Abstract

Optimum design of high-energy cascaded parametric down-conversion schemes from 1 μm requires accurate knowledge of the laser induced damage threshold (LIDT) of the nonlinear crystal employed. We report surface LIDT measurements in KTiOPO4 (KTP) and Rb:KTP (RKTP) with nanosecond pulses at 1.064 μm and 2.1 μm. LIDT results for nanosecond pulses at 2 μm for KTP and RKTP have not been previously reported to the best of our knowledge.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High repetition rate, femtosecond and picosecond laser induced damage thresholds of Rb:KTiOPO4 at 1.03 µm

Florian Bach, Mark Mero, Valdas Pasiskevicius, Andrius Zukauskas, and Valentin Petrov
Opt. Mater. Express 7(3) 744-750 (2017)

Increasing the laser-induced damage threshold of single-crystal ZnGeP2

Kevin T. Zawilski, Scott D. Setzler, Peter G. Schunemann, and Thomas M. Pollak
J. Opt. Soc. Am. B 23(11) 2310-2316 (2006)

Laser damage threshold of KTiOPO4

Fakhruddin Ahmed
Appl. Opt. 28(1) 119-122 (1989)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6(4), 622–633 (1989).
    [Crossref]
  2. S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson, “Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4.,” Opt. Lett. 23(24), 1883–1885 (1998).
    [Crossref] [PubMed]
  3. A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1(2), 201–206 (2011).
    [Crossref]
  4. A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, “Fabrication of submicrometer quasi-phase-matched devices in KTP and RKTP,” Opt. Mater. Express 1(7), 1319–1325 (2011).
    [Crossref]
  5. F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, and M. Commandré, “Nanosecond-laser-induced damage in potassium titanyl phosphate: pure 532 nm pumping and frequency conversion situations,” Appl. Opt. 50(22), 4509–4515 (2011).
    [Crossref] [PubMed]
  6. F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandré, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
    [Crossref]
  7. A. Hildenbrand, F. R. Wagner, J.-Y. Natoli, M. Commandré, H. Albrecht, and F. Théodore, “Laser damage investigation in nonlinear crystals: Study of KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals,” Proc. SPIE 6998, 699815 (2008).
    [Crossref]
  8. R. J. Bolt and M. Van der Mooren, “Single shot bulk damage threshold and conversion efficiency measurements on flux grown KTiOPO4 (KTP),” Opt. Commun. 100(1-4), 399–410 (1993).
    [Crossref]
  9. Q. Zhang, G. Feng, J. Han, B. Li, Q. Zhu, and X. Xie, “High repetition rate laser pulse induced damage in KTP crystal: Gray-tracking and catastrophic damage,” Optik (Stuttg.) 122(15), 1313–1318 (2011).
    [Crossref]
  10. P. Yankov, D. Schumov, A. Nenov, and A. Monev, “Laser damage tests of large flux-grown KTiOPO4 crystals,” Opt. Lett. 18(21), 1771–1773 (1993).
    [Crossref] [PubMed]
  11. H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of Laser-Induced Bulk Damage Threshold and Crack Patterns in Several Nonlinear Crystals on Irradiation Direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
    [Crossref]
  12. M. Raybaut, T. Schmid, A. Godard, A. K. Mohamed, M. Lefebvre, F. Marnas, P. Flamant, A. Bohman, P. Geiser, and P. Kaspersen, “High-energy single-longitudinal mode nearly diffraction-limited optical parametric source with 3 MHz frequency stability for CO2 DIAL,” Opt. Lett. 34(13), 2069–2071 (2009).
    [Crossref] [PubMed]
  13. V. Petrov, “Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources,” Opt. Mater. 34(3), 536–554 (2012).
    [Crossref]
  14. M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
    [Crossref]
  15. K. T. Zawilski, S. D. Setzler, P. G. Schunemann, and T. M. Pollak, “Increasing the laser-induced damage threshold of single-crystal ZnGeP2,” J. Opt. Soc. Am. B 23(11), 2310–2316 (2006).
    [Crossref]
  16. ISO 21254–2, “Lasers and laser-related equipment -Test methods for laser-induced damage threshold - Part 2: Threshold determination,” (2007).
  17. F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
    [Crossref]
  18. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [Crossref] [PubMed]
  19. A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53(1), 010901 (2014).
    [Crossref]
  20. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12(4), 661–664 (1973).
    [Crossref] [PubMed]
  21. H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
    [Crossref]
  22. A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
    [Crossref]
  23. O. Madelung, Introduction to Solid-State Theory (Springer, 1978).

