Abstract

The temperature dependence of the Verdet constant of a 0.8 at % Ti-doped terbium aluminum garnet (TAG) ceramics was investigated using lasers with wavelengths of 632.8 and 1064 nm. A high value of the Verdet constant was obtained at 296 K – namely, 184 and 53 rad/Tm for 632.8 and 1064 nm, respectively. The Verdet constant of the Ti:TAG ceramics at 1064 nm is about 1.5 times higher than that of the terbium gallium garnet (TGG) ceramics. The transmittance of this sample was about 75% at the wavelength of 1 μm. This material represents a possible candidate for next-generation devices that utilize the magneto-optic effect.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-wavelength dependence of terbium gallium garnet ceramics Verdet constant

Ondřej Slezák, Ryo Yasuhara, Antonio Lucianetti, and Tomáš Mocek
Opt. Mater. Express 6(11) 3683-3691 (2016)

Magneto-optical characteristics of holmium oxide (Ho2O3) ceramics

Hiroaki Furuse and Ryo Yasuhara
Opt. Mater. Express 7(3) 827-833 (2017)

Wavelength dependence of magneto-optic properties of terbium gallium garnet ceramics

Ondrej Slezak, Ryo Yasuhara, Antonio Lucianetti, and Tomas Mocek
Opt. Express 23(10) 13641-13647 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
    [Crossref]
  2. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
    [Crossref]
  3. M. A. Kagan and E. A. Khazanov, “Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics,” Appl. Opt. 43(32), 6030–6039 (2004).
    [Crossref] [PubMed]
  4. N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000).
    [Crossref]
  5. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, and D. H. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17(1), 99–102 (2000).
    [Crossref]
  6. I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday isolators for kilowatt average power lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
    [Crossref]
  7. E. A. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” Proc. SPIE 4968, 115–126 (2003).
    [Crossref]
  8. R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
    [Crossref]
  9. C. B. Rubinstein, L. G. Van Uitert, and W. H. Grodkiewicz, “Magneto‐optical properties of rare earth (III) aluminum garnets,” J. Appl. Phys. 35(10), 3069–3070 (1964).
    [Crossref]
  10. S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
    [Crossref]
  11. M. Geho, T. Sekijima, and T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004).
    [Crossref]
  12. H. Lin, S. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
    [Crossref]
  13. C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1-XRX)3Al5O12 (R=Y,Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
    [Crossref]
  14. C. Chen, X. Lim, Y. Feng, H. Lin, X. Yi, Y. Tang, S. Zhang, and S. Zhou, “Optimization of CeO2 as sintering aid for Tb3Al5O12 Faraday magneto-optical transparent ceramics,” J. Mater. Sci. 50(6), 2517–2521 (2015).
    [Crossref]
  15. D. Zheleznov, A. Starobor, O. Palashov, C. Chen, and S. Zhou, “High-power Faraday isolators based on TAG ceramics,” Opt. Express 22(3), 2578–2583 (2014).
    [Crossref] [PubMed]
  16. D. Zheleznov, A. Starobor, O. Palashov, H. Lin, and S. Zhou, “Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping,” Opt. Lett. 39(7), 2183–2186 (2014).
    [Crossref] [PubMed]
  17. A. Starobor, D. Zheleznov, O. Palashov, C. Chen, S. Zhou, and R. Yasuhara, “Study of the properties and prospects of Ce:TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average power,” Opt. Mater. Express 4(10), 2127–2132 (2014).
    [Crossref]
  18. O. Slezak, R. Yasuhara, A. Lucianetti, and T. Mocek, “Wavelength dependence of magneto-optic properties of terbium gallium garnet ceramics,” Opt. Express 23(10), 13641–13647 (2015).
    [Crossref] [PubMed]
  19. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
    [Crossref] [PubMed]
  20. C. Kittel, Introduction to Solid State Physics (Wiley, 1971).
  21. D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
    [Crossref]
  22. D. S. Zheleznov, I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and A. V. Voitovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43(6), 451–457 (2007).
    [Crossref]
  23. R. Yasuhara and H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013).
    [Crossref] [PubMed]

2015 (2)

C. Chen, X. Lim, Y. Feng, H. Lin, X. Yi, Y. Tang, S. Zhang, and S. Zhou, “Optimization of CeO2 as sintering aid for Tb3Al5O12 Faraday magneto-optical transparent ceramics,” J. Mater. Sci. 50(6), 2517–2521 (2015).
[Crossref]

