Abstract

Eu3+ doped Li3Ba2La3(WO4)8 red phosphors were synthesized by the solid state reaction method. A pure phase was confirmed by the X-ray diffraction pattern. Diffuse reflection spectra, photoluminescence spectra, decay curves, quantum yields, and temperature-dependence luminescence spectra were measured. The Eu3+ ions can substitute the La3+ ions completely without decreasing the emission intensity obviously and the quantum yields can keep at about 95%. The activation energy from the bottom of 5D0 level to the 5D0-charge transfer state crossover is 0.24eV. All the results indicate that the Eu3+ doped Li3Ba2La3(WO4)8 can serve as a near ultraviolet excited red phosphor for white light emitting diodes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
ZnB2O4:Bi3+,Eu3+:a highly efficient, red-emitting phosphor

Wei-Ren Liu, Chun Che Lin, Yi-Chen Chiu, Yao-Tsung Yeh, Shyue-Ming Jang, and Ru-Shi Liu
Opt. Express 18(3) 2946-2951 (2010)

Synthesis and photoluminescence characteristics of the LiGd3(MoO4)5:Eu3+ red phosphor with high color purity and brightness

Dasheng Lu, Xinghong Gong, Yujin Chen, Jianhua Huang, Yanfu Lin, Zundu Luo, and Yidong Huang
Opt. Mater. Express 8(2) 259-269 (2018)

Preparation, structural and luminescent properties of Ba2Gd2Si4O13:Eu3+ for white LEDs

Hai Guo, Hao Zhang, RongFei Wei, MengDi Zheng, and LiHong Zhang
Opt. Express 19(S2) A201-A206 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Y. Narukawa, “White-light LEDS,” Opt. Photonics News 15, 24–29 (2004).
  2. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
    [Crossref] [PubMed]
  3. C. C. Lin and R.-S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
    [Crossref] [PubMed]
  4. H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312–4322 (2014).
    [PubMed]
  5. P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henss, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
    [Crossref] [PubMed]
  6. X. Piao, K.-i. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3: Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
    [Crossref]
  7. X. Piao, T. Horikawa, H. Hanzawa, and K.-i. Machida, “Preparation of (Sr1−x Cax)2Si5N8/Eu2+ solid solutions and their luminescence properties,” J. Electrochem. Soc. 153, H232–H235 (2006).
    [Crossref]
  8. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering,” Appl. Phys. Lett. 93(5), 051115 (2008).
    [Crossref]
  9. S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
    [Crossref]
  10. X. Jiang, Y. Pan, S. Huang, X. Chen, J. Wang, and G. Liu, “Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(13), 2301 (2014).
    [Crossref]
  11. S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, and W. B. Im, “Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light,” J. Phys. Chem. C 116(51), 26850–26856 (2012).
    [Crossref]
  12. J. Zhong, D. Chen, W. Zhao, Y. Zhou, H. Yu, L. Chen, and Z. Ji, “Garnet-based Li6CaLa2Sb2O12:Eu3+ red phosphors: a potential color-converting material for warm white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4500–4510 (2015).
    [Crossref]
  13. X. Wang, Y. Xian, G. Wang, J. Shi, Q. Su, and M. Gong, “Luminescence investigation of Eu3+–Sm3+ co-doped Gd2−x−yEuxSmy(MoO4)3 phosphors as red phosphors for UV InGaN-based light-emitting diode,” Opt. Mater. 30(4), 521–526 (2007).
    [Crossref]
  14. A. Xie, X. Yuan, Y. Shi, F. Wang, and J. Wang, “Photoluminescence characteristics of energy transfer between Eu3+ and Bi3+ in LiEu1−xBix(WO4)0.5(MoO4)1.5,” J. Am. Ceram. Soc. 92(10), 2254–2258 (2009).
    [Crossref]
  15. H. Li, R. Zhao, Y. Jia, W. Sun, J. Fu, L. Jiang, S. Zhang, R. Pang, and C. Li, “Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(5), 3163–3169 (2014).
    [Crossref] [PubMed]
  16. J. Huang, B. Hou, H. Ling, J. Liu, and X. Yu, “Crystal structure, electronic structure, and photoluminescence properties of La₃BW(1-x)Mo(x)O₉:Eu³⁺ red phosphor,” Inorg. Chem. 53(18), 9541–9547 (2014).
    [Crossref] [PubMed]
  17. R. Zhu, Y. Huang, and H. J. Seo, “A Red-Emitting Phosphor of Eu-Based Borotungstate Eu3BWO9 for White Light-Emitting Diodes,” J. Electrochem. Soc. 157(12), H1116–H1120 (2010).
    [Crossref]
  18. H. Li, L. Zhang, and G. Wang, “Growth, structure and spectroscopic characterization of a new laser crystals Nd3+:Li3Ba2Gd3(WO4)8,” J. Alloys Compd. 478(1-2), 484–488 (2009).
    [Crossref]
  19. Y.-C. Chang, C.-H. Liang, S.-A. Yan, and Y.-S. Chang, “Synthesis and photoluminescence characteristics of high color purity and brightness Li3Ba2Gd3(MoO4)8:Eu3+ red phosphors,” J. Phys. Chem. C 114(8), 3645–3652 (2010).
    [Crossref]
  20. M. Shang, G. Li, X. Kang, D. Yang, and J. Lin, “Synthesis and luminescent properties of Li3Ba2Y3(MoO4)8:Ln3+ (Ln = Eu, Tb, Dy) phosphors for UV-LEDs,” J. Electrochem. Soc. 158(5), H565–H571 (2011).
    [Crossref]
  21. X. Han, R. Calderón-Villajos, F. Esteban-Betegón, C. Cascales, C. Zaldo, A. Jezowski, and P. Stachowiak, “Crystal growth and physical characterization of monoclinic Li3Lu3Ba2(MoO4)8. a spectrally broadened disordered crystal for ultrafast mode-locked lasers,” Cryst. Growth Des. 12(8), 3878–3887 (2012).
    [Crossref]
  22. A. Katelnikovas, J. Plewa, S. Sakirzanovas, D. Dutczak, D. Enseling, F. Baur, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of Li3Ba2La3(MoO4)8:Eu3+ powders and ceramics for pcLEDs,” J. Mater. Chem. 22(41), 22126–22134 (2012).
    [Crossref]
  23. Y. Pan, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, “Structure, spectral properties and laser performance of Tm3+-doped Li3Ba2La3(WO4)8 crystal,” CrystEngComm 14(11), 3930–3935 (2012).
    [Crossref]
  24. M. Song, W. Zhou, M. Wu, and G. Wang, “Structure, thermal and spectroscopic properties of Tm3+-doped Li3Ba2Y3(MoO4)8 crystal as a promising candidate for 2 μm lasers,” CrystEngComm 15(1), 168–174 (2013).
    [Crossref]
  25. R. F. Klevtsova, A. D. Vasil’ev, L. A. Glinskaya, A. I. Kruglik, N. M. Kozhevnikova, and V. P. Korsun, “Crystal structure investigation of triple molybdates Li3Ba2Ln3(Mo04)8 (Ln = Gd, Tm),” J. Struct. Chem. 33(3), 131–136 (1992).
    [Crossref]
  26. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
    [Crossref]
  27. W. T. Carnall, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys. 49(10), 4450 (1968).
    [Crossref]
  28. K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+ Ln2O2S (Ln = Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996).
    [Crossref]
  29. Y. Huang and H. J. Seo, “A novel red-emitting nano-phosphor of Eu3+-doped LaBWO6,” Mater. Lett. 84, 107–109 (2012).
    [Crossref]
  30. Y. Huang, Y. Nakai, T. Tsuboi, and H. J. Seo, “The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications,” Opt. Express 19(7), 6303–6311 (2011).
    [Crossref] [PubMed]
  31. G. Blasse and B. C. Grabmaier, “Luminescent materials,” in Luminescent Materials (Springer-Verlag, Berlin and New York, 1995), pp. 97–99.
  32. P. A. M. Berdowski and G. Blasse, “Luminescence and energy migration in a two-dimensional system: NaEuTiO4,” J. Lumin. 29(5-6), 243–260 (1984).
    [Crossref]
  33. X. Qiao, Y. Cheng, L. Qin, C. Qin, P. Cai, S. I. Kim, and H. J. Seo, “Coprecipitation synthesis, structure and photoluminescence properties of Eu3+-doped sodium barium borate,” J. Alloys Compd. 617, 946–951 (2014).
    [Crossref]
  34. W. H. Fonger, “Eu+3 5D resonance quenching to the charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52(12), 6364–6372 (1970).
    [Crossref]
  35. D. Wen, J. Feng, J. Li, J. Shi, M. Wu, and Q. Su, “K2Ln(PO4)(WO4):Tb3+,Eu3+(Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2107–2114 (2015).
    [Crossref]
  36. L. Li, S. Zhou, and S. Zhang, “Investigation on relationship between charge transfer position and dielectric definition of average energy gap in Eu3+-doped compounds,” J. Phys. Chem. C 111(7), 3205–3210 (2007).
    [Crossref]

