Abstract

Titanium dioxide, aluminum oxide, and silicon dioxide layers have been prepared by plasma ion assisted electron beam evaporation employing the Advanced Plasma Source (APS). The refractive indices have been determined by spectrophotometry in order to quantify their reproducibility. Standard deviations in the refractive index turned out to be highest for titanium dioxide, and lowest for silicon dioxide. The refractive index reproducibility of titanium dioxide could be improved by replacing the commonly used BIAS voltage control concept by a novel alternative approach concerning ion beam power, termed J E. All these findings are discussed in terms of a model that considers the real oxide film as a binary mixture of a solid fraction with a small amount of pores, within the limits provided by the Wiener bounds.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties of UV-transparent aluminum oxide / aluminum fluoride mixture films, prepared by plasma-ion assisted evaporation and ion beam sputtering

Olaf Stenzel, Steffen Wilbrandt, Shan Du, Christian Franke, Norbert Kaiser, Andreas Tünnermann, Mathias Mende, Henrik Ehlers, and Mario Held
Opt. Mater. Express 4(8) 1696-1707 (2014)

Plasma ion assisted deposition of hafnium dioxide using argon and xenon as process gases

O. Stenzel, S. Wilbrandt, S. Yulin, N. Kaiser, M. Held, A. Tünnermann, J. Biskupek, and U. Kaiser
Opt. Mater. Express 1(2) 278-292 (2011)

Investigation of the refractive index repeatability for tantalum pentoxide coatings, prepared by physical vapor film deposition techniques

O. Stenzel, S. Wilbrandt, J. Wolf, M. Schürmann, N. Kaiser, D. Ristau, H. Ehlers, F. Carstens, S. Schippel, L. Mechold, R. Rauhut, M. Kennedy, M. Bischoff, T. Nowitzki, A. Zöller, H. Hagedorn, H. Reus, T. Hegemann, K. Starke, J. Harhausen, R. Foest, and J. Schumacher
Appl. Opt. 56(4) C193-C200 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill Book Company, 1989)
  2. A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51(30), 7319–7332 (2012).
    [Crossref] [PubMed]
  3. A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44(32), 6877–6884 (2005).
    [Crossref] [PubMed]
  4. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring,” Appl. Opt. 45(27), 7026–7034 (2006).
    [Crossref] [PubMed]
  5. K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. H. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49(16), 3150–3162 (2010).
    [Crossref] [PubMed]
  6. L. D. Landau and E. M. Lifschitz, Lehrbuch der Theoretischen Physik, Bd. VIII: Elektrodynamik der Kontinua (engl.: Textbook of Theoretical Physics, vol. VIII: Electrodynamics of Continuous Media) (Akademie-Verlag, 1985)
  7. www.optilayer.com
  8. T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a key element in the design-production chain for modern multilayer coatings,” Appl. Opt. 51(31), 7604–7615 (2012).
    [Crossref] [PubMed]
  9. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1968).
  10. Ю. П. Пытьев and И. А. Шишмаров, Курс теории вероятностей и математической статистики для физиков (engl. Course in Probability Theory and Mathematical Statistics for Physicists) (Moscow University Publishing House, 1983), p. 86–92.
  11. S. Schwyn Thöny, S. Wüthrich, M. Padrun, M. Burgunder, T. Gnos, T. Meier, M. Schreiner, C. Würsch and R. Buser, “Simulation and optimization of distribution shields: improved uniformity and material utilization,” Optical Interference Coatings Technical Digest, poster WC.4 (2013).
    [Crossref]
  12. J. Harhausen, R. P. Brinkmann, R. Foest, M. Hannemann, A. Ohl, and B. Schröder, “On plasma ion beam formation in the Advanced Plasma Source,” Plasma Sources Sci. Technol. 21(3), 035012 (2012).
    [Crossref]
  13. S. Schiller, U. Heisig, and S. Panzer, Electron Beam Evaporation (John Wiley & Sons, 1982).
  14. H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
    [Crossref]
  15. K. Matl, W. Klug, and A. Zöller, “Ion-assisted deposition with a new plasma source,” Mater. Sci. Eng. 140, 523–527 (1991).
    [Crossref]
  16. J. Harhausen, D. Loffhagen, and R. Foest, “Interpretation of the optical emission of argon in the plume of the Advanced Plasma Source,” J. Phys. D Appl. Phys. 48(4), 045203 (2015).
    [Crossref]
  17. B. Schröder, R. P. Brinkmann, J. Harhausen, and A. Ohl, “Modelling and simulation of the Advanced Plasma Source,” J. Appl. Phys. 110(4), 043305 (2011).
    [Crossref]
  18. J. D. Targove and H. A. Macleod, “Verification of momentum transfer as the dominant densifying mechanism in ion-assisted deposition,” Appl. Opt. 27(18), 3779–3781 (1988).
    [Crossref] [PubMed]
  19. C. A. Davis, “A simple model for the formation of compressive stress in thin films by ion bombardment,” Thin Solid Films 226(1), 30–34 (1993).
    [Crossref]
  20. D. Gäbler, U. Schulz, A. Ohl, N. Kaiser, and H. Steffen, “Plasmaionenquelle für eine Vakuumbeschichtungsanlage,” http://www.google.com/patents/DE102011103464A1?cl=de .
  21. O. Stenzel, Optical Coatings. Material Aspects in Theory and Practice (Springer-Verlag Berlin Heidelberg, 2014)
  22. O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
    [Crossref]
  23. D. Bergman, “Rigorous bounds for the complex dielectric constant of a two-component composite,” Annals of Physics Volume 138(1), 78–114 (1982).
    [Crossref]
  24. O. Stenzel, S. Wilbrandt, S. Du, C. Franke, N. Kaiser, A. Tünnermann, M. Mende, H. Ehlers, and M. Held, “Optical properties of UV-transparent aluminum oxide / aluminum fluoride mixture films, prepared by plasma-ion assisted evaporation and ion beam sputtering,” Opt. Mater. Express 4(8), 1696–1707 (2014).
    [Crossref]
  25. O. Stenzel, The Physics of Thin Film Optical Spectra: An introduction, 2nd edition (Springer-Verlag Berlin, 2015)

