Abstract

Efficient near-infrared (NIR) quantum cutting (QC) in RE3+/Yb3+ requires the UV-blue photon excited RE3+ donor has intermediate energy level to separate the energy gaps (~10000 cm−1) resonant to Yb3+absorption. Thus the unique Pr3+/Yb3+ resonant QC at low Yb3+content (room temperature) essentially requires Pr3+-doping features distinctive NIR radiative transitions: in our prepared Pr3+-doped oxyfluoride glass-ceramics containing CaF2 nanocrystals, a two-photon NIR-QC from blue-photon excited 3Pj (j = 0, 1, 2) states takes place efficiently with 1G4 acting as an intermediate level. The underlying energy transfer mechanisms involving the two-step sequential transitions of 3P01G4 ~915 nm and 1G43H4 ~990 nm (crucial resonant routes for the further 1Pr3+→2Yb3+), as well as the 1D23F2 ~873 nm and 1D23F3,4 ~1040 nm, are rationally distinguished by means of photoemission, excitation, and time-resolved fluorescence spectra.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sequential three-photon near-infrared quantum cutting in transparent fluorogermanate glass-ceramics containing LaF3:Tm3+ nanocrystals

J. P. Zhang, D. C. Yu, F. F. Zhang, M. Y. Peng, and Q. Y. Zhang
Opt. Mater. Express 4(1) 111-120 (2014)

Near-infrared downconversion in Pr3+/Yb3+ co-doped boro-aluminosilicate glasses and LaBO3 glass ceramics

Guojun Gao and Lothar Wondraczek
Opt. Mater. Express 3(5) 633-644 (2013)

Near-infrared quantum splitting in Ho3+:LaF3 nanocrystals embedded germanate glass ceramic