2014 (2)

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandré, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53(1), 010901 (2014).
[Crossref]

2012 (2)

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[Crossref]

V. Petrov, “Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources,” Opt. Mater. 34(3), 536–554 (2012).
[Crossref]

2011 (4)

2009 (1)

2008 (2)

A. Hildenbrand, F. R. Wagner, J.-Y. Natoli, M. Commandré, H. Albrecht, and F. Théodore, “Laser damage investigation in nonlinear crystals: Study of KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals,” Proc. SPIE 6998, 699815 (2008).
[Crossref]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

2007 (1)

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[Crossref]

2006 (2)

K. T. Zawilski, S. D. Setzler, P. G. Schunemann, and T. M. Pollak, “Increasing the laser-induced damage threshold of single-crystal ZnGeP2,” J. Opt. Soc. Am. B 23(11), 2310–2316 (2006).
[Crossref]

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of Laser-Induced Bulk Damage Threshold and Crack Patterns in Several Nonlinear Crystals on Irradiation Direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

2005 (1)

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

1998 (1)

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

1993 (2)

R. J. Bolt and M. Van der Mooren, “Single shot bulk damage threshold and conversion efficiency measurements on flux grown KTiOPO4 (KTP),” Opt. Commun. 100(1-4), 399–410 (1993).
[Crossref]

P. Yankov, D. Schumov, A. Nenov, and A. Monev, “Laser damage tests of large flux-grown KTiOPO4 crystals,” Opt. Lett. 18(21), 1771–1773 (1993).
[Crossref] [PubMed]

1989 (1)

1973 (1)

Akhouayri, H.

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandré, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[Crossref]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Albrecht, H.

A. Hildenbrand, F. R. Wagner, J.-Y. Natoli, M. Commandré, H. Albrecht, and F. Théodore, “Laser damage investigation in nonlinear crystals: Study of KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals,” Proc. SPIE 6998, 699815 (2008).
[Crossref]

Bierlein, J. D.

Bloembergen, N.

Bohman, A.

Bolt, R. J.

R. J. Bolt and M. Van der Mooren, “Single shot bulk damage threshold and conversion efficiency measurements on flux grown KTiOPO4 (KTP),” Opt. Commun. 100(1-4), 399–410 (1993).
[Crossref]

Canalias, C.

Commandré, M.

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandré, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[Crossref]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, and M. Commandré, “Nanosecond-laser-induced damage in potassium titanyl phosphate: pure 532 nm pumping and frequency conversion situations,” Appl. Opt. 50(22), 4509–4515 (2011).
[Crossref] [PubMed]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

A. Hildenbrand, F. R. Wagner, J.-Y. Natoli, M. Commandré, H. Albrecht, and F. Théodore, “Laser damage investigation in nonlinear crystals: Study of KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals,” Proc. SPIE 6998, 699815 (2008).
[Crossref]

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

Duchateau, G.

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandré, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Feng, G.

Q. Zhang, G. Feng, J. Han, B. Li, Q. Zhu, and X. Xie, “High repetition rate laser pulse induced damage in KTP crystal: Gray-tracking and catastrophic damage,” Optik (Stuttg.) 122(15), 1313–1318 (2011).
[Crossref]

Flamant, P.

Fokine, M.

Fujita, H.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of Laser-Induced Bulk Damage Threshold and Crack Patterns in Several Nonlinear Crystals on Irradiation Direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Gallais, L.

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[Crossref]

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

Geiser, P.

Godard, A.