2015 (1)

J. Harhausen, D. Loffhagen, and R. Foest, “Interpretation of the optical emission of argon in the plume of the Advanced Plasma Source,” J. Phys. D Appl. Phys. 48(4), 045203 (2015).
[Crossref]

2014 (1)

2012 (3)

2011 (1)

B. Schröder, R. P. Brinkmann, J. Harhausen, and A. Ohl, “Modelling and simulation of the Advanced Plasma Source,” J. Appl. Phys. 110(4), 043305 (2011).
[Crossref]

2010 (1)

2009 (1)

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

2006 (1)

2005 (1)

2004 (1)

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

1993 (1)

C. A. Davis, “A simple model for the formation of compressive stress in thin films by ion bombardment,” Thin Solid Films 226(1), 30–34 (1993).
[Crossref]

1991 (1)

K. Matl, W. Klug, and A. Zöller, “Ion-assisted deposition with a new plasma source,” Mater. Sci. Eng. 140, 523–527 (1991).
[Crossref]

1988 (1)

1982 (1)

D. Bergman, “Rigorous bounds for the complex dielectric constant of a two-component composite,” Annals of Physics Volume 138(1), 78–114 (1982).
[Crossref]

Amotchkina, T. V.

Becker, K.

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

Beckmann, R.

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

Beermann, N.

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

Bergman, D.

D. Bergman, “Rigorous bounds for the complex dielectric constant of a two-component composite,” Annals of Physics Volume 138(1), 78–114 (1982).
[Crossref]

Bitzer, M.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Brauneck, U.

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

Brinkmann, R. P.

J. Harhausen, R. P. Brinkmann, R. Foest, M. Hannemann, A. Ohl, and B. Schröder, “On plasma ion beam formation in the Advanced Plasma Source,” Plasma Sources Sci. Technol. 21(3), 035012 (2012).
[Crossref]

B. Schröder, R. P. Brinkmann, J. Harhausen, and A. Ohl, “Modelling and simulation of the Advanced Plasma Source,” J. Appl. Phys. 110(4), 043305 (2011).
[Crossref]

Chuvilin, A.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Davis, C. A.

