Abstract

The characteristics of polarization stable microstructure vertical-cavity surface-emitting lasers (PS-MS-VCSELs) with low threshold current and single fundamental mode (SFM) operation were theoretically and experimentally investigated. Elliptical air hole photonic crystal (EPC) structure was incorporated in the top mirror of the MS-VCSELs to realize single fundamental mode operation. By controlling the mode loss difference among the two orthogonal modes, the fundamental mode and other high order modes of the MS-VCSELs, through suitable oxide aperture shape and EPC parameters, a high performance PS-MS-VCSEL is achieved with output power of 1.6 mW, low threshold current of 0.8 mA as well as more than 20 dB orthogonal polarization suppression ratio (OPSR).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
VCSEL mode and polarization control by an elliptic dielectric mode filter

Lei Xiang, Xing Zhang, JianWei Zhang, YouWen Huang, Werner Hofmann, YongQiang Ning, and LiJun Wang
Appl. Opt. 57(28) 8467-8471 (2018)

Efficient and individually controllable mechanisms for mode and polarization selection in VCSELs, based on a common, localized, sub-wavelength surface grating

Johan S. Gustavsson, Åsa Haglund, Josip A. Vukušić, Jörgen Bengtsson, Piotr Jedrasik, and Anders Larsson
Opt. Express 13(17) 6626-6634 (2005)

OPSR enhancement of high-temperature operating shallow-surface grating VCSELs

Yingying Liu, Xing Zhang, Youwen Huang, Jianwei Zhang, Werner Hofmann, Yongqiang Ning, and Lijun Wang
Appl. Opt. 57(16) 4486-4490 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Iga, “Surface emitting laser – It’s birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
    [Crossref]
  2. A. Larsson, “Advances in VCSELs for Communication and Sensing,” IEEE J. Sel. Top. Quantum Electron. 1077–260X, 1–16 (2011).
  3. S. Balle, E. Tolkachova, M. San Miguel, J. R. Tredicce, J. Martín-Regalado, and A. Gahl, “Mechanisms of polarization switching in single-transverse-mode vertical-cavity surface-emitting lasers: thermal shift and nonlinear semiconductor dynamics,” Opt. Lett. 24(16), 1121–1123 (1999).
    [Crossref] [PubMed]
  4. G. Zhao, A. Demir, S. Freisem, Y. Zhang, X. Liua, and D. G. Deppe, “New VCSEL technology with scalability for single mode operation and densely integrated arrays,” Proc. SPIE 8054, 80540A (2011).
    [Crossref]
  5. A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004).
    [Crossref]
  6. D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80(21), 3901–3903 (2002).
    [Crossref]
  7. K. H. Lee, J. H. Baek, I. K. Hwang, Y. H. Lee, G. H. Lee, J. H. Ser, H. D. Kim, and H. E. Shin, “Square-lattice photonic-crystal vertical-cavity surface-emitting lasers,” Opt. Express 12(17), 4136–4143 (2004).
    [Crossref] [PubMed]
  8. J. M. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Polarization-Stable Oxide-Confined VCSELs With Enhanced Single-Mode Output Power Via Monolithically Integrated Inverted Grating Reliefs,” IEEE J. Sel. Top. Quantum Electron. 11(5), 982–989 (2005).
    [Crossref]
  9. D. S. Song, Y. J. Lee, H. W. Choi, and Y. H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82(19), 3182–3184 (2003).
    [Crossref]
  10. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high index contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
    [Crossref]
  11. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
    [Crossref]
  12. M. Dems, I. S. Chung, P. Nyakas, S. Bischoff, and K. Panajotov, “Numerical Methods for modeling Photonic-Crystal VCSELs,” Opt. Express 18(15), 16042–16054 (2010).
    [Crossref] [PubMed]
  13. D. H. Jo, N. H. Vu, J. T. Kim, and I. K. Hwang, “Modal loss mechanism of micro-structured VCSELs studied using full vector FDTD method,” Opt. Express 19(19), 18272–18282 (2011).
    [Crossref] [PubMed]
  14. T. Czyszanowski, M. Dems, H. Thienpont, and K. Panajotov, “Optimal radii of photonic crystal holes within DBR mirrors in long wavelength VCSEL,” Opt. Express 15(3), 1301–1306 (2007).
    [Crossref] [PubMed]
  15. P. Nyakas, “Full-vectorial three-dimensional finite element optical simulation of vertical cavity surface emitting lasers,” J. Lightwave Technol. 25(9), 2427–2434 (2007).
    [Crossref]
  16. Y. Y. Xie, Q. Kan, C. Xu, Y. X. Zhu, C. X. Wang, and H. D. Chen, “Low Threshold Current Single-Fundamental-Mode Photonic Crystal VCSELs,” IEEE Photonics Technol. Lett. 24(6), 464–466 (2012).
    [Crossref]
  17. Y. Y. Xie, C. Xu, Q. Kan, C. X. Wang, Y. M. Liu, B. Q. Wang, H. D. Chen, and G. D. Shen, “A Single-Fundamental-Mode Photonic Crystal Vertical Cavity Surface Emitting Laser,” Chin. Phys. Lett. 27, 0242061–0242063 (2010).
  18. K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photonics Technol. Lett. 6(1), 40–42 (1994).
    [Crossref]
  19. H. Wu, C. Li, M. F. Han, W. J. Wang, L. Shi, Q. L. Liu, B. Liu, J. Dong, and X. Guo, “Polarization-Stable 980nm Vertical-Cavity Surface-Emitting Lasers with Diamond-Shaped Oxide Aperture,” Chin. Phys. Lett. 32(4), 044202 (2015).
    [Crossref]
  20. A. J. Danner, J. J. Raftery, T. Kim, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “Progress in photonic crystal vertical cavity lasers,” IEICE Trans. Electron. E88-C(5), 944–950 (2005).
    [Crossref]
  21. C. Chen, P. O. Leisher, D. M. Kuchta, and K. D. Choquette, “High-Speed Modulation of Index-Guided Implant-Confined Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 673–678 (2009).
    [Crossref]

