonics Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

N. Keil, H. H. Yao, and C. Zawadzki, “Athermal polarisation independent arrayedwaveguide grating AWG multiplexer using an allpolymer approach,” Appl. Phys. B, Lasers Opt. 73(5-6), 619–622 (2001).
[Crossref]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90(21), 211101 (2007).
[Crossref]

Zhang, D.

Z. Cai, H. Yu, Y. Zhang, M. Li, X. Niu, Z. Shi, Z. Cui, C. Chen, and D. Zhang, “Synthesis and characterization of novel fluorinated polycarbonate negative-type photoresist for optical waveguide,” Polymer (Guildf.) 61, 140–146 (2015).
[Crossref]

C. Chen, X. Niu, C. Han, Z. Shi, X. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Monolithic multi-functional integration of ROADM modules based on polymer photonic lightwave circuit,” Opt. Express 22(9), 10716–10727 (2014).
[Crossref] [PubMed]

C. Chen, X. Niu, C. Han, Z. Shi, X. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits,” Opt. Express 22(17), 19895–19911 (2014).
[Crossref] [PubMed]

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
[Crossref]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Zhang, F.

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Zhang, H.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
[Crossref]

Zhang, X.

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

Zhang, Y.

Z. Cai, H. Yu, Y. Zhang, M. Li, X. Niu, Z. Shi, Z. Cui, C. Chen, and D. Zhang, “Synthesis and characterization of novel fluorinated polycarbonate negative-type photoresist for optical waveguide,” Polymer (Guildf.) 61, 140–146 (2015).
[Crossref]

Zhang, Z.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Norbert Grote, and N. Keil “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,”,” IEEE Photonics Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Zhao, L.

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

Zhu, Z.

Z. Zhu, C. E. Garcia-Ortiz, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Compact and broadband directional coupling and demultiplexingin dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect,” Appl. Phys. Lett. 103(6), 061108 (2013).
[Crossref]

Ziari, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Appl. Phys. B, Lasers Opt. (1)

N. Keil, H. H. Yao, and C. Zawadzki, “Athermal polarisation independent arrayedwaveguide grating AWG multiplexer using an allpolymer approach,” Appl. Phys. B, Lasers Opt. 73(5-6), 619–622 (2001).
[Crossref]

Appl. Phys. Lett. (3)

S.-H. Nam, J. Wook, and J.-J. Kim, “Temperature-insensitive flexible polymer wavelength filter fabricated on polymer substrates,” Appl. Phys. Lett. 87(23), 233504 (2005).
[Crossref]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90(21), 211101 (2007).
[Crossref]

Z. Zhu, C. E. Garcia-Ortiz, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Compact and broadband directional coupling and demultiplexingin dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect,” Appl. Phys. Lett. 103(6), 061108 (2013).
[Crossref]

Chem. Rev. (1)

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

IEEE J. Lightw. Technol (1)

T. Gorman, S. Haxha, and J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009).
[Crossref]

IEEE J. Quantum Electron. (4)

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-Effective Multimode Polymer Waveguides for High-Speed On-Board Optical Interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
[Crossref]

IEEE J. Select Top, Quantum Electron. (1)

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top, Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

IEEE Photonics J. (1)

H.-J. Lim and M.-S. Kwon, “Efficient Coupling Between Photonic and Dielectric-Loaded Surface Plasmon Polariton Waveguides With the Same Core Material,” IEEE Photonics J. 6(3), 4800809 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (3)

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip,” IEEE Photonics Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Norbert Grote, and N. Keil “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,”,” IEEE Photonics Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP Monolithically Integrated Unicast and Multicast Wavelength Converter,” IEEE Photonics Technol. Lett. 25(22), 2178–2181 (2013).
[Crossref]

J. Appl. Phys. (1)

X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures:Transfer matrix method for plasmonic devices,” J. Appl. Phys. 111(7), 073108 (2012).
[Crossref]

J. Appl. Polym. Sci. (1)

J. Liu, F. Qiu, G. Cao, Q. Shen, Z. Cao, and D. Yang, “Preparation, thermo-optic property and transmission loss of chiral azobenzene polyurethane,” J. Appl. Polym. Sci. 121(5), 2567–2572 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Polym. Sci. A Polym. Chem. (1)