2015 (2)

J. Zhong, D. Chen, W. Zhao, Y. Zhou, H. Yu, L. Chen, and Z. Ji, “Garnet-based Li6CaLa2Sb2O12:Eu3+ red phosphors: a potential color-converting material for warm white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4500–4510 (2015).
[Crossref]

D. Wen, J. Feng, J. Li, J. Shi, M. Wu, and Q. Su, “K2Ln(PO4)(WO4):Tb3+,Eu3+(Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2107–2114 (2015).
[Crossref]

2014 (6)

X. Qiao, Y. Cheng, L. Qin, C. Qin, P. Cai, S. I. Kim, and H. J. Seo, “Coprecipitation synthesis, structure and photoluminescence properties of Eu3+-doped sodium barium borate,” J. Alloys Compd. 617, 946–951 (2014).
[Crossref]

X. Jiang, Y. Pan, S. Huang, X. Chen, J. Wang, and G. Liu, “Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(13), 2301 (2014).
[Crossref]

H. Li, R. Zhao, Y. Jia, W. Sun, J. Fu, L. Jiang, S. Zhang, R. Pang, and C. Li, “Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(5), 3163–3169 (2014).
[Crossref] [PubMed]

J. Huang, B. Hou, H. Ling, J. Liu, and X. Yu, “Crystal structure, electronic structure, and photoluminescence properties of La₃BW(1-x)Mo(x)O₉:Eu³⁺ red phosphor,” Inorg. Chem. 53(18), 9541–9547 (2014).
[Crossref] [PubMed]

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312–4322 (2014).
[PubMed]

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henss, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

2013 (1)

M. Song, W. Zhou, M. Wu, and G. Wang, “Structure, thermal and spectroscopic properties of Tm3+-doped Li3Ba2Y3(MoO4)8 crystal as a promising candidate for 2 μm lasers,” CrystEngComm 15(1), 168–174 (2013).
[Crossref]

2012 (5)

X. Han, R. Calderón-Villajos, F. Esteban-Betegón, C. Cascales, C. Zaldo, A. Jezowski, and P. Stachowiak, “Crystal growth and physical characterization of monoclinic Li3Lu3Ba2(MoO4)8. a spectrally broadened disordered crystal for ultrafast mode-locked lasers,” Cryst. Growth Des. 12(8), 3878–3887 (2012).
[Crossref]

A. Katelnikovas, J. Plewa, S. Sakirzanovas, D. Dutczak, D. Enseling, F. Baur, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of Li3Ba2La3(MoO4)8:Eu3+ powders and ceramics for pcLEDs,” J. Mater. Chem. 22(41), 22126–22134 (2012).
[Crossref]

Y. Pan, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, “Structure, spectral properties and laser performance of Tm3+-doped Li3Ba2La3(WO4)8 crystal,” CrystEngComm 14(11), 3930–3935 (2012).
[Crossref]

Y. Huang and H. J. Seo, “A novel red-emitting nano-phosphor of Eu3+-doped LaBWO6,” Mater. Lett. 84, 107–109 (2012).
[Crossref]

S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, and W. B. Im, “Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light,” J. Phys. Chem. C 116(51), 26850–26856 (2012).
[Crossref]

2011 (3)

C. C. Lin and R.-S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[Crossref] [PubMed]

M. Shang, G. Li, X. Kang, D. Yang, and J. Lin, “Synthesis and luminescent properties of Li3Ba2Y3(MoO4)8:Ln3+ (Ln = Eu, Tb, Dy) phosphors for UV-LEDs,” J. Electrochem. Soc. 158(5), H565–H571 (2011).
[Crossref]

Y. Huang, Y. Nakai, T. Tsuboi, and H. J. Seo, “The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications,” Opt. Express 19(7), 6303–6311 (2011).
[Crossref] [PubMed]

2010 (3)

Y.-C. Chang, C.-H. Liang, S.-A. Yan, and Y.-S. Chang, “Synthesis and photoluminescence characteristics of high color purity and brightness Li3Ba2Gd3(MoO4)8:Eu3+ red phosphors,” J. Phys. Chem. C 114(8), 3645–3652 (2010).
[Crossref]

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[Crossref]

R. Zhu, Y. Huang, and H. J. Seo, “A Red-Emitting Phosphor of Eu-Based Borotungstate Eu3BWO9 for White Light-Emitting Diodes,” J. Electrochem. Soc. 157(12), H1116–H1120 (2010).
[Crossref]

2009 (2)

H. Li, L. Zhang, and G. Wang, “Growth, structure and spectroscopic characterization of a new laser crystals Nd3+:Li3Ba2Gd3(WO4)8,” J. Alloys Compd. 478(1-2), 484–488 (2009).
[Crossref]

A. Xie, X. Yuan, Y. Shi, F. Wang, and J. Wang, “Photoluminescence characteristics of energy transfer between Eu3+ and Bi3+ in LiEu1−xBix(WO4)0.5(MoO4)1.5,” J. Am. Ceram. Soc. 92(10), 2254–2258 (2009).
[Crossref]

2008 (1)

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering,” Appl. Phys. Lett. 93(5), 051115 (2008).
[Crossref]

2007 (3)

X. Piao, K.-i. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3: Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

X. Wang, Y. Xian, G. Wang, J. Shi, Q. Su, and M. Gong, “Luminescence investigation of Eu3+–Sm3+ co-doped Gd2−x−yEuxSmy(MoO4)3 phosphors as red phosphors for UV InGaN-based light-emitting diode,” Opt. Mater. 30(4), 521–526 (2007).
[Crossref]

L. Li, S. Zhou, and S. Zhang, “Investigation on relationship between charge transfer position and dielectric definition of average energy gap in Eu3+-doped compounds,” J. Phys. Chem. C 111(7), 3205–3210 (2007).
[Crossref]

2006 (1)

X. Piao, T. Horikawa, H. Hanzawa, and K.-i. Machida, “Preparation of (Sr1−x Cax)2Si5N8/Eu2+ solid solutions and their luminescence properties,” J. Electrochem. Soc. 153, H232–H235 (2006).
[Crossref]

2005 (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

2004 (1)

Y. Narukawa, “White-light LEDS,” Opt. Photonics News 15, 24–29 (2004).

1996 (1)

K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+ Ln2O2S (Ln = Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996).
[Crossref]

1992 (1)

R. F. Klevtsova, A. D. Vasil’ev, L. A. Glinskaya, A. I. Kruglik, N. M. Kozhevnikova, and V. P. Korsun, “Crystal structure investigation of triple molybdates Li3Ba2Ln3(Mo04)8 (Ln = Gd, Tm),” J. Struct. Chem. 33(3), 131–136 (1992).
[Crossref]

1984 (1)

P. A. M. Berdowski and G. Blasse, “Luminescence and energy migration in a two-dimensional system: NaEuTiO4,” J. Lumin. 29(5-6), 243–260 (1984).
[Crossref]

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

1970 (1)

W. H. Fonger, “Eu+3 5D resonance quenching to the charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52(12), 6364–6372 (1970).
[Crossref]

1968 (1)

W. T. Carnall, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys. 49(10), 4450 (1968).
[Crossref]

Annapurna, K.