2015 (1)

H. Wu, C. Li, M. F. Han, W. J. Wang, L. Shi, Q. L. Liu, B. Liu, J. Dong, and X. Guo, “Polarization-Stable 980nm Vertical-Cavity Surface-Emitting Lasers with Diamond-Shaped Oxide Aperture,” Chin. Phys. Lett. 32(4), 044202 (2015).
[Crossref]

2012 (1)

Y. Y. Xie, Q. Kan, C. Xu, Y. X. Zhu, C. X. Wang, and H. D. Chen, “Low Threshold Current Single-Fundamental-Mode Photonic Crystal VCSELs,” IEEE Photonics Technol. Lett. 24(6), 464–466 (2012).
[Crossref]

2011 (3)

D. H. Jo, N. H. Vu, J. T. Kim, and I. K. Hwang, “Modal loss mechanism of micro-structured VCSELs studied using full vector FDTD method,” Opt. Express 19(19), 18272–18282 (2011).
[Crossref] [PubMed]

A. Larsson, “Advances in VCSELs for Communication and Sensing,” IEEE J. Sel. Top. Quantum Electron. 1077–260X, 1–16 (2011).

G. Zhao, A. Demir, S. Freisem, Y. Zhang, X. Liua, and D. G. Deppe, “New VCSEL technology with scalability for single mode operation and densely integrated arrays,” Proc. SPIE 8054, 80540A (2011).
[Crossref]

2010 (2)

Y. Y. Xie, C. Xu, Q. Kan, C. X. Wang, Y. M. Liu, B. Q. Wang, H. D. Chen, and G. D. Shen, “A Single-Fundamental-Mode Photonic Crystal Vertical Cavity Surface Emitting Laser,” Chin. Phys. Lett. 27, 0242061–0242063 (2010).

M. Dems, I. S. Chung, P. Nyakas, S. Bischoff, and K. Panajotov, “Numerical Methods for modeling Photonic-Crystal VCSELs,” Opt. Express 18(15), 16042–16054 (2010).
[Crossref] [PubMed]

2009 (1)

C. Chen, P. O. Leisher, D. M. Kuchta, and K. D. Choquette, “High-Speed Modulation of Index-Guided Implant-Confined Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 673–678 (2009).
[Crossref]

2008 (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

2007 (3)

2005 (2)

A. J. Danner, J. J. Raftery, T. Kim, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “Progress in photonic crystal vertical cavity lasers,” IEICE Trans. Electron. E88-C(5), 944–950 (2005).
[Crossref]

J. M. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Polarization-Stable Oxide-Confined VCSELs With Enhanced Single-Mode Output Power Via Monolithically Integrated Inverted Grating Reliefs,” IEEE J. Sel. Top. Quantum Electron. 11(5), 982–989 (2005).
[Crossref]