C. A. Davis, “A simple model for the formation of compressive stress in thin films by ion bombardment,” Thin Solid Films 226(1), 30–34 (1993).
[Crossref]

Du, S.

Ebert, J.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Ehlers, H.

Foest, R.

J. Harhausen, D. Loffhagen, and R. Foest, “Interpretation of the optical emission of argon in the plume of the Advanced Plasma Source,” J. Phys. D Appl. Phys. 48(4), 045203 (2015).
[Crossref]

J. Harhausen, R. P. Brinkmann, R. Foest, M. Hannemann, A. Ohl, and B. Schröder, “On plasma ion beam formation in the Advanced Plasma Source,” Plasma Sources Sci. Technol. 21(3), 035012 (2012).
[Crossref]

Franke, C.

Friedrich, K.

Fuhrberg, P.

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

Gäbler, D.

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

Grössl, M.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Hannemann, M.

J. Harhausen, R. P. Brinkmann, R. Foest, M. Hannemann, A. Ohl, and B. Schröder, “On plasma ion beam formation in the Advanced Plasma Source,” Plasma Sources Sci. Technol. 21(3), 035012 (2012).
[Crossref]

Harhausen, J.

J. Harhausen, D. Loffhagen, and R. Foest, “Interpretation of the optical emission of argon in the plume of the Advanced Plasma Source,” J. Phys. D Appl. Phys. 48(4), 045203 (2015).
[Crossref]

J. Harhausen, R. P. Brinkmann, R. Foest, M. Hannemann, A. Ohl, and B. Schröder, “On plasma ion beam formation in the Advanced Plasma Source,” Plasma Sources Sci. Technol. 21(3), 035012 (2012).
[Crossref]

B. Schröder, R. P. Brinkmann, J. Harhausen, and A. Ohl, “Modelling and simulation of the Advanced Plasma Source,” J. Appl. Phys. 110(4), 043305 (2011).
[Crossref]

Held, M.

Hoffmann, K. H.

Jakobs, S.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

Kaiser, N.

O. Stenzel, S. Wilbrandt, S. Du, C. Franke, N. Kaiser, A. Tünnermann, M. Mende, H. Ehlers, and M. Held, “Optical properties of UV-transparent aluminum oxide / aluminum fluoride mixture films, prepared by plasma-ion assisted evaporation and ion beam sputtering,” Opt. Mater. Express 4(8), 1696–1707 (2014).
[Crossref]

K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. H. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49(16), 3150–3162 (2010).
[Crossref] [PubMed]

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

Kaiser, U.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Kaless, A.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Kennedy, M.

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

Klug, W.

K. Matl, W. Klug, and A. Zöller, “Ion-assisted deposition with a new plasma source,” Mater. Sci. Eng. 140, 523–527 (1991).
[Crossref]

Kolitsch, A.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

König, F.

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

Laux, S.

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

Loffhagen, D.

J. Harhausen, D. Loffhagen, and R. Foest, “Interpretation of the optical emission of argon in the plume of the Advanced Plasma Source,” J. Phys. D Appl. Phys. 48(4), 045203 (2015).
[Crossref]

Macleod, H. A.

Matl, K.

K. Matl, W. Klug, and A. Zöller, “Ion-assisted deposition with a new plasma source,” Mater. Sci. Eng. 140, 523–527 (1991).
[Crossref]

Mende, M.

Müller, J. C.

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

Munnik, F.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Ohl, A.

J. Harhausen, R. P. Brinkmann, R. Foest, M. Hannemann, A. Ohl, and B. Schröder, “On plasma ion beam formation in the Advanced Plasma Source,” Plasma Sources Sci. Technol. 21(3), 035012 (2012).
[Crossref]

B. Schröder, R. P. Brinkmann, J. Harhausen, and A. Ohl, “Modelling and simulation of the Advanced Plasma Source,” J. Appl. Phys. 110(4), 043305 (2011).
[Crossref]

Rau, B.

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

Riggers, W.

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

Ristau, D.

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a key element in the design-production chain for modern multilayer coatings,” Appl. Opt. 51(31), 7604–7615 (2012).
[Crossref] [PubMed]

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

Schäfer, D.