K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+ Ln2O2S (Ln = Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996).
[Crossref]

Baur, F.

A. Katelnikovas, J. Plewa, S. Sakirzanovas, D. Dutczak, D. Enseling, F. Baur, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of Li3Ba2La3(MoO4)8:Eu3+ powders and ceramics for pcLEDs,” J. Mater. Chem. 22(41), 22126–22134 (2012).
[Crossref]

Berdowski, P. A. M.

P. A. M. Berdowski and G. Blasse, “Luminescence and energy migration in a two-dimensional system: NaEuTiO4,” J. Lumin. 29(5-6), 243–260 (1984).
[Crossref]

Blasse, G.

P. A. M. Berdowski and G. Blasse, “Luminescence and energy migration in a two-dimensional system: NaEuTiO4,” J. Lumin. 29(5-6), 243–260 (1984).
[Crossref]

Buddhudu, S.

K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+ Ln2O2S (Ln = Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996).
[Crossref]

Cai, P.

X. Qiao, Y. Cheng, L. Qin, C. Qin, P. Cai, S. I. Kim, and H. J. Seo, “Coprecipitation synthesis, structure and photoluminescence properties of Eu3+-doped sodium barium borate,” J. Alloys Compd. 617, 946–951 (2014).
[Crossref]

Calderón-Villajos, R.

X. Han, R. Calderón-Villajos, F. Esteban-Betegón, C. Cascales, C. Zaldo, A. Jezowski, and P. Stachowiak, “Crystal growth and physical characterization of monoclinic Li3Lu3Ba2(MoO4)8. a spectrally broadened disordered crystal for ultrafast mode-locked lasers,” Cryst. Growth Des. 12(8), 3878–3887 (2012).
[Crossref]

Cao, Y.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312–4322 (2014).
[PubMed]

Carnall, W. T.

W. T. Carnall, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys. 49(10), 4450 (1968).
[Crossref]

Cascales, C.

X. Han, R. Calderón-Villajos, F. Esteban-Betegón, C. Cascales, C. Zaldo, A. Jezowski, and P. Stachowiak, “Crystal growth and physical characterization of monoclinic Li3Lu3Ba2(MoO4)8. a spectrally broadened disordered crystal for ultrafast mode-locked lasers,” Cryst. Growth Des. 12(8), 3878–3887 (2012).
[Crossref]

Chang, Y.-C.

Y.-C. Chang, C.-H. Liang, S.-A. Yan, and Y.-S. Chang, “Synthesis and photoluminescence characteristics of high color purity and brightness Li3Ba2Gd3(MoO4)8:Eu3+ red phosphors,” J. Phys. Chem. C 114(8), 3645–3652 (2010).
[Crossref]

Chang, Y.-S.

Y.-C. Chang, C.-H. Liang, S.-A. Yan, and Y.-S. Chang, “Synthesis and photoluminescence characteristics of high color purity and brightness Li3Ba2Gd3(MoO4)8:Eu3+ red phosphors,” J. Phys. Chem. C 114(8), 3645–3652 (2010).
[Crossref]

Chen, D.

J. Zhong, D. Chen, W. Zhao, Y. Zhou, H. Yu, L. Chen, and Z. Ji, “Garnet-based Li6CaLa2Sb2O12:Eu3+ red phosphors: a potential color-converting material for warm white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4500–4510 (2015).
[Crossref]

Chen, L.

J. Zhong, D. Chen, W. Zhao, Y. Zhou, H. Yu, L. Chen, and Z. Ji, “Garnet-based Li6CaLa2Sb2O12:Eu3+ red phosphors: a potential color-converting material for warm white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4500–4510 (2015).
[Crossref]

Chen, X.

X. Jiang, Y. Pan, S. Huang, X. Chen, J. Wang, and G. Liu, “Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(13), 2301 (2014).
[Crossref]

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312–4322 (2014).
[PubMed]

Chen, Y.

Y. Pan, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, “Structure, spectral properties and laser performance of Tm3+-doped Li3Ba2La3(WO4)8 crystal,” CrystEngComm 14(11), 3930–3935 (2012).
[Crossref]

Cheng, Y.

X. Qiao, Y. Cheng, L. Qin, C. Qin, P. Cai, S. I. Kim, and H. J. Seo, “Coprecipitation synthesis, structure and photoluminescence properties of Eu3+-doped sodium barium borate,” J. Alloys Compd. 617, 946–951 (2014).
[Crossref]

Dutczak, D.

A. Katelnikovas, J. Plewa, S. Sakirzanovas, D. Dutczak, D. Enseling, F. Baur, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of Li3Ba2La3(MoO4)8:Eu3+ powders and ceramics for pcLEDs,” J. Mater. Chem. 22(41), 22126–22134 (2012).
[Crossref]

Enseling, D.

A. Katelnikovas, J. Plewa, S. Sakirzanovas, D. Dutczak, D. Enseling, F. Baur, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of Li3Ba2La3(MoO4)8:Eu3+ powders and ceramics for pcLEDs,” J. Mater. Chem. 22(41), 22126–22134 (2012).
[Crossref]

Esteban-Betegón, F.

X. Han, R. Calderón-Villajos, F. Esteban-Betegón, C. Cascales, C. Zaldo, A. Jezowski, and P. Stachowiak, “Crystal growth and physical characterization of monoclinic Li3Lu3Ba2(MoO4)8. a spectrally broadened disordered crystal for ultrafast mode-locked lasers,” Cryst. Growth Des. 12(8), 3878–3887 (2012).
[Crossref]

Feng, J.

D. Wen, J. Feng, J. Li, J. Shi, M. Wu, and Q. Su, “K2Ln(PO4)(WO4):Tb3+,Eu3+(Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2107–2114 (2015).
[Crossref]

Fonger, W. H.

W. H. Fonger, “Eu+3 5D resonance quenching to the charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52(12), 6364–6372 (1970).
[Crossref]

Fu, J.

H. Li, R. Zhao, Y. Jia, W. Sun, J. Fu, L. Jiang, S. Zhang, R. Pang, and C. Li, “Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(5), 3163–3169 (2014).
[Crossref] [PubMed]

Glinskaya, L. A.

R. F. Klevtsova, A. D. Vasil’ev, L. A. Glinskaya, A. I. Kruglik, N. M. Kozhevnikova, and V. P. Korsun, “Crystal structure investigation of triple molybdates Li3Ba2Ln3(Mo04)8 (Ln = Gd, Tm),” J. Struct. Chem. 33(3), 131–136 (1992).
[Crossref]

Gong, M.

X. Wang, Y. Xian, G. Wang, J. Shi, Q. Su, and M. Gong, “Luminescence investigation of Eu3+–Sm3+ co-doped Gd2−x−yEuxSmy(MoO4)3 phosphors as red phosphors for UV InGaN-based light-emitting diode,” Opt. Mater. 30(4), 521–526 (2007).
[Crossref]

Gong, X.

Y. Pan, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, “Structure, spectral properties and laser performance of Tm3+-doped Li3Ba2La3(WO4)8 crystal,” CrystEngComm 14(11), 3930–3935 (2012).
[Crossref]

Han, X.

X. Han, R. Calderón-Villajos, F. Esteban-Betegón, C. Cascales, C. Zaldo, A. Jezowski, and P. Stachowiak, “Crystal growth and physical characterization of monoclinic Li3Lu3Ba2(MoO4)8. a spectrally broadened disordered crystal for ultrafast mode-locked lasers,” Cryst. Growth Des. 12(8), 3878–3887 (2012).
[Crossref]

Hanzawa, H.