2004 (2)

K. H. Lee, J. H. Baek, I. K. Hwang, Y. H. Lee, G. H. Lee, J. H. Ser, H. D. Kim, and H. E. Shin, “Square-lattice photonic-crystal vertical-cavity surface-emitting lasers,” Opt. Express 12(17), 4136–4143 (2004).
[Crossref] [PubMed]

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004).
[Crossref]

2003 (1)

D. S. Song, Y. J. Lee, H. W. Choi, and Y. H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82(19), 3182–3184 (2003).
[Crossref]

2002 (1)

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80(21), 3901–3903 (2002).
[Crossref]

2000 (1)

K. Iga, “Surface emitting laser – It’s birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[Crossref]

1999 (1)

1994 (1)

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photonics Technol. Lett. 6(1), 40–42 (1994).
[Crossref]

Baba, T.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004).
[Crossref]

Baek, J. H.

Balle, S.

Bischoff, S.

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high index contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Chen, C.

C. Chen, P. O. Leisher, D. M. Kuchta, and K. D. Choquette, “High-Speed Modulation of Index-Guided Implant-Confined Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 673–678 (2009).
[Crossref]

Chen, H. D.

Y. Y. Xie, Q. Kan, C. Xu, Y. X. Zhu, C. X. Wang, and H. D. Chen, “Low Threshold Current Single-Fundamental-Mode Photonic Crystal VCSELs,” IEEE Photonics Technol. Lett. 24(6), 464–466 (2012).
[Crossref]

Y. Y. Xie, C. Xu, Q. Kan, C. X. Wang, Y. M. Liu, B. Q. Wang, H. D. Chen, and G. D. Shen, “A Single-Fundamental-Mode Photonic Crystal Vertical Cavity Surface Emitting Laser,” Chin. Phys. Lett. 27, 0242061–0242063 (2010).

Choi, H. W.

D. S. Song, Y. J. Lee, H. W. Choi, and Y. H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82(19), 3182–3184 (2003).
[Crossref]

Choquette, K. D.

C. Chen, P. O. Leisher, D. M. Kuchta, and K. D. Choquette, “High-Speed Modulation of Index-Guided Implant-Confined Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 673–678 (2009).
[Crossref]

A. J. Danner, J. J. Raftery, T. Kim, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “Progress in photonic crystal vertical cavity lasers,” IEICE Trans. Electron. E88-C(5), 944–950 (2005).
[Crossref]

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photonics Technol. Lett. 6(1), 40–42 (1994).
[Crossref]

Chung, I. S.

Czyszanowski, T.

Danner, A. J.

A. J. Danner, J. J. Raftery, T. Kim, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “Progress in photonic crystal vertical cavity lasers,” IEICE Trans. Electron. E88-C(5), 944–950 (2005).
[Crossref]

Debernardi, P.

J. M. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Polarization-Stable Oxide-Confined VCSELs With Enhanced Single-Mode Output Power Via Monolithically Integrated Inverted Grating Reliefs,” IEEE J. Sel. Top. Quantum Electron. 11(5), 982–989 (2005).
[Crossref]

Demir, A.

G. Zhao, A. Demir, S. Freisem, Y. Zhang, X. Liua, and D. G. Deppe, “New VCSEL technology with scalability for single mode operation and densely integrated arrays,” Proc. SPIE 8054, 80540A (2011).
[Crossref]

Dems, M.

Deppe, D. G.

G. Zhao, A. Demir, S. Freisem, Y. Zhang, X. Liua, and D. G. Deppe, “New VCSEL technology with scalability for single mode operation and densely integrated arrays,” Proc. SPIE 8054, 80540A (2011).
[Crossref]

Dong, J.

H. Wu, C. Li, M. F. Han, W. J. Wang, L. Shi, Q. L. Liu, B. Liu, J. Dong, and X. Guo, “Polarization-Stable 980nm Vertical-Cavity Surface-Emitting Lasers with Diamond-Shaped Oxide Aperture,” Chin. Phys. Lett. 32(4), 044202 (2015).
[Crossref]

Freisem, S.

G. Zhao, A. Demir, S. Freisem, Y. Zhang, X. Liua, and D. G. Deppe, “New VCSEL technology with scalability for single mode operation and densely integrated arrays,” Proc. SPIE 8054, 80540A (2011).
[Crossref]

Furukawa, A.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004).
[Crossref]

Gahl, A.