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

Schlichting, S.

Schröder, B.

J. Harhausen, R. P. Brinkmann, R. Foest, M. Hannemann, A. Ohl, and B. Schröder, “On plasma ion beam formation in the Advanced Plasma Source,” Plasma Sources Sci. Technol. 21(3), 035012 (2012).
[Crossref]

B. Schröder, R. P. Brinkmann, J. Harhausen, and A. Ohl, “Modelling and simulation of the Advanced Plasma Source,” J. Appl. Phys. 110(4), 043305 (2011).
[Crossref]

Stenzel, O.

O. Stenzel, S. Wilbrandt, S. Du, C. Franke, N. Kaiser, A. Tünnermann, M. Mende, H. Ehlers, and M. Held, “Optical properties of UV-transparent aluminum oxide / aluminum fluoride mixture films, prepared by plasma-ion assisted evaporation and ion beam sputtering,” Opt. Mater. Express 4(8), 1696–1707 (2014).
[Crossref]

K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. H. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49(16), 3150–3162 (2010).
[Crossref] [PubMed]

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

Targove, J. D.

Tikhonravov, A. V.

Treichel, O.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Trubetskov, M. K.

Tünnermann, A.

Vinnichenko, M.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Wilbrandt, S.

O. Stenzel, S. Wilbrandt, S. Du, C. Franke, N. Kaiser, A. Tünnermann, M. Mende, H. Ehlers, and M. Held, “Optical properties of UV-transparent aluminum oxide / aluminum fluoride mixture films, prepared by plasma-ion assisted evaporation and ion beam sputtering,” Opt. Mater. Express 4(8), 1696–1707 (2014).
[Crossref]

K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. H. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49(16), 3150–3162 (2010).
[Crossref] [PubMed]

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Wunderlich, B.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Wüthrich, S.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Zöller, A.

K. Matl, W. Klug, and A. Zöller, “Ion-assisted deposition with a new plasma source,” Mater. Sci. Eng. 140, 523–527 (1991).
[Crossref]

Annals of Physics Volume (1)

D. Bergman, “Rigorous bounds for the complex dielectric constant of a two-component composite,” Annals of Physics Volume 138(1), 78–114 (1982).
[Crossref]

Appl. Opt. (6)

J. Appl. Phys. (1)

B. Schröder, R. P. Brinkmann, J. Harhausen, and A. Ohl, “Modelling and simulation of the Advanced Plasma Source,” J. Appl. Phys. 110(4), 043305 (2011).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. Harhausen, D. Loffhagen, and R. Foest, “Interpretation of the optical emission of argon in the plume of the Advanced Plasma Source,” J. Phys. D Appl. Phys. 48(4), 045203 (2015).
[Crossref]

Mater. Sci. Eng. (1)

K. Matl, W. Klug, and A. Zöller, “Ion-assisted deposition with a new plasma source,” Mater. Sci. Eng. 140, 523–527 (1991).
[Crossref]

Opt. Mater. Express (1)

Plasma Sources Sci. Technol. (1)

J. Harhausen, R. P. Brinkmann, R. Foest, M. Hannemann, A. Ohl, and B. Schröder, “On plasma ion beam formation in the Advanced Plasma Source,” Plasma Sources Sci. Technol. 21(3), 035012 (2012).
[Crossref]

SPIE-Proceedings (1)

H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J. C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, and O. Stenzel, “Ion assisted deposition processes: industrial network intion,” SPIE-Proceedings 5250, 646–655 (2004).
[Crossref]

Thin Solid Films (2)

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

C. A. Davis, “A simple model for the formation of compressive stress in thin films by ion bombardment,” Thin Solid Films 226(1), 30–34 (1993).
[Crossref]

Other (10)

D. Gäbler, U. Schulz, A. Ohl, N. Kaiser, and H. Steffen, “Plasmaionenquelle für eine Vakuumbeschichtungsanlage,” http://www.google.com/patents/DE102011103464A1?cl=de .