X. Piao, K.-i. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3: Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

X. Piao, T. Horikawa, H. Hanzawa, and K.-i. Machida, “Preparation of (Sr1−x Cax)2Si5N8/Eu2+ solid solutions and their luminescence properties,” J. Electrochem. Soc. 153, H232–H235 (2006).
[Crossref]

Hecht, C.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henss, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Henss, A. K.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henss, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Horikawa, T.

X. Piao, K.-i. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3: Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

X. Piao, T. Horikawa, H. Hanzawa, and K.-i. Machida, “Preparation of (Sr1−x Cax)2Si5N8/Eu2+ solid solutions and their luminescence properties,” J. Electrochem. Soc. 153, H232–H235 (2006).
[Crossref]

Hou, B.

J. Huang, B. Hou, H. Ling, J. Liu, and X. Yu, “Crystal structure, electronic structure, and photoluminescence properties of La₃BW(1-x)Mo(x)O₉:Eu³⁺ red phosphor,” Inorg. Chem. 53(18), 9541–9547 (2014).
[Crossref] [PubMed]

Huang, J.

J. Huang, B. Hou, H. Ling, J. Liu, and X. Yu, “Crystal structure, electronic structure, and photoluminescence properties of La₃BW(1-x)Mo(x)O₉:Eu³⁺ red phosphor,” Inorg. Chem. 53(18), 9541–9547 (2014).
[Crossref] [PubMed]

Y. Pan, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, “Structure, spectral properties and laser performance of Tm3+-doped Li3Ba2La3(WO4)8 crystal,” CrystEngComm 14(11), 3930–3935 (2012).
[Crossref]

Huang, S.

X. Jiang, Y. Pan, S. Huang, X. Chen, J. Wang, and G. Liu, “Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(13), 2301 (2014).
[Crossref]

Huang, Y.

Y. Pan, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, “Structure, spectral properties and laser performance of Tm3+-doped Li3Ba2La3(WO4)8 crystal,” CrystEngComm 14(11), 3930–3935 (2012).
[Crossref]

Y. Huang and H. J. Seo, “A novel red-emitting nano-phosphor of Eu3+-doped LaBWO6,” Mater. Lett. 84, 107–109 (2012).
[Crossref]

Y. Huang, Y. Nakai, T. Tsuboi, and H. J. Seo, “The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications,” Opt. Express 19(7), 6303–6311 (2011).
[Crossref] [PubMed]

R. Zhu, Y. Huang, and H. J. Seo, “A Red-Emitting Phosphor of Eu-Based Borotungstate Eu3BWO9 for White Light-Emitting Diodes,” J. Electrochem. Soc. 157(12), H1116–H1120 (2010).
[Crossref]

Im, W. B.

S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, and W. B. Im, “Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light,” J. Phys. Chem. C 116(51), 26850–26856 (2012).
[Crossref]

Ivanauskas, F.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering,” Appl. Phys. Lett. 93(5), 051115 (2008).
[Crossref]

Jang, H. G.

S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, and W. B. Im, “Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light,” J. Phys. Chem. C 116(51), 26850–26856 (2012).
[Crossref]

Jezowski, A.

X. Han, R. Calderón-Villajos, F. Esteban-Betegón, C. Cascales, C. Zaldo, A. Jezowski, and P. Stachowiak, “Crystal growth and physical characterization of monoclinic Li3Lu3Ba2(MoO4)8. a spectrally broadened disordered crystal for ultrafast mode-locked lasers,” Cryst. Growth Des. 12(8), 3878–3887 (2012).
[Crossref]

Ji, Z.

J. Zhong, D. Chen, W. Zhao, Y. Zhou, H. Yu, L. Chen, and Z. Ji, “Garnet-based Li6CaLa2Sb2O12:Eu3+ red phosphors: a potential color-converting material for warm white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4500–4510 (2015).
[Crossref]

Jia, Y.

H. Li, R. Zhao, Y. Jia, W. Sun, J. Fu, L. Jiang, S. Zhang, R. Pang, and C. Li, “Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(5), 3163–3169 (2014).
[Crossref] [PubMed]

Jiang, L.

H. Li, R. Zhao, Y. Jia, W. Sun, J. Fu, L. Jiang, S. Zhang, R. Pang, and C. Li, “Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(5), 3163–3169 (2014).
[Crossref] [PubMed]

Jiang, X.

X. Jiang, Y. Pan, S. Huang, X. Chen, J. Wang, and G. Liu, “Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(13), 2301 (2014).
[Crossref]

Jüstel, T.

A. Katelnikovas, J. Plewa, S. Sakirzanovas, D. Dutczak, D. Enseling, F. Baur, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of Li3Ba2La3(MoO4)8:Eu3+ powders and ceramics for pcLEDs,” J. Mater. Chem. 22(41), 22126–22134 (2012).
[Crossref]

Kang, X.

M. Shang, G. Li, X. Kang, D. Yang, and J. Lin, “Synthesis and luminescent properties of Li3Ba2Y3(MoO4)8:Ln3+ (Ln = Eu, Tb, Dy) phosphors for UV-LEDs,” J. Electrochem. Soc. 158(5), H565–H571 (2011).
[Crossref]

Kareiva, A.

A. Katelnikovas, J. Plewa, S. Sakirzanovas, D. Dutczak, D. Enseling, F. Baur, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of Li3Ba2La3(MoO4)8:Eu3+ powders and ceramics for pcLEDs,” J. Mater. Chem. 22(41), 22126–22134 (2012).
[Crossref]

Katelnikovas, A.

A. Katelnikovas, J. Plewa, S. Sakirzanovas, D. Dutczak, D. Enseling, F. Baur, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of Li3Ba2La3(MoO4)8:Eu3+ powders and ceramics for pcLEDs,” J. Mater. Chem. 22(41), 22126–22134 (2012).
[Crossref]

Kijima, N.

X. Piao, K.-i. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3: Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Kim, S. I.

X. Qiao, Y. Cheng, L. Qin, C. Qin, P. Cai, S. I. Kim, and H. J. Seo, “Coprecipitation synthesis, structure and photoluminescence properties of Eu3+-doped sodium barium borate,” J. Alloys Compd. 617, 946–951 (2014).
[Crossref]

Klevtsova, R. F.

R. F. Klevtsova, A. D. Vasil’ev, L. A. Glinskaya, A. I. Kruglik, N. M. Kozhevnikova, and V. P. Korsun, “Crystal structure investigation of triple molybdates Li3Ba2Ln3(Mo04)8 (Ln = Gd, Tm),” J. Struct. Chem. 33(3), 131–136 (1992).
[Crossref]

Kong, J.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312–4322 (2014).
[PubMed]

Korsun, V. P.

R. F. Klevtsova, A. D. Vasil’ev, L. A. Glinskaya, A. I. Kruglik, N. M. Kozhevnikova, and V. P. Korsun, “Crystal structure investigation of triple molybdates Li3Ba2Ln3(Mo04)8 (Ln = Gd, Tm),” J. Struct. Chem. 33(3), 131–136 (1992).
[Crossref]

Kozhevnikova, N. M.

R. F. Klevtsova, A. D. Vasil’ev, L. A. Glinskaya, A. I. Kruglik, N. M. Kozhevnikova, and V. P. Korsun, “Crystal structure investigation of triple molybdates Li3Ba2Ln3(Mo04)8 (Ln = Gd, Tm),” J. Struct. Chem. 33(3), 131–136 (1992).
[Crossref]

Kruglik, A. I.

R. F. Klevtsova, A. D. Vasil’ev, L. A. Glinskaya, A. I. Kruglik, N. M. Kozhevnikova, and V. P. Korsun, “Crystal structure investigation of triple molybdates Li3Ba2Ln3(Mo04)8 (Ln = Gd, Tm),” J. Struct. Chem. 33(3), 131–136 (1992).
[Crossref]

Lee, K. H.