Giannopoulos, A. V.

A. J. Danner, J. J. Raftery, T. Kim, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “Progress in photonic crystal vertical cavity lasers,” IEICE Trans. Electron. E88-C(5), 944–950 (2005).
[Crossref]

Guo, X.

H. Wu, C. Li, M. F. Han, W. J. Wang, L. Shi, Q. L. Liu, B. Liu, J. Dong, and X. Guo, “Polarization-Stable 980nm Vertical-Cavity Surface-Emitting Lasers with Diamond-Shaped Oxide Aperture,” Chin. Phys. Lett. 32(4), 044202 (2015).
[Crossref]

Han, M. F.

H. Wu, C. Li, M. F. Han, W. J. Wang, L. Shi, Q. L. Liu, B. Liu, J. Dong, and X. Guo, “Polarization-Stable 980nm Vertical-Cavity Surface-Emitting Lasers with Diamond-Shaped Oxide Aperture,” Chin. Phys. Lett. 32(4), 044202 (2015).
[Crossref]

Hoshi, M.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004).
[Crossref]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high index contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Hwang, I. K.

Iga, K.

K. Iga, “Surface emitting laser – It’s birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[Crossref]

Jalics, C.

J. M. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Polarization-Stable Oxide-Confined VCSELs With Enhanced Single-Mode Output Power Via Monolithically Integrated Inverted Grating Reliefs,” IEEE J. Sel. Top. Quantum Electron. 11(5), 982–989 (2005).
[Crossref]

Jo, D. H.

Kan, Q.

Y. Y. Xie, Q. Kan, C. Xu, Y. X. Zhu, C. X. Wang, and H. D. Chen, “Low Threshold Current Single-Fundamental-Mode Photonic Crystal VCSELs,” IEEE Photonics Technol. Lett. 24(6), 464–466 (2012).
[Crossref]

Y. Y. Xie, C. Xu, Q. Kan, C. X. Wang, Y. M. Liu, B. Q. Wang, H. D. Chen, and G. D. Shen, “A Single-Fundamental-Mode Photonic Crystal Vertical Cavity Surface Emitting Laser,” Chin. Phys. Lett. 27, 0242061–0242063 (2010).

Kim, C. K.

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80(21), 3901–3903 (2002).
[Crossref]

Kim, H. D.

Kim, J. T.

Kim, S. H.

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80(21), 3901–3903 (2002).
[Crossref]

Kim, T.

A. J. Danner, J. J. Raftery, T. Kim, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “Progress in photonic crystal vertical cavity lasers,” IEICE Trans. Electron. E88-C(5), 944–950 (2005).
[Crossref]

Kuchta, D. M.

C. Chen, P. O. Leisher, D. M. Kuchta, and K. D. Choquette, “High-Speed Modulation of Index-Guided Implant-Confined Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 673–678 (2009).
[Crossref]

Larsson, A.

A. Larsson, “Advances in VCSELs for Communication and Sensing,” IEEE J. Sel. Top. Quantum Electron. 1077–260X, 1–16 (2011).

Lee, G. H.

Lee, K. H.

Lee, Y. H.

K. H. Lee, J. H. Baek, I. K. Hwang, Y. H. Lee, G. H. Lee, J. H. Ser, H. D. Kim, and H. E. Shin, “Square-lattice photonic-crystal vertical-cavity surface-emitting lasers,” Opt. Express 12(17), 4136–4143 (2004).
[Crossref] [PubMed]

D. S. Song, Y. J. Lee, H. W. Choi, and Y. H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82(19), 3182–3184 (2003).
[Crossref]

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80(21), 3901–3903 (2002).
[Crossref]

Lee, Y. J.

D. S. Song, Y. J. Lee, H. W. Choi, and Y. H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82(19), 3182–3184 (2003).
[Crossref]

Leibenguth, R. E.

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photonics Technol. Lett. 6(1), 40–42 (1994).
[Crossref]

Leisher, P. O.

C. Chen, P. O. Leisher, D. M. Kuchta, and K. D. Choquette, “High-Speed Modulation of Index-Guided Implant-Confined Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 673–678 (2009).
[Crossref]

A. J. Danner, J. J. Raftery, T. Kim, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “Progress in photonic crystal vertical cavity lasers,” IEICE Trans. Electron. E88-C(5), 944–950 (2005).
[Crossref]

Li, C.