O. Stenzel, Optical Coatings. Material Aspects in Theory and Practice (Springer-Verlag Berlin Heidelberg, 2014)

L. D. Landau and E. M. Lifschitz, Lehrbuch der Theoretischen Physik, Bd. VIII: Elektrodynamik der Kontinua (engl.: Textbook of Theoretical Physics, vol. VIII: Electrodynamics of Continuous Media) (Akademie-Verlag, 1985)

www.optilayer.com

O. Stenzel, The Physics of Thin Film Optical Spectra: An introduction, 2nd edition (Springer-Verlag Berlin, 2015)

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill Book Company, 1989)

S. Schiller, U. Heisig, and S. Panzer, Electron Beam Evaporation (John Wiley & Sons, 1982).

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1968).

Ю. П. Пытьев and И. А. Шишмаров, Курс теории вероятностей и математической статистики для физиков (engl. Course in Probability Theory and Mathematical Statistics for Physicists) (Moscow University Publishing House, 1983), p. 86–92.

S. Schwyn Thöny, S. Wüthrich, M. Padrun, M. Burgunder, T. Gnos, T. Meier, M. Schreiner, C. Würsch and R. Buser, “Simulation and optimization of distribution shields: improved uniformity and material utilization,” Optical Interference Coatings Technical Digest, poster WC.4 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup.
Fig. 2
Fig. 2 Ion velocity distribution functions for two polar angles.
Fig. 3
Fig. 3 Polar profiles of total ion kinetic energy flux density for two cathode states.
Fig. 4
Fig. 4 Basic scaling law for total ion kinetic energy flux.
Fig. 5
Fig. 5 Typical fit quality of TiO2 reflection spectra. on left: DF = 1.23e-03; on right: DF = 2.34e-03. Symbols correspond to measured data, red lines to the theoretical fit.
Fig. 6
Fig. 6 Left: sample sets of 6 experimental titanium dioxide reflection spectra; Right: scatter in corresponding film thicknesses and refractive indices. On top: same sample, 6 independent measurements; centre: 6 samples produced in V A control mode; on bottom: 6 samples produced in J E control mode.
Fig. 7
Fig. 7 Standard deviations in refractive index vs. average refractive index. Navy symbols correspond to 250nm, and red symbols to 400nm. Open symbols denote J E series, full symbols V A series.
Fig. 8
Fig. 8 Model calculation: Variations in the refractive index as calculated from Wiener bounds.

Tables (6)

Tables Icon

Table 1 Overview on selected deposition parameters

Tables Icon

Table 2 Mean values and standard deviations of refractive index, shift and mechanical stress (TiO2)

Tables Icon

Table 3 Mean values and standard deviations of the refractive index (SiO2 and Al2O3)

Tables Icon

Table 4 Estimation of porosity in terms of the Wiener bounds (TiO2)

Tables Icon

Table 5 Comparison between experimental refractive index standard deviations and the results of the model calculations

Tables Icon

Table 6 Typical order of stochastic and systematic refractive index deviations

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

f = 1 N j = 1 N f j
δ f = j = 1 N [ f j f ] 2 N 1
lim N f = lim N [ 1 N j = 1 N f j ] = f target
| lim N [ 1 N j = 1 N f j ] 1 N j = 1 N f j | j = 1 N [ f j f ] 2 N ( N 1 ) = δ f N
Δ syst f f target 1 N j = 1 N f j = f target f
Δ syst f max l , l ' | f l f l ' |
J E = 2 π R 0 2 ϑ = 0 ϑ = 40 ° j E ( R 0 , ϑ ) sin ϑ d ϑ
J E,scl = a 0 V A a 1 V D a 2 I D a 3 I C a 4
D F = 1 M l = 1 M { [ T exp ( ν l ) T calc ( ν l ) ] 2 + [ R exp ( ν l ) R calc ( ν l ) ] 2 }
Upper bound ( u ) : n u 2 = p n b 2 + ( 1 p ) n p 2
Lower bound ( l ) : n l 2 = p n b 2 + ( 1 p ) n p 2
d n u = 1 n u [ p n b d n b + ( 1 p ) n p d n p + 1 2 ( n b 2 n p 2 ) d p ]
d n u d n b + n u 2 ( 1 n p 2 n u 2 ) d p
d n l d n b + n l 2 ( n l 2 n p 2 1 ) d p

Metrics