S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, and W. B. Im, “Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light,” J. Phys. Chem. C 116(51), 26850–26856 (2012).
[Crossref]

Li, C.

H. Li, R. Zhao, Y. Jia, W. Sun, J. Fu, L. Jiang, S. Zhang, R. Pang, and C. Li, “Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(5), 3163–3169 (2014).
[Crossref] [PubMed]

Li, G.

M. Shang, G. Li, X. Kang, D. Yang, and J. Lin, “Synthesis and luminescent properties of Li3Ba2Y3(MoO4)8:Ln3+ (Ln = Eu, Tb, Dy) phosphors for UV-LEDs,” J. Electrochem. Soc. 158(5), H565–H571 (2011).
[Crossref]

Li, H.

H. Li, R. Zhao, Y. Jia, W. Sun, J. Fu, L. Jiang, S. Zhang, R. Pang, and C. Li, “Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(5), 3163–3169 (2014).
[Crossref] [PubMed]

H. Li, L. Zhang, and G. Wang, “Growth, structure and spectroscopic characterization of a new laser crystals Nd3+:Li3Ba2Gd3(WO4)8,” J. Alloys Compd. 478(1-2), 484–488 (2009).
[Crossref]

Li, J.

D. Wen, J. Feng, J. Li, J. Shi, M. Wu, and Q. Su, “K2Ln(PO4)(WO4):Tb3+,Eu3+(Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2107–2114 (2015).
[Crossref]

Li, L.

L. Li, S. Zhou, and S. Zhang, “Investigation on relationship between charge transfer position and dielectric definition of average energy gap in Eu3+-doped compounds,” J. Phys. Chem. C 111(7), 3205–3210 (2007).
[Crossref]

Liang, C.-H.

Y.-C. Chang, C.-H. Liang, S.-A. Yan, and Y.-S. Chang, “Synthesis and photoluminescence characteristics of high color purity and brightness Li3Ba2Gd3(MoO4)8:Eu3+ red phosphors,” J. Phys. Chem. C 114(8), 3645–3652 (2010).
[Crossref]

Lin, C. C.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312–4322 (2014).
[PubMed]

C. C. Lin and R.-S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[Crossref] [PubMed]

Lin, J.

M. Shang, G. Li, X. Kang, D. Yang, and J. Lin, “Synthesis and luminescent properties of Li3Ba2Y3(MoO4)8:Ln3+ (Ln = Eu, Tb, Dy) phosphors for UV-LEDs,” J. Electrochem. Soc. 158(5), H565–H571 (2011).
[Crossref]

Lin, Y.

Y. Pan, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, “Structure, spectral properties and laser performance of Tm3+-doped Li3Ba2La3(WO4)8 crystal,” CrystEngComm 14(11), 3930–3935 (2012).
[Crossref]

Ling, H.

J. Huang, B. Hou, H. Ling, J. Liu, and X. Yu, “Crystal structure, electronic structure, and photoluminescence properties of La₃BW(1-x)Mo(x)O₉:Eu³⁺ red phosphor,” Inorg. Chem. 53(18), 9541–9547 (2014).
[Crossref] [PubMed]

Liu, G.

X. Jiang, Y. Pan, S. Huang, X. Chen, J. Wang, and G. Liu, “Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(13), 2301 (2014).
[Crossref]

Liu, J.

J. Huang, B. Hou, H. Ling, J. Liu, and X. Yu, “Crystal structure, electronic structure, and photoluminescence properties of La₃BW(1-x)Mo(x)O₉:Eu³⁺ red phosphor,” Inorg. Chem. 53(18), 9541–9547 (2014).
[Crossref] [PubMed]

Liu, R. S.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312–4322 (2014).
[PubMed]

Liu, R.-S.

C. C. Lin and R.-S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[Crossref] [PubMed]

Liu, Y.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312–4322 (2014).
[PubMed]

Liu, Z.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312–4322 (2014).
[PubMed]

Luo, W.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312–4322 (2014).
[PubMed]

Luo, Z.

Y. Pan, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, “Structure, spectral properties and laser performance of Tm3+-doped Li3Ba2La3(WO4)8 crystal,” CrystEngComm 14(11), 3930–3935 (2012).
[Crossref]

Ma, E.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312–4322 (2014).
[PubMed]

Ma, Y. Y.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[Crossref]

Machida, K.-i.

X. Piao, K.-i. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3: Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

X. Piao, T. Horikawa, H. Hanzawa, and K.-i. Machida, “Preparation of (Sr1−x Cax)2Si5N8/Eu2+ solid solutions and their luminescence properties,” J. Electrochem. Soc. 153, H232–H235 (2006).
[Crossref]

Nakai, Y.

Narukawa, Y.

Y. Narukawa, “White-light LEDS,” Opt. Photonics News 15, 24–29 (2004).

Pan, Y.

X. Jiang, Y. Pan, S. Huang, X. Chen, J. Wang, and G. Liu, “Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(13), 2301 (2014).
[Crossref]

Y. Pan, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, “Structure, spectral properties and laser performance of Tm3+-doped Li3Ba2La3(WO4)8 crystal,” CrystEngComm 14(11), 3930–3935 (2012).
[Crossref]

Pan, Y. X.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[Crossref]

Pang, R.

H. Li, R. Zhao, Y. Jia, W. Sun, J. Fu, L. Jiang, S. Zhang, R. Pang, and C. Li, “Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(5), 3163–3169 (2014).
[Crossref] [PubMed]

Park, S. H.

S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, and W. B. Im, “Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light,” J. Phys. Chem. C 116(51), 26850–26856 (2012).
[Crossref]

Piao, X.

X. Piao, K.-i. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3: Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

X. Piao, T. Horikawa, H. Hanzawa, and K.-i. Machida, “Preparation of (Sr1−x Cax)2Si5N8/Eu2+ solid solutions and their luminescence properties,” J. Electrochem. Soc. 153, H232–H235 (2006).
[Crossref]

Plewa, J.

A. Katelnikovas, J. Plewa, S. Sakirzanovas, D. Dutczak, D. Enseling, F. Baur, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of Li3Ba2La3(MoO4)8:Eu3+ powders and ceramics for pcLEDs,” J. Mater. Chem. 22(41), 22126–22134 (2012).
[Crossref]

Pust, P.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henss, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Qiao, X.

X. Qiao, Y. Cheng, L. Qin, C. Qin, P. Cai, S. I. Kim, and H. J. Seo, “Coprecipitation synthesis, structure and photoluminescence properties of Eu3+-doped sodium barium borate,” J. Alloys Compd. 617, 946–951 (2014).
[Crossref]

Qin, C.

X. Qiao, Y. Cheng, L. Qin, C. Qin, P. Cai, S. I. Kim, and H. J. Seo, “Coprecipitation synthesis, structure and photoluminescence properties of Eu3+-doped sodium barium borate,” J. Alloys Compd. 617, 946–951 (2014).
[Crossref]

Qin, L.

X. Qiao, Y. Cheng, L. Qin, C. Qin, P. Cai, S. I. Kim, and H. J. Seo, “Coprecipitation synthesis, structure and photoluminescence properties of Eu3+-doped sodium barium borate,” J. Alloys Compd. 617, 946–951 (2014).
[Crossref]

Reddy, K. R.

K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+ Ln2O2S (Ln = Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996).
[Crossref]

Sakirzanovas, S.

A. Katelnikovas, J. Plewa, S. Sakirzanovas, D. Dutczak, D. Enseling, F. Baur, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of Li3Ba2La3(MoO4)8:Eu3+ powders and ceramics for pcLEDs,” J. Mater. Chem. 22(41), 22126–22134 (2012).
[Crossref]

Scheu, C.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henss, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Schmidt, P. J.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henss, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Schnick, W.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henss, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Seo, H. J.