Gouldieff, C.

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[Crossref]

Grèzes-Besset, C.

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

Han, J.

Q. Zhang, G. Feng, J. Han, B. Li, Q. Zhu, and X. Xie, “High repetition rate laser pulse induced damage in KTP crystal: Gray-tracking and catastrophic damage,” Optik (Stuttg.) 122(15), 1313–1318 (2011).
[Crossref]

Henriksson, M.

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[Crossref]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Hildenbrand, A.

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[Crossref]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, and M. Commandré, “Nanosecond-laser-induced damage in potassium titanyl phosphate: pure 532 nm pumping and frequency conversion situations,” Appl. Opt. 50(22), 4509–4515 (2011).
[Crossref] [PubMed]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

A. Hildenbrand, F. R. Wagner, J.-Y. Natoli, M. Commandré, H. Albrecht, and F. Théodore, “Laser damage investigation in nonlinear crystals: Study of KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals,” Proc. SPIE 6998, 699815 (2008).
[Crossref]

Kamimura, T.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of Laser-Induced Bulk Damage Threshold and Crack Patterns in Several Nonlinear Crystals on Irradiation Direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Karlsson, H.

Kaspersen, P.

Krol, H.

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

Laurell, F.

Lefebvre, M.

Li, B.

Q. Zhang, G. Feng, J. Han, B. Li, Q. Zhu, and X. Xie, “High repetition rate laser pulse induced damage in KTP crystal: Gray-tracking and catastrophic damage,” Optik (Stuttg.) 122(15), 1313–1318 (2011).
[Crossref]

Manenkov, A. A.

A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53(1), 010901 (2014).
[Crossref]

Marnas, F.

Mohamed, A. K.

Monev, A.

Nakatsuka, M.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of Laser-Induced Bulk Damage Threshold and Crack Patterns in Several Nonlinear Crystals on Irradiation Direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Natoli, J.-Y.

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandré, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[Crossref]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, and M. Commandré, “Nanosecond-laser-induced damage in potassium titanyl phosphate: pure 532 nm pumping and frequency conversion situations,” Appl. Opt. 50(22), 4509–4515 (2011).
[Crossref] [PubMed]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

A. Hildenbrand, F. R. Wagner, J.-Y. Natoli, M. Commandré, H. Albrecht, and F. Théodore, “Laser damage investigation in nonlinear crystals: Study of KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals,” Proc. SPIE 6998, 699815 (2008).
[Crossref]

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

Nenov, A.

Pasiskevicius, V.

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Petrov, V.

V. Petrov, “Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources,” Opt. Mater. 34(3), 536–554 (2012).
[Crossref]

Pollak, T. M.

Raybaut, M.

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Sasaki, T.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of Laser-Induced Bulk Damage Threshold and Crack Patterns in Several Nonlinear Crystals on Irradiation Direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Schmid, T.

Schumov, D.

Schunemann, P. G.

Setzler, S. D.

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Strömqvist, G.

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Théodore, F.

A. Hildenbrand, F. R. Wagner, J.-Y. Natoli, M. Commandré, H. Albrecht, and F. Théodore, “Laser damage investigation in nonlinear crystals: Study of KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals,” Proc. SPIE 6998, 699815 (2008).
[Crossref]

Thilmann, N.

Tiihonen, M.

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[Crossref]

Van der Mooren, M.

R. J. Bolt and M. Van der Mooren, “Single shot bulk damage threshold and conversion efficiency measurements on flux grown KTiOPO4 (KTP),” Opt. Commun. 100(1-4), 399–410 (1993).
[Crossref]

Vanherzeele, H.

Wagner, F. R.

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandré, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[Crossref]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, and M. Commandré, “Nanosecond-laser-induced damage in potassium titanyl phosphate: pure 532 nm pumping and frequency conversion situations,” Appl. Opt. 50(22), 4509–4515 (2011).
[Crossref] [PubMed]

A. Hildenbrand, F. R. Wagner, J.-Y. Natoli, M. Commandré, H. Albrecht, and F. Théodore, “Laser damage investigation in nonlinear crystals: Study of KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals,” Proc. SPIE 6998, 699815 (2008).
[Crossref]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Wang, S.