O. Slezak, R. Yasuhara, A. Lucianetti, and T. Mocek, “Wavelength dependence of magneto-optic properties of terbium gallium garnet ceramics,” Opt. Express 23(10), 13641–13647 (2015).
[Crossref] [PubMed]

2014 (5)

D. Zheleznov, A. Starobor, O. Palashov, C. Chen, and S. Zhou, “High-power Faraday isolators based on TAG ceramics,” Opt. Express 22(3), 2578–2583 (2014).
[Crossref] [PubMed]

D. Zheleznov, A. Starobor, O. Palashov, H. Lin, and S. Zhou, “Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping,” Opt. Lett. 39(7), 2183–2186 (2014).
[Crossref] [PubMed]

A. Starobor, D. Zheleznov, O. Palashov, C. Chen, S. Zhou, and R. Yasuhara, “Study of the properties and prospects of Ce:TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average power,” Opt. Mater. Express 4(10), 2127–2132 (2014).
[Crossref]

I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday isolators for kilowatt average power lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

2013 (1)

2012 (1)

C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1-XRX)3Al5O12 (R=Y,Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[Crossref]

2011 (1)

H. Lin, S. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[Crossref]

2007 (2)

D. S. Zheleznov, I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and A. V. Voitovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43(6), 451–457 (2007).
[Crossref]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[Crossref] [PubMed]

2006 (1)

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[Crossref]

2004 (2)

M. A. Kagan and E. A. Khazanov, “Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics,” Appl. Opt. 43(32), 6030–6039 (2004).
[Crossref] [PubMed]

M. Geho, T. Sekijima, and T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004).
[Crossref]

2003 (1)

E. A. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” Proc. SPIE 4968, 115–126 (2003).
[Crossref]

2000 (2)

E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, and D. H. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17(1), 99–102 (2000).
[Crossref]

N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000).
[Crossref]

1999 (3)

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
[Crossref]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
[Crossref]

1964 (1)

C. B. Rubinstein, L. G. Van Uitert, and W. H. Grodkiewicz, “Magneto‐optical properties of rare earth (III) aluminum garnets,” J. Appl. Phys. 35(10), 3069–3070 (1964).
[Crossref]

Andreev, N.

Andreev, N. F.

N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000).
[Crossref]

Babin, A.

Chen, C.

C. Chen, X. Lim, Y. Feng, H. Lin, X. Yi, Y. Tang, S. Zhang, and S. Zhou, “Optimization of CeO2 as sintering aid for Tb3Al5O12 Faraday magneto-optical transparent ceramics,” J. Mater. Sci. 50(6), 2517–2521 (2015).
[Crossref]

D. Zheleznov, A. Starobor, O. Palashov, C. Chen, and S. Zhou, “High-power Faraday isolators based on TAG ceramics,” Opt. Express 22(3), 2578–2583 (2014).
[Crossref] [PubMed]

A. Starobor, D. Zheleznov, O. Palashov, C. Chen, S. Zhou, and R. Yasuhara, “Study of the properties and prospects of Ce:TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average power,” Opt. Mater. Express 4(10), 2127–2132 (2014).
[Crossref]

C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1-XRX)3Al5O12 (R=Y,Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[Crossref]

Feng, Y.

C. Chen, X. Lim, Y. Feng, H. Lin, X. Yi, Y. Tang, S. Zhang, and S. Zhou, “Optimization of CeO2 as sintering aid for Tb3Al5O12 Faraday magneto-optical transparent ceramics,” J. Mater. Sci. 50(6), 2517–2521 (2015).
[Crossref]

Fujii, T.

M. Geho, T. Sekijima, and T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004).
[Crossref]

Fujimoto, Y.

Furuse, H.

Ganschow, S.

S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
[Crossref]

Geho, M.

M. Geho, T. Sekijima, and T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004).
[Crossref]

Grodkiewicz, W. H.

C. B. Rubinstein, L. G. Van Uitert, and W. H. Grodkiewicz, “Magneto‐optical properties of rare earth (III) aluminum garnets,” J. Appl. Phys. 35(10), 3069–3070 (1964).
[Crossref]

Kagan, M. A.

Kan, H.

Kawanaka, J.