X. Qiao, Y. Cheng, L. Qin, C. Qin, P. Cai, S. I. Kim, and H. J. Seo, “Coprecipitation synthesis, structure and photoluminescence properties of Eu3+-doped sodium barium borate,” J. Alloys Compd. 617, 946–951 (2014).
[Crossref]

Y. Huang and H. J. Seo, “A novel red-emitting nano-phosphor of Eu3+-doped LaBWO6,” Mater. Lett. 84, 107–109 (2012).
[Crossref]

Y. Huang, Y. Nakai, T. Tsuboi, and H. J. Seo, “The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications,” Opt. Express 19(7), 6303–6311 (2011).
[Crossref] [PubMed]

R. Zhu, Y. Huang, and H. J. Seo, “A Red-Emitting Phosphor of Eu-Based Borotungstate Eu3BWO9 for White Light-Emitting Diodes,” J. Electrochem. Soc. 157(12), H1116–H1120 (2010).
[Crossref]

Shang, M.

M. Shang, G. Li, X. Kang, D. Yang, and J. Lin, “Synthesis and luminescent properties of Li3Ba2Y3(MoO4)8:Ln3+ (Ln = Eu, Tb, Dy) phosphors for UV-LEDs,” J. Electrochem. Soc. 158(5), H565–H571 (2011).
[Crossref]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Shi, J.

D. Wen, J. Feng, J. Li, J. Shi, M. Wu, and Q. Su, “K2Ln(PO4)(WO4):Tb3+,Eu3+(Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2107–2114 (2015).
[Crossref]

X. Wang, Y. Xian, G. Wang, J. Shi, Q. Su, and M. Gong, “Luminescence investigation of Eu3+–Sm3+ co-doped Gd2−x−yEuxSmy(MoO4)3 phosphors as red phosphors for UV InGaN-based light-emitting diode,” Opt. Mater. 30(4), 521–526 (2007).
[Crossref]

Shi, Y.

A. Xie, X. Yuan, Y. Shi, F. Wang, and J. Wang, “Photoluminescence characteristics of energy transfer between Eu3+ and Bi3+ in LiEu1−xBix(WO4)0.5(MoO4)1.5,” J. Am. Ceram. Soc. 92(10), 2254–2258 (2009).
[Crossref]

Shimomura, Y.

X. Piao, K.-i. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3: Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

Shu, S.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312–4322 (2014).
[PubMed]

Shur, M. S.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering,” Appl. Phys. Lett. 93(5), 051115 (2008).
[Crossref]

Song, M.

M. Song, W. Zhou, M. Wu, and G. Wang, “Structure, thermal and spectroscopic properties of Tm3+-doped Li3Ba2Y3(MoO4)8 crystal as a promising candidate for 2 μm lasers,” CrystEngComm 15(1), 168–174 (2013).
[Crossref]

Stachowiak, P.

X. Han, R. Calderón-Villajos, F. Esteban-Betegón, C. Cascales, C. Zaldo, A. Jezowski, and P. Stachowiak, “Crystal growth and physical characterization of monoclinic Li3Lu3Ba2(MoO4)8. a spectrally broadened disordered crystal for ultrafast mode-locked lasers,” Cryst. Growth Des. 12(8), 3878–3887 (2012).
[Crossref]

Su, Q.

D. Wen, J. Feng, J. Li, J. Shi, M. Wu, and Q. Su, “K2Ln(PO4)(WO4):Tb3+,Eu3+(Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2107–2114 (2015).
[Crossref]

X. Wang, Y. Xian, G. Wang, J. Shi, Q. Su, and M. Gong, “Luminescence investigation of Eu3+–Sm3+ co-doped Gd2−x−yEuxSmy(MoO4)3 phosphors as red phosphors for UV InGaN-based light-emitting diode,” Opt. Mater. 30(4), 521–526 (2007).
[Crossref]

Sun, W.

H. Li, R. Zhao, Y. Jia, W. Sun, J. Fu, L. Jiang, S. Zhang, R. Pang, and C. Li, “Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(5), 3163–3169 (2014).
[Crossref] [PubMed]

Tsuboi, T.

Tücks, A.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henss, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Unithrattil, S.

S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, and W. B. Im, “Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light,” J. Phys. Chem. C 116(51), 26850–26856 (2012).
[Crossref]

Vaicekauskas, R.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering,” Appl. Phys. Lett. 93(5), 051115 (2008).
[Crossref]

Vaitkevicius, H.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering,” Appl. Phys. Lett. 93(5), 051115 (2008).
[Crossref]

Vasil’ev, A. D.

R. F. Klevtsova, A. D. Vasil’ev, L. A. Glinskaya, A. I. Kruglik, N. M. Kozhevnikova, and V. P. Korsun, “Crystal structure investigation of triple molybdates Li3Ba2Ln3(Mo04)8 (Ln = Gd, Tm),” J. Struct. Chem. 33(3), 131–136 (1992).
[Crossref]

Wang, F.

A. Xie, X. Yuan, Y. Shi, F. Wang, and J. Wang, “Photoluminescence characteristics of energy transfer between Eu3+ and Bi3+ in LiEu1−xBix(WO4)0.5(MoO4)1.5,” J. Am. Ceram. Soc. 92(10), 2254–2258 (2009).
[Crossref]

Wang, G.

M. Song, W. Zhou, M. Wu, and G. Wang, “Structure, thermal and spectroscopic properties of Tm3+-doped Li3Ba2Y3(MoO4)8 crystal as a promising candidate for 2 μm lasers,” CrystEngComm 15(1), 168–174 (2013).
[Crossref]

H. Li, L. Zhang, and G. Wang, “Growth, structure and spectroscopic characterization of a new laser crystals Nd3+:Li3Ba2Gd3(WO4)8,” J. Alloys Compd. 478(1-2), 484–488 (2009).
[Crossref]

X. Wang, Y. Xian, G. Wang, J. Shi, Q. Su, and M. Gong, “Luminescence investigation of Eu3+–Sm3+ co-doped Gd2−x−yEuxSmy(MoO4)3 phosphors as red phosphors for UV InGaN-based light-emitting diode,” Opt. Mater. 30(4), 521–526 (2007).
[Crossref]

Wang, J.

X. Jiang, Y. Pan, S. Huang, X. Chen, J. Wang, and G. Liu, “Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(13), 2301 (2014).
[Crossref]

A. Xie, X. Yuan, Y. Shi, F. Wang, and J. Wang, “Photoluminescence characteristics of energy transfer between Eu3+ and Bi3+ in LiEu1−xBix(WO4)0.5(MoO4)1.5,” J. Am. Ceram. Soc. 92(10), 2254–2258 (2009).
[Crossref]

Wang, X.

X. Wang, Y. Xian, G. Wang, J. Shi, Q. Su, and M. Gong, “Luminescence investigation of Eu3+–Sm3+ co-doped Gd2−x−yEuxSmy(MoO4)3 phosphors as red phosphors for UV InGaN-based light-emitting diode,” Opt. Mater. 30(4), 521–526 (2007).
[Crossref]

Weiler, V.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henss, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Wen, D.

D. Wen, J. Feng, J. Li, J. Shi, M. Wu, and Q. Su, “K2Ln(PO4)(WO4):Tb3+,Eu3+(Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2107–2114 (2015).
[Crossref]

Wiechert, D.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henss, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Winkler, H.

A. Katelnikovas, J. Plewa, S. Sakirzanovas, D. Dutczak, D. Enseling, F. Baur, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of Li3Ba2La3(MoO4)8:Eu3+ powders and ceramics for pcLEDs,” J. Mater. Chem. 22(41), 22126–22134 (2012).
[Crossref]

Wochnik, A. S.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henss, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Wu, M.

D. Wen, J. Feng, J. Li, J. Shi, M. Wu, and Q. Su, “K2Ln(PO4)(WO4):Tb3+,Eu3+(Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2107–2114 (2015).
[Crossref]

M. Song, W. Zhou, M. Wu, and G. Wang, “Structure, thermal and spectroscopic properties of Tm3+-doped Li3Ba2Y3(MoO4)8 crystal as a promising candidate for 2 μm lasers,” CrystEngComm 15(1), 168–174 (2013).
[Crossref]

Xian, Y.