H. Wu, C. Li, M. F. Han, W. J. Wang, L. Shi, Q. L. Liu, B. Liu, J. Dong, and X. Guo, “Polarization-Stable 980nm Vertical-Cavity Surface-Emitting Lasers with Diamond-Shaped Oxide Aperture,” Chin. Phys. Lett. 32(4), 044202 (2015).
[Crossref]

Liu, B.

H. Wu, C. Li, M. F. Han, W. J. Wang, L. Shi, Q. L. Liu, B. Liu, J. Dong, and X. Guo, “Polarization-Stable 980nm Vertical-Cavity Surface-Emitting Lasers with Diamond-Shaped Oxide Aperture,” Chin. Phys. Lett. 32(4), 044202 (2015).
[Crossref]

Liu, Q. L.

H. Wu, C. Li, M. F. Han, W. J. Wang, L. Shi, Q. L. Liu, B. Liu, J. Dong, and X. Guo, “Polarization-Stable 980nm Vertical-Cavity Surface-Emitting Lasers with Diamond-Shaped Oxide Aperture,” Chin. Phys. Lett. 32(4), 044202 (2015).
[Crossref]

Liu, Y. M.

Y. Y. Xie, C. Xu, Q. Kan, C. X. Wang, Y. M. Liu, B. Q. Wang, H. D. Chen, and G. D. Shen, “A Single-Fundamental-Mode Photonic Crystal Vertical Cavity Surface Emitting Laser,” Chin. Phys. Lett. 27, 0242061–0242063 (2010).

Liua, X.

G. Zhao, A. Demir, S. Freisem, Y. Zhang, X. Liua, and D. G. Deppe, “New VCSEL technology with scalability for single mode operation and densely integrated arrays,” Proc. SPIE 8054, 80540A (2011).
[Crossref]

Martín-Regalado, J.

Matsuzono, A.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004).
[Crossref]

Michalzik, R.

J. M. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Polarization-Stable Oxide-Confined VCSELs With Enhanced Single-Mode Output Power Via Monolithically Integrated Inverted Grating Reliefs,” IEEE J. Sel. Top. Quantum Electron. 11(5), 982–989 (2005).
[Crossref]

Moritoh, K.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004).
[Crossref]

Nyakas, P.

Ostermann, J. M.

J. M. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Polarization-Stable Oxide-Confined VCSELs With Enhanced Single-Mode Output Power Via Monolithically Integrated Inverted Grating Reliefs,” IEEE J. Sel. Top. Quantum Electron. 11(5), 982–989 (2005).
[Crossref]

Panajotov, K.

Park, H. G.

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80(21), 3901–3903 (2002).
[Crossref]

Raftery, J. J.

A. J. Danner, J. J. Raftery, T. Kim, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “Progress in photonic crystal vertical cavity lasers,” IEICE Trans. Electron. E88-C(5), 944–950 (2005).
[Crossref]

San Miguel, M.

Sasaki, S.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004).
[Crossref]

Ser, J. H.

Shen, G. D.

Y. Y. Xie, C. Xu, Q. Kan, C. X. Wang, Y. M. Liu, B. Q. Wang, H. D. Chen, and G. D. Shen, “A Single-Fundamental-Mode Photonic Crystal Vertical Cavity Surface Emitting Laser,” Chin. Phys. Lett. 27, 0242061–0242063 (2010).

Shi, L.

H. Wu, C. Li, M. F. Han, W. J. Wang, L. Shi, Q. L. Liu, B. Liu, J. Dong, and X. Guo, “Polarization-Stable 980nm Vertical-Cavity Surface-Emitting Lasers with Diamond-Shaped Oxide Aperture,” Chin. Phys. Lett. 32(4), 044202 (2015).
[Crossref]

Shin, H. E.

Song, D. S.

D. S. Song, Y. J. Lee, H. W. Choi, and Y. H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82(19), 3182–3184 (2003).
[Crossref]

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80(21), 3901–3903 (2002).
[Crossref]

Thienpont, H.

Tolkachova, E.

Tredicce, J. R.

Vu, N. H.

Wang, B. Q.

Y. Y. Xie, C. Xu, Q. Kan, C. X. Wang, Y. M. Liu, B. Q. Wang, H. D. Chen, and G. D. Shen, “A Single-Fundamental-Mode Photonic Crystal Vertical Cavity Surface Emitting Laser,” Chin. Phys. Lett. 27, 0242061–0242063 (2010).