Kawashima, T.

Khazanov, E.

Khazanov, E. A.

I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday isolators for kilowatt average power lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
[Crossref]

D. S. Zheleznov, I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and A. V. Voitovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43(6), 451–457 (2007).
[Crossref]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[Crossref]

M. A. Kagan and E. A. Khazanov, “Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics,” Appl. Opt. 43(32), 6030–6039 (2004).
[Crossref] [PubMed]

E. A. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” Proc. SPIE 4968, 115–126 (2003).
[Crossref]

N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000).
[Crossref]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
[Crossref]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

Kiselev, A.

Klimm, D.

S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
[Crossref]

Kulagin, O. V.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

Lim, X.

C. Chen, X. Lim, Y. Feng, H. Lin, X. Yi, Y. Tang, S. Zhang, and S. Zhou, “Optimization of CeO2 as sintering aid for Tb3Al5O12 Faraday magneto-optical transparent ceramics,” J. Mater. Sci. 50(6), 2517–2521 (2015).
[Crossref]

Lin, H.

C. Chen, X. Lim, Y. Feng, H. Lin, X. Yi, Y. Tang, S. Zhang, and S. Zhou, “Optimization of CeO2 as sintering aid for Tb3Al5O12 Faraday magneto-optical transparent ceramics,” J. Mater. Sci. 50(6), 2517–2521 (2015).
[Crossref]

D. Zheleznov, A. Starobor, O. Palashov, H. Lin, and S. Zhou, “Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping,” Opt. Lett. 39(7), 2183–2186 (2014).
[Crossref] [PubMed]

C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1-XRX)3Al5O12 (R=Y,Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[Crossref]

H. Lin, S. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[Crossref]

Lucianetti, A.

Mocek, T.

Mukhin, I. B.

D. S. Zheleznov, I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and A. V. Voitovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43(6), 451–457 (2007).
[Crossref]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[Crossref]

Nakatsuka, M.

Nozawa, H.

Palashov, O.

Palashov, O. V.

I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday isolators for kilowatt average power lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
[Crossref]

D. S. Zheleznov, I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and A. V. Voitovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43(6), 451–457 (2007).
[Crossref]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[Crossref]

N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000).
[Crossref]

Potemkin, A. K.

N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000).
[Crossref]

Reiche, P.

S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
[Crossref]

Reitze, D. H.

N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000).
[Crossref]

E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, and D. H. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17(1), 99–102 (2000).
[Crossref]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

Rubinstein, C. B.

C. B. Rubinstein, L. G. Van Uitert, and W. H. Grodkiewicz, “Magneto‐optical properties of rare earth (III) aluminum garnets,” J. Appl. Phys. 35(10), 3069–3070 (1964).
[Crossref]

Sekijima, T.

M. Geho, T. Sekijima, and T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004).
[Crossref]

Sergeev, A. M.

N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000).
[Crossref]

Slezak, O.

Snetkov, I.

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

Snetkov, I. L.

I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday isolators for kilowatt average power lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
[Crossref]

Starobor, A.

Tang, Y.

C. Chen, X. Lim, Y. Feng, H. Lin, X. Yi, Y. Tang, S. Zhang, and S. Zhou, “Optimization of CeO2 as sintering aid for Tb3Al5O12 Faraday magneto-optical transparent ceramics,” J. Mater. Sci. 50(6), 2517–2521 (2015).
[Crossref]

Tanner, D. B.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

Teng, H.

H. Lin, S. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[Crossref]

Tokita, S.

Uecker, R.

S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
[Crossref]

Van Uitert, L. G.

C. B. Rubinstein, L. G. Van Uitert, and W. H. Grodkiewicz, “Magneto‐optical properties of rare earth (III) aluminum garnets,” J. Appl. Phys. 35(10), 3069–3070 (1964).
[Crossref]

Voitovich, A. V.

I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday isolators for kilowatt average power lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
[Crossref]

D. S. Zheleznov, I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and A. V. Voitovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43(6), 451–457 (2007).
[Crossref]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[Crossref]

Yagi, H.

Yanagitani, T.

Yasuhara, R.

Yi, Q.

C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1-XRX)3Al5O12 (R=Y,Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[Crossref]

Yi, X.