X. Wang, Y. Xian, G. Wang, J. Shi, Q. Su, and M. Gong, “Luminescence investigation of Eu3+–Sm3+ co-doped Gd2−x−yEuxSmy(MoO4)3 phosphors as red phosphors for UV InGaN-based light-emitting diode,” Opt. Mater. 30(4), 521–526 (2007).
[Crossref]

Xiao, F.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[Crossref]

Xie, A.

A. Xie, X. Yuan, Y. Shi, F. Wang, and J. Wang, “Photoluminescence characteristics of energy transfer between Eu3+ and Bi3+ in LiEu1−xBix(WO4)0.5(MoO4)1.5,” J. Am. Ceram. Soc. 92(10), 2254–2258 (2009).
[Crossref]

Yan, S.-A.

Y.-C. Chang, C.-H. Liang, S.-A. Yan, and Y.-S. Chang, “Synthesis and photoluminescence characteristics of high color purity and brightness Li3Ba2Gd3(MoO4)8:Eu3+ red phosphors,” J. Phys. Chem. C 114(8), 3645–3652 (2010).
[Crossref]

Yang, D.

M. Shang, G. Li, X. Kang, D. Yang, and J. Lin, “Synthesis and luminescent properties of Li3Ba2Y3(MoO4)8:Ln3+ (Ln = Eu, Tb, Dy) phosphors for UV-LEDs,” J. Electrochem. Soc. 158(5), H565–H571 (2011).
[Crossref]

Ye, S.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[Crossref]

Yoon, H. S.

S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, and W. B. Im, “Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light,” J. Phys. Chem. C 116(51), 26850–26856 (2012).
[Crossref]

Yu, H.

J. Zhong, D. Chen, W. Zhao, Y. Zhou, H. Yu, L. Chen, and Z. Ji, “Garnet-based Li6CaLa2Sb2O12:Eu3+ red phosphors: a potential color-converting material for warm white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4500–4510 (2015).
[Crossref]

Yu, X.

J. Huang, B. Hou, H. Ling, J. Liu, and X. Yu, “Crystal structure, electronic structure, and photoluminescence properties of La₃BW(1-x)Mo(x)O₉:Eu³⁺ red phosphor,” Inorg. Chem. 53(18), 9541–9547 (2014).
[Crossref] [PubMed]

Yuan, X.

A. Xie, X. Yuan, Y. Shi, F. Wang, and J. Wang, “Photoluminescence characteristics of energy transfer between Eu3+ and Bi3+ in LiEu1−xBix(WO4)0.5(MoO4)1.5,” J. Am. Ceram. Soc. 92(10), 2254–2258 (2009).
[Crossref]

Zaldo, C.

X. Han, R. Calderón-Villajos, F. Esteban-Betegón, C. Cascales, C. Zaldo, A. Jezowski, and P. Stachowiak, “Crystal growth and physical characterization of monoclinic Li3Lu3Ba2(MoO4)8. a spectrally broadened disordered crystal for ultrafast mode-locked lasers,” Cryst. Growth Des. 12(8), 3878–3887 (2012).
[Crossref]

Zhang, L.

H. Li, L. Zhang, and G. Wang, “Growth, structure and spectroscopic characterization of a new laser crystals Nd3+:Li3Ba2Gd3(WO4)8,” J. Alloys Compd. 478(1-2), 484–488 (2009).
[Crossref]

Zhang, Q. Y.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[Crossref]

Zhang, S.

H. Li, R. Zhao, Y. Jia, W. Sun, J. Fu, L. Jiang, S. Zhang, R. Pang, and C. Li, “Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(5), 3163–3169 (2014).
[Crossref] [PubMed]

L. Li, S. Zhou, and S. Zhang, “Investigation on relationship between charge transfer position and dielectric definition of average energy gap in Eu3+-doped compounds,” J. Phys. Chem. C 111(7), 3205–3210 (2007).
[Crossref]

Zhao, R.

H. Li, R. Zhao, Y. Jia, W. Sun, J. Fu, L. Jiang, S. Zhang, R. Pang, and C. Li, “Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(5), 3163–3169 (2014).
[Crossref] [PubMed]

Zhao, W.

J. Zhong, D. Chen, W. Zhao, Y. Zhou, H. Yu, L. Chen, and Z. Ji, “Garnet-based Li6CaLa2Sb2O12:Eu3+ red phosphors: a potential color-converting material for warm white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4500–4510 (2015).
[Crossref]

Zhong, J.

J. Zhong, D. Chen, W. Zhao, Y. Zhou, H. Yu, L. Chen, and Z. Ji, “Garnet-based Li6CaLa2Sb2O12:Eu3+ red phosphors: a potential color-converting material for warm white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4500–4510 (2015).
[Crossref]

Zhou, S.

L. Li, S. Zhou, and S. Zhang, “Investigation on relationship between charge transfer position and dielectric definition of average energy gap in Eu3+-doped compounds,” J. Phys. Chem. C 111(7), 3205–3210 (2007).
[Crossref]

Zhou, W.

M. Song, W. Zhou, M. Wu, and G. Wang, “Structure, thermal and spectroscopic properties of Tm3+-doped Li3Ba2Y3(MoO4)8 crystal as a promising candidate for 2 μm lasers,” CrystEngComm 15(1), 168–174 (2013).
[Crossref]

Zhou, Y.

J. Zhong, D. Chen, W. Zhao, Y. Zhou, H. Yu, L. Chen, and Z. Ji, “Garnet-based Li6CaLa2Sb2O12:Eu3+ red phosphors: a potential color-converting material for warm white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4500–4510 (2015).
[Crossref]

Zhu, H.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312–4322 (2014).
[PubMed]

Zhu, R.

R. Zhu, Y. Huang, and H. J. Seo, “A Red-Emitting Phosphor of Eu-Based Borotungstate Eu3BWO9 for White Light-Emitting Diodes,” J. Electrochem. Soc. 157(12), H1116–H1120 (2010).
[Crossref]

Žukauskas, A.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering,” Appl. Phys. Lett. 93(5), 051115 (2008).
[Crossref]

ACS Appl. Mater. Interfaces (1)

H. Li, R. Zhao, Y. Jia, W. Sun, J. Fu, L. Jiang, S. Zhang, R. Pang, and C. Li, “Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(5), 3163–3169 (2014).
[Crossref] [PubMed]

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Appl. Phys. Lett. (1)

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering,” Appl. Phys. Lett. 93(5), 051115 (2008).
[Crossref]

Chem. Mater. (1)

X. Piao, K.-i. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3: Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

Cryst. Growth Des. (1)

X. Han, R. Calderón-Villajos, F. Esteban-Betegón, C. Cascales, C. Zaldo, A. Jezowski, and P. Stachowiak, “Crystal growth and physical characterization of monoclinic Li3Lu3Ba2(MoO4)8. a spectrally broadened disordered crystal for ultrafast mode-locked lasers,” Cryst. Growth Des. 12(8), 3878–3887 (2012).
[Crossref]

CrystEngComm (2)

Y. Pan, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, “Structure, spectral properties and laser performance of Tm3+-doped Li3Ba2La3(WO4)8 crystal,” CrystEngComm 14(11), 3930–3935 (2012).
[Crossref]

M. Song, W. Zhou, M. Wu, and G. Wang, “Structure, thermal and spectroscopic properties of Tm3+-doped Li3Ba2Y3(MoO4)8 crystal as a promising candidate for 2 μm lasers,” CrystEngComm 15(1), 168–174 (2013).
[Crossref]

Inorg. Chem. (1)

J. Huang, B. Hou, H. Ling, J. Liu, and X. Yu, “Crystal structure, electronic structure, and photoluminescence properties of La₃BW(1-x)Mo(x)O₉:Eu³⁺ red phosphor,” Inorg. Chem. 53(18), 9541–9547 (2014).
[Crossref] [PubMed]