Xie, X.

Q. Zhang, G. Feng, J. Han, B. Li, Q. Zhu, and X. Xie, “High repetition rate laser pulse induced damage in KTP crystal: Gray-tracking and catastrophic damage,” Optik (Stuttg.) 122(15), 1313–1318 (2011).
[Crossref]

Yankov, P.

Yoshida, H.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of Laser-Induced Bulk Damage Threshold and Crack Patterns in Several Nonlinear Crystals on Irradiation Direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Yoshida, K.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of Laser-Induced Bulk Damage Threshold and Crack Patterns in Several Nonlinear Crystals on Irradiation Direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Yoshimura, M.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of Laser-Induced Bulk Damage Threshold and Crack Patterns in Several Nonlinear Crystals on Irradiation Direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Zawilski, K. T.

Zhang, Q.

Q. Zhang, G. Feng, J. Han, B. Li, Q. Zhu, and X. Xie, “High repetition rate laser pulse induced damage in KTP crystal: Gray-tracking and catastrophic damage,” Optik (Stuttg.) 122(15), 1313–1318 (2011).
[Crossref]

Zhu, Q.

Q. Zhang, G. Feng, J. Han, B. Li, Q. Zhu, and X. Xie, “High repetition rate laser pulse induced damage in KTP crystal: Gray-tracking and catastrophic damage,” Optik (Stuttg.) 122(15), 1313–1318 (2011).
[Crossref]

Zukauskas, A.

Appl. Opt. (2)

Appl. Phys. B (1)

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[Crossref]

J. Appl. Phys. (1)

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandré, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of Laser-Induced Bulk Damage Threshold and Crack Patterns in Several Nonlinear Crystals on Irradiation Direction,” Jpn. J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Opt. Commun. (2)

R. J. Bolt and M. Van der Mooren, “Single shot bulk damage threshold and conversion efficiency measurements on flux grown KTiOPO4 (KTP),” Opt. Commun. 100(1-4), 399–410 (1993).
[Crossref]

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

Opt. Eng. (3)

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[Crossref]

A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53(1), 010901 (2014).
[Crossref]

Opt. Lett. (3)

Opt. Mater. (1)

V. Petrov, “Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources,” Opt. Mater. 34(3), 536–554 (2012).
[Crossref]

Opt. Mater. Express (2)

Optik (Stuttg.) (1)

Q. Zhang, G. Feng, J. Han, B. Li, Q. Zhu, and X. Xie, “High repetition rate laser pulse induced damage in KTP crystal: Gray-tracking and catastrophic damage,” Optik (Stuttg.) 122(15), 1313–1318 (2011).
[Crossref]

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Hildenbrand, F. R. Wagner, J.-Y. Natoli, M. Commandré, H. Albrecht, and F. Théodore, “Laser damage investigation in nonlinear crystals: Study of KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals,” Proc. SPIE 6998, 699815 (2008).
[Crossref]

Other (2)

ISO 21254–2, “Lasers and laser-related equipment -Test methods for laser-induced damage threshold - Part 2: Threshold determination,” (2007).

O. Madelung, Introduction to Solid-State Theory (Springer, 1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup for 1 µm LIDT measurements.
Fig. 2
Fig. 2 Experimental setup for 2 µm LIDT measurements.
Fig. 3
Fig. 3 Multiple LIDT measurements for KTP and RKTP at 1 µm (left); typical surface damage with 200 pulses (right).
Fig. 4
Fig. 4 Damage probability model fit applied to an uncoated KTP (left) and AR-coated RKTP (right) at 1 µm.
Fig. 5
Fig. 5 Data set for KTP and RKTP at 2 µm (left); Model fit to a single 2 µm RKTP data set (right).

Tables (1)

Tables Icon

Table 1 Surface LIDTs and fitting parameter values for KTP, RKTP and AR-coated RKTP.

Metrics