W. J. Zhang, D. C. Yu, J. P. Zhang, Q. Qian, S. H. Xu, Z. M. Yang, and Q. Y. Zhang
Opt. Mater. Express 2(5) 636-643 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. L. Dexter, “Possibility of luminescent quantum yields greater than unit,” Phys. Rev. 108(3), 630–633 (1957).
    [Crossref]
  2. W. W. Piper, J. A. De Luca, and F. D. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin. 8(4), 344–348 (1974).
    [Crossref]
  3. C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
    [Crossref]
  4. Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
    [Crossref]
  5. Y. H. Chen, C. S. Shi, W. Z. Yan, Z. M. Qi, and Y. B. Fu, “Energy transfer between Pr3+ and Mn2+ in SrB4O7:Pr,Mn,” Appl. Phys. Lett. 88(6), 061906 (2006).
    [Crossref]
  6. P. Vergeer, V. Babin, and A. Meijerink, “Quenching of Pr3+ 1S0 emission by Eu3+ and Yb3+,” J. Lumin. 114(3–4), 267–274 (2005).
    [Crossref]
  7. Z. Nie, J. Zhang, X. Zhang, X. Ren, X. J. Wang, and G. Zhang, “Evidence for visible quantum cutting via energy transfer in SrAl12O19:Pr,Cr,” Opt. Lett. 32(8), 991–993 (2007).
    [Crossref] [PubMed]
  8. X.-J. Wang, S. Huang, L. Lu, W. M. Yen, A. M. Srivastava, and A. A. Setlur, “Energy transfer in Pr3+- and Er3+-codoped CaAl12O19crystal,” Opt. Commun. 195(5–6), 405–410 (2001).
    [Crossref]
  9. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
    [Crossref] [PubMed]
  10. R. T. Wegh, E. V. D. van Loef, and A. Meijerink, “Visible quantum cutting via downconversion in LiGdF4:Er3+,Tb3+ upon Er3+ 4f11→4f105d excitation,” J. Lumin. 90(3–4), 111–122 (2000).
    [Crossref]
  11. B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
    [Crossref] [PubMed]
  12. T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
    [Crossref]
  13. B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
    [Crossref]
  14. O. M. ten Kate, M. de Jong, H. T. Hintzen, and E. van der Kolk, “Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function,” J. Appl. Phys. 114(8), 084502 (2013).
    [Crossref]
  15. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
    [Crossref]
  16. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
    [Crossref]
  17. D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33(16), 1884–1886 (2008).
    [Crossref] [PubMed]
  18. G. Lakshminarayana and J. R. Qiu, “Near-infrared quantum cutting in RE3+/Yb3+ (RE=Pr, Tb, and Tm): GeO2-B2O3-ZnO-LaF3 glasses via downconversion,” J. Alloys Compd. 481(1–2), 582–589 (2009).
    [Crossref]
  19. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
    [Crossref]
  20. J. J. Eilers, D. Biner, J. T. van Wijngaaerden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
    [Crossref]
  21. J.-M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+,Yb3+,” Phys. Rev. B 81(3), 035107 (2010).
    [Crossref]
  22. D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+,Yb3+,” J. Alloys Compd. 509(41), 9919–9923 (2011).
    [Crossref]
  23. J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+,Yb3+) couple,” Phys. Rev. B 81(15), 155112 (2010).
    [Crossref]
  24. K. Deng, T. Gong, L. Hu, X. Wei, Y. Chen, and M. Yin, “Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics,” Opt. Express 19(3), 1749–1754 (2011).
    [Crossref] [PubMed]
  25. D. C. Yu, S. Ye, X. Y. Huang, and Q. Y. Zhang, “Enhanced three-photon near-infrared quantum splitting in β-NaYF4:Ho3+ by codoping Yb3+,” AIP Adv. 2(2), 022124 (2012).
    [Crossref]
  26. L. Aarts, S. Jaeqx, B. M. van der Ende, and A. Meijerink, “Downconversion for the Er3+,Yb3+ couple in KPb2Cl5-A low-phonon frequency host,” J. Lumin. 131(4), 608–613 (2011).
    [Crossref]
  27. Q. J. Chen, W. J. Zhang, X. Y. Huang, G. P. Dong, M. Y. Peng, and Q. Y. Zhang, “Efficient down- and up-conversion of Pr3+-Yb3+ co-doped transparent oxyfluoride glass ceramics,” J. Alloys Compd. 513(5), 139–144 (2012).
  28. A. Guille, A. Pereira, G. Breton, A. Bensalah-Ledoux, and B. Moine, “Energy transfer in CaYAlO4:Ce3+,Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+couple,” J. Appl. Phys. 111(4), 043104 (2012).
    [Crossref]
  29. A. Jaffrès, B. Viana, and E. van der Kolk, “Photon management in La2BaZnO5:Tm3+,Yb3+ and La2BaZnO5: Pr3+,Yb3+ by two step cross-relaxation and energy transfer,” Chem. Phys. Lett. 527(27), 42–46 (2012).
    [Crossref]
  30. J. X. Hu, H. P. Xia, H. Y. Hu, Y. P. Zhang, H. C. Jiang, and B. J. Chen, “Synthesis and efficient near-infrared quantum cutting of Pr3+/Yb3+ co-doped LiYF4 single crystals,” J. Appl. Phys. 112(7), 073518 (2012).
    [Crossref]
  31. J. J. Zhou, Y. Teng, S. Ye, G. Lin, and J. R. Qiu, “A discussion on spectral modification from visible to near-infrared based on energy transfer for silicon solar cells,” Opt. Mater. 34(5), 901–905 (2012).
    [Crossref]
  32. S. Q. Man, H. L. Zhang, Y. L. Liu, J. X. Meng, E. Y. B. Pun, and P. S. Chung, “Energy transfer in Pr3+/Yb3+ codoped tellurite glasses,” Opt. Mater. 30(2), 334–337 (2007).
    [Crossref]
  33. G. Özen, O. Forte, and B. Di Bartolo, “