C. Chen, X. Lim, Y. Feng, H. Lin, X. Yi, Y. Tang, S. Zhang, and S. Zhou, “Optimization of CeO2 as sintering aid for Tb3Al5O12 Faraday magneto-optical transparent ceramics,” J. Mater. Sci. 50(6), 2517–2521 (2015).
[Crossref]

Yoshida, H.

Yoshida, S.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

Zhang, S.

C. Chen, X. Lim, Y. Feng, H. Lin, X. Yi, Y. Tang, S. Zhang, and S. Zhou, “Optimization of CeO2 as sintering aid for Tb3Al5O12 Faraday magneto-optical transparent ceramics,” J. Mater. Sci. 50(6), 2517–2521 (2015).
[Crossref]

Zheleznov, D.

Zheleznov, D. S.

D. S. Zheleznov, I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and A. V. Voitovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43(6), 451–457 (2007).
[Crossref]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[Crossref]

Zhou, S.

C. Chen, X. Lim, Y. Feng, H. Lin, X. Yi, Y. Tang, S. Zhang, and S. Zhou, “Optimization of CeO2 as sintering aid for Tb3Al5O12 Faraday magneto-optical transparent ceramics,” J. Mater. Sci. 50(6), 2517–2521 (2015).
[Crossref]

D. Zheleznov, A. Starobor, O. Palashov, H. Lin, and S. Zhou, “Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping,” Opt. Lett. 39(7), 2183–2186 (2014).
[Crossref] [PubMed]

D. Zheleznov, A. Starobor, O. Palashov, C. Chen, and S. Zhou, “High-power Faraday isolators based on TAG ceramics,” Opt. Express 22(3), 2578–2583 (2014).
[Crossref] [PubMed]

A. Starobor, D. Zheleznov, O. Palashov, C. Chen, S. Zhou, and R. Yasuhara, “Study of the properties and prospects of Ce:TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average power,” Opt. Mater. Express 4(10), 2127–2132 (2014).
[Crossref]

C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1-XRX)3Al5O12 (R=Y,Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[Crossref]

H. Lin, S. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1-XRX)3Al5O12 (R=Y,Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[Crossref]

Cryst. Res. Technol. (1)

S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
[Crossref]

IEEE J. Quantum Electron. (3)

I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday isolators for kilowatt average power lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
[Crossref]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

D. S. Zheleznov, I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and A. V. Voitovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43(6), 451–457 (2007).
[Crossref]

J. Appl. Phys. (1)

C. B. Rubinstein, L. G. Van Uitert, and W. H. Grodkiewicz, “Magneto‐optical properties of rare earth (III) aluminum garnets,” J. Appl. Phys. 35(10), 3069–3070 (1964).
[Crossref]

J. Cryst. Growth (1)

M. Geho, T. Sekijima, and T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004).
[Crossref]

J. Mater. Sci. (1)

C. Chen, X. Lim, Y. Feng, H. Lin, X. Yi, Y. Tang, S. Zhang, and S. Zhou, “Optimization of CeO2 as sintering aid for Tb3Al5O12 Faraday magneto-optical transparent ceramics,” J. Mater. Sci. 50(6), 2517–2521 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (1)

H. Lin, S. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[Crossref]

Opt. Mater. Express (1)

Proc. SPIE (1)

E. A. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” Proc. SPIE 4968, 115–126 (2003).
[Crossref]

Quantum Electron. (3)

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
[Crossref]

N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000).
[Crossref]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[Crossref]

Other (1)

C. Kittel, Introduction to Solid State Physics (Wiley, 1971).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Photo of the Ti-doped terbium aluminum garnet (Ti:TAG) sample used for the measurements. (b) Experimental setup for the Verdet constant measurement.
Fig. 2
Fig. 2 (a) X-ray diffraction (XRD) pattern of the Ti-doped terbium aluminum garnet (Ti:TAG) ceramics sample. (b) Optical transmittance of the Ti:TAG ceramics with a thickness of 3.9 mm.
Fig. 3
Fig. 3 Signal intensity as a function of analyzer angle at 296 K.
Fig. 4
Fig. 4 Temperature dependence of the Verdet constant of the Ti-doped terbium aluminum garnet (Ti:TAG) ceramics for 632.8 nm and 1064 nm lasers obtained from the fit. For comparison, the values of the TAG [17] and TGG ceramics [19] are also shown.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ=VBL,
V(T)= C T .

Metrics