J. Alloys Compd. (2)

H. Li, L. Zhang, and G. Wang, “Growth, structure and spectroscopic characterization of a new laser crystals Nd3+:Li3Ba2Gd3(WO4)8,” J. Alloys Compd. 478(1-2), 484–488 (2009).
[Crossref]

X. Qiao, Y. Cheng, L. Qin, C. Qin, P. Cai, S. I. Kim, and H. J. Seo, “Coprecipitation synthesis, structure and photoluminescence properties of Eu3+-doped sodium barium borate,” J. Alloys Compd. 617, 946–951 (2014).
[Crossref]

J. Am. Ceram. Soc. (1)

A. Xie, X. Yuan, Y. Shi, F. Wang, and J. Wang, “Photoluminescence characteristics of energy transfer between Eu3+ and Bi3+ in LiEu1−xBix(WO4)0.5(MoO4)1.5,” J. Am. Ceram. Soc. 92(10), 2254–2258 (2009).
[Crossref]

J. Chem. Phys. (2)

W. T. Carnall, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys. 49(10), 4450 (1968).
[Crossref]

W. H. Fonger, “Eu+3 5D resonance quenching to the charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52(12), 6364–6372 (1970).
[Crossref]

J. Electrochem. Soc. (3)

M. Shang, G. Li, X. Kang, D. Yang, and J. Lin, “Synthesis and luminescent properties of Li3Ba2Y3(MoO4)8:Ln3+ (Ln = Eu, Tb, Dy) phosphors for UV-LEDs,” J. Electrochem. Soc. 158(5), H565–H571 (2011).
[Crossref]

R. Zhu, Y. Huang, and H. J. Seo, “A Red-Emitting Phosphor of Eu-Based Borotungstate Eu3BWO9 for White Light-Emitting Diodes,” J. Electrochem. Soc. 157(12), H1116–H1120 (2010).
[Crossref]

X. Piao, T. Horikawa, H. Hanzawa, and K.-i. Machida, “Preparation of (Sr1−x Cax)2Si5N8/Eu2+ solid solutions and their luminescence properties,” J. Electrochem. Soc. 153, H232–H235 (2006).
[Crossref]

J. Lumin. (1)

P. A. M. Berdowski and G. Blasse, “Luminescence and energy migration in a two-dimensional system: NaEuTiO4,” J. Lumin. 29(5-6), 243–260 (1984).
[Crossref]

J. Mater. Chem. (1)

A. Katelnikovas, J. Plewa, S. Sakirzanovas, D. Dutczak, D. Enseling, F. Baur, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of Li3Ba2La3(MoO4)8:Eu3+ powders and ceramics for pcLEDs,” J. Mater. Chem. 22(41), 22126–22134 (2012).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (3)

D. Wen, J. Feng, J. Li, J. Shi, M. Wu, and Q. Su, “K2Ln(PO4)(WO4):Tb3+,Eu3+(Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2107–2114 (2015).
[Crossref]

X. Jiang, Y. Pan, S. Huang, X. Chen, J. Wang, and G. Liu, “Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(13), 2301 (2014).
[Crossref]

J. Zhong, D. Chen, W. Zhao, Y. Zhou, H. Yu, L. Chen, and Z. Ji, “Garnet-based Li6CaLa2Sb2O12:Eu3+ red phosphors: a potential color-converting material for warm white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4500–4510 (2015).
[Crossref]

J. Phys. Chem. C (3)

S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, and W. B. Im, “Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light,” J. Phys. Chem. C 116(51), 26850–26856 (2012).
[Crossref]

Y.-C. Chang, C.-H. Liang, S.-A. Yan, and Y.-S. Chang, “Synthesis and photoluminescence characteristics of high color purity and brightness Li3Ba2Gd3(MoO4)8:Eu3+ red phosphors,” J. Phys. Chem. C 114(8), 3645–3652 (2010).
[Crossref]

L. Li, S. Zhou, and S. Zhang, “Investigation on relationship between charge transfer position and dielectric definition of average energy gap in Eu3+-doped compounds,” J. Phys. Chem. C 111(7), 3205–3210 (2007).
[Crossref]

J. Phys. Chem. Lett. (1)

C. C. Lin and R.-S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[Crossref] [PubMed]

J. Struct. Chem. (1)

R. F. Klevtsova, A. D. Vasil’ev, L. A. Glinskaya, A. I. Kruglik, N. M. Kozhevnikova, and V. P. Korsun, “Crystal structure investigation of triple molybdates Li3Ba2Ln3(Mo04)8 (Ln = Gd, Tm),” J. Struct. Chem. 33(3), 131–136 (1992).
[Crossref]

Mater. Lett. (1)

Y. Huang and H. J. Seo, “A novel red-emitting nano-phosphor of Eu3+-doped LaBWO6,” Mater. Lett. 84, 107–109 (2012).
[Crossref]

Mater. Res. Bull. (1)

K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+ Ln2O2S (Ln = Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996).
[Crossref]

Mater. Sci. Eng. Rep. (1)

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[Crossref]

Nat. Commun. (1)

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312–4322 (2014).
[PubMed]

Nat. Mater. (1)

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henss, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. (1)

X. Wang, Y. Xian, G. Wang, J. Shi, Q. Su, and M. Gong, “Luminescence investigation of Eu3+–Sm3+ co-doped Gd2−x−yEuxSmy(MoO4)3 phosphors as red phosphors for UV InGaN-based light-emitting diode,” Opt. Mater. 30(4), 521–526 (2007).
[Crossref]

Opt. Photonics News (1)

Y. Narukawa, “White-light LEDS,” Opt. Photonics News 15, 24–29 (2004).

Science (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Other (1)

G. Blasse and B. C. Grabmaier, “Luminescent materials,” in Luminescent Materials (Springer-Verlag, Berlin and New York, 1995), pp. 97–99.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 XRD patterns of LBLW:xEu3+ (a) x = 0.1, 0.3, …, 1.2 and (b) x = 1.5, 1.8, …, 3.0.
Fig. 2
Fig. 2 Magnified XRD curves in the range of 24-30°.
Fig. 3
Fig. 3 Diffuse reflection spectra of Li3Ba2Eu3(WO4)8 and LBLW.
Fig. 4
Fig. 4 Excitation spectra of Li3Ba2Eu3(WO4)8em = 615nm), Y2O2S:6.3%Eu3+em = 626nm), and CaAlSiN3:Eu2+em = 630nm).
Fig. 5
Fig. 5 Emission spectra of Li3Ba2Eu3(WO4)8ex = 395nm), Y2O2S:6.3%Eu3+ex = 396nm) and CaAlSiN3:Eu2+ex = 395nm).
Fig. 6
Fig. 6 CIE chromaticity diagram of Li3Ba2Eu3(WO4)8.
Fig. 7
Fig. 7 Emission spectra of LBLW:xEu3+ (x = 0.1, 0.3, 0.6, …, 3.0) (λex = 395nm). The inset shows the dependence of integrated emission intensity of 5D07F2 transition on the Eu3+concentration.
Fig. 8
Fig. 8 Unit cell of LBLW along a-axis
Fig. 9
Fig. 9 Decay curves of LBLW:xEu3+ (x = 0.1, 0.6, 1.2, …, 3.0) (λex = 395nm, λem = 615nm)
Fig. 10
Fig. 10 Temperature dependence of emission intensity of LBLW:2.7Eu3+ex = 395nm). The inset shows the temperature dependence of emission intensity of 5D07F2 transition.
Fig. 11
Fig. 11 Dependence of ln(I0/IT-1) on 1/kT for LBLW:2.7Eu3+.

Tables (1)

Tables Icon

Table 1 Quantum yield and absorption efficiency of LBLW:xEu3+

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I= I 0 exp(t/τ),
ln( I 0 /I1 )=lnAΔE/kT

Metrics