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

Laser Photonics Rev. (1)

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, “Dielectric-loaded plasmonic waveguide components: Going practical,” Laser Photonics Rev. 7(6), 938–951 (2013).
[Crossref]

Light Sci. Appl. (1)

D. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012), doi:.
[Crossref]

Nanotechnology (1)

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Thermo-optic control of dielectric-loaded plasmonic Mach-Zehnder interferometers and directional coupler switches,” Nanotechnology 23(44), 444008 (2012).
[Crossref] [PubMed]

Opt. Eng. (1)

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Polymer (Guildf.) (1)

Z. Cai, H. Yu, Y. Zhang, M. Li, X. Niu, Z. Shi, Z. Cui, C. Chen, and D. Zhang, “Synthesis and characterization of novel fluorinated polycarbonate negative-type photoresist for optical waveguide,” Polymer (Guildf.) 61, 140–146 (2015).
[Crossref]

Procedia Eng. (1)

A. Purniawan, P. J. French, G. Pandraud, and P. M. Sarro, “TiO2 ALD Nanolayer as Evanescent Waveguide for Biomedical Sensor Applications,” Procedia Eng. 5, 1131–1135 (2010).
[Crossref]

Sci. Rep. (1)

J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides,” Sci. Rep. 3, 1–8 (2013).
[Crossref]

Other (2)

A. Purniawan, G. Pandraud, P. J. French, and P. M. Sarro, “TiO2 freestanding thin film as evanescent waveguide sensor for biomedical application,” in Proc. 16th Int. Solid-State Sensors, Actuat. Microsyst. Conf. 2506–2509 (2011).

K. Kawano, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equations (Wiley 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Molecular structure of FSU-8 and organic-inorganic grafting PMMA (a) FSU-8 and (b) organic-inorganic grafting PMMA.
Fig. 2
Fig. 2 UV–vis–NIR absorption spectrums of FPER with Different FSU-8 compositions compared to commercial SU-8 photoresist.
Fig. 3
Fig. 3 Analysis and simulation of the DLSPP waveguide properties (a) schematic representation of the DLSPPW cross section; (b) fundamental TM00 mode and (c) first higher-order TM01 mode distribution of DLSPPW of optimal configuration, the TM00 mode effective index neff = 1.516; (d) thermal field distribution of electrode.
Fig. 4
Fig. 4 (a) The schematic configuration of both waveguide and electrode heater masks and (b) the structural diagram of the DLSPPW switch arrays.
Fig. 5
Fig. 5 Fabrication process for the MZI TO DLSPP waveguide switch arrays.
Fig. 6
Fig. 6 (a) SEM image of dielectric waveguide section fabricated with FSU-8/FPER: (b) AFM image of the gold stripe surface.
Fig. 7
Fig. 7 The waveguide propagation loss measured by the cut-back measurement.
Fig. 8
Fig. 8 (a) Actual photographs of the proposed polymer all-polymer TO DLSPPW switch arrays measured. (b) Near-field guide-mode patterns of the device with signal light at 1550 nm wavelength.
Fig. 9
Fig. 9 The curves of minute current versus time measured by galvanometer at different wavelength.
Fig. 10
Fig. 10 Performances of the device: (a) DLSPPW TO switch responses obtained by applying a square-wave voltage at frequency of 200 Hz, (b) actual channel output versus power consumption of the DLSPPW TO switch at 1550 nm for TM mode.

Tables (2)

Tables Icon

Table 1 Thermal Properties of Fluorinated Photopolymer with Different Content of FSU-8

Tables Icon

Table 2 Comparison with other published results for different material dielectric-loaded DLSSW TO switch.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = π = 2 π λ Δ n L
Δ ϕ = π = 2 π λ n T Δ T L L = λ 2 Δ T ( n T ) 1
Au + 2KI + 3I 2 2K ( AuI 4 )
L o s s ( i n s e r t i o n ) = L o s s ( c o u p l i n g ) + α × L

Metrics