Wang, C. X.

Y. Y. Xie, Q. Kan, C. Xu, Y. X. Zhu, C. X. Wang, and H. D. Chen, “Low Threshold Current Single-Fundamental-Mode Photonic Crystal VCSELs,” IEEE Photonics Technol. Lett. 24(6), 464–466 (2012).
[Crossref]

Y. Y. Xie, C. Xu, Q. Kan, C. X. Wang, Y. M. Liu, B. Q. Wang, H. D. Chen, and G. D. Shen, “A Single-Fundamental-Mode Photonic Crystal Vertical Cavity Surface Emitting Laser,” Chin. Phys. Lett. 27, 0242061–0242063 (2010).

Wang, W. J.

H. Wu, C. Li, M. F. Han, W. J. Wang, L. Shi, Q. L. Liu, B. Liu, J. Dong, and X. Guo, “Polarization-Stable 980nm Vertical-Cavity Surface-Emitting Lasers with Diamond-Shaped Oxide Aperture,” Chin. Phys. Lett. 32(4), 044202 (2015).
[Crossref]

Wu, H.

H. Wu, C. Li, M. F. Han, W. J. Wang, L. Shi, Q. L. Liu, B. Liu, J. Dong, and X. Guo, “Polarization-Stable 980nm Vertical-Cavity Surface-Emitting Lasers with Diamond-Shaped Oxide Aperture,” Chin. Phys. Lett. 32(4), 044202 (2015).
[Crossref]

Xie, Y. Y.

Y. Y. Xie, Q. Kan, C. Xu, Y. X. Zhu, C. X. Wang, and H. D. Chen, “Low Threshold Current Single-Fundamental-Mode Photonic Crystal VCSELs,” IEEE Photonics Technol. Lett. 24(6), 464–466 (2012).
[Crossref]

Y. Y. Xie, C. Xu, Q. Kan, C. X. Wang, Y. M. Liu, B. Q. Wang, H. D. Chen, and G. D. Shen, “A Single-Fundamental-Mode Photonic Crystal Vertical Cavity Surface Emitting Laser,” Chin. Phys. Lett. 27, 0242061–0242063 (2010).

Xu, C.

Y. Y. Xie, Q. Kan, C. Xu, Y. X. Zhu, C. X. Wang, and H. D. Chen, “Low Threshold Current Single-Fundamental-Mode Photonic Crystal VCSELs,” IEEE Photonics Technol. Lett. 24(6), 464–466 (2012).
[Crossref]

Y. Y. Xie, C. Xu, Q. Kan, C. X. Wang, Y. M. Liu, B. Q. Wang, H. D. Chen, and G. D. Shen, “A Single-Fundamental-Mode Photonic Crystal Vertical Cavity Surface Emitting Laser,” Chin. Phys. Lett. 27, 0242061–0242063 (2010).

Zhang, Y.

G. Zhao, A. Demir, S. Freisem, Y. Zhang, X. Liua, and D. G. Deppe, “New VCSEL technology with scalability for single mode operation and densely integrated arrays,” Proc. SPIE 8054, 80540A (2011).
[Crossref]

Zhao, G.

G. Zhao, A. Demir, S. Freisem, Y. Zhang, X. Liua, and D. G. Deppe, “New VCSEL technology with scalability for single mode operation and densely integrated arrays,” Proc. SPIE 8054, 80540A (2011).
[Crossref]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high index contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Zhu, Y. X.

Y. Y. Xie, Q. Kan, C. Xu, Y. X. Zhu, C. X. Wang, and H. D. Chen, “Low Threshold Current Single-Fundamental-Mode Photonic Crystal VCSELs,” IEEE Photonics Technol. Lett. 24(6), 464–466 (2012).
[Crossref]

Appl. Phys. Lett. (3)

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004).
[Crossref]

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80(21), 3901–3903 (2002).
[Crossref]

D. S. Song, Y. J. Lee, H. W. Choi, and Y. H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82(19), 3182–3184 (2003).
[Crossref]

Chin. Phys. Lett. (2)

Y. Y. Xie, C. Xu, Q. Kan, C. X. Wang, Y. M. Liu, B. Q. Wang, H. D. Chen, and G. D. Shen, “A Single-Fundamental-Mode Photonic Crystal Vertical Cavity Surface Emitting Laser,” Chin. Phys. Lett. 27, 0242061–0242063 (2010).

H. Wu, C. Li, M. F. Han, W. J. Wang, L. Shi, Q. L. Liu, B. Liu, J. Dong, and X. Guo, “Polarization-Stable 980nm Vertical-Cavity Surface-Emitting Lasers with Diamond-Shaped Oxide Aperture,” Chin. Phys. Lett. 32(4), 044202 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

C. Chen, P. O. Leisher, D. M. Kuchta, and K. D. Choquette, “High-Speed Modulation of Index-Guided Implant-Confined Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 673–678 (2009).
[Crossref]

K. Iga, “Surface emitting laser – It’s birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[Crossref]

A. Larsson, “Advances in VCSELs for Communication and Sensing,” IEEE J. Sel. Top. Quantum Electron. 1077–260X, 1–16 (2011).

J. M. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Polarization-Stable Oxide-Confined VCSELs With Enhanced Single-Mode Output Power Via Monolithically Integrated Inverted Grating Reliefs,” IEEE J. Sel. Top. Quantum Electron. 11(5), 982–989 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Y. Y. Xie, Q. Kan, C. Xu, Y. X. Zhu, C. X. Wang, and H. D. Chen, “Low Threshold Current Single-Fundamental-Mode Photonic Crystal VCSELs,” IEEE Photonics Technol. Lett. 24(6), 464–466 (2012).
[Crossref]

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photonics Technol. Lett. 6(1), 40–42 (1994).
[Crossref]

IEICE Trans. Electron. (1)

A. J. Danner, J. J. Raftery, T. Kim, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “Progress in photonic crystal vertical cavity lasers,” IEICE Trans. Electron. E88-C(5), 944–950 (2005).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (2)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high index contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (1)

G. Zhao, A. Demir, S. Freisem, Y. Zhang, X. Liua, and D. G. Deppe, “New VCSEL technology with scalability for single mode operation and densely integrated arrays,” Proc. SPIE 8054, 80540A (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of the simulated microstructure VCSEL which consists of EPC, DBRs, oxide aperture and Al2O3 layer.
Fig. 2
Fig. 2 The reflectance spectrum of VCSELs with common DBR and the EPC structure in the top mirror. The EPC period is 4 μm, the air hole longer axis a is 2 μm, the b/a ratio is 0.7, the depth of the air hole is 2μm and the oxide aperture diameter d is 10 μm.
Fig. 3
Fig. 3 The corresponding mode loss of VCSELs with conventional DBRs and EPC structures in the top mirror. The black curve shows the mode loss with the reflector reflectance of 99.5%.
Fig. 4
Fig. 4 The calculated mode mirror loss of the EPC-VCSELs with different b/a ratios. The EPC period is 4 μm, the long axis of the air hole is 2 μm, the depth is 2μm, and the oxide aperture diameter d is 10 μm.
Fig. 5
Fig. 5 The calculated mode loss of EPC-VCSELs with different air hole depths. The period of EPC is 4 μm, the long axis of the air hole is 2 μm, the b/a ratio is 0.7and the oxide aperture diameter d is 10 μm.
Fig. 6
Fig. 6 The calculated mode loss of EPC-VCSELs with different diameters and shape oxide apertures. The EO is an elliptical oxide aperture with long axis of 10 μm and short axis of 7 μm.
Fig. 7
Fig. 7 SEM images of the fabricated devices. The period of the EPC is 4 μm, the longer axis of the air hole is 2 μm, the b/a ratio is 0.7 and the depth is 2 μm. Inset is the cross sectional SEM image part of the EPC.
Fig. 8
Fig. 8 The measured L-I-V curve of the fabricated EPC-VCSEL. The continuous-wave (CW) light output power and voltage versus injection current were obtained at room temperature (RT). The black and red curve are the light output power with polarizer along different direction. The blue line shows the voltage of the device with different injection current.
Fig. 9
Fig. 9 (a) The measured far field distribution of the EPC-VCSEL. The black curve is the horizontal direction distribution and the red is vertical direction distribution. (b) The measured optical spectrum of the EPC-VCSEL at different injection current.
Fig. 10
Fig. 10 The L-I -V curve of the EPC-VCSEL with the air hole depth of 2.5 μm. The threshold current of the device is larger than 20 mA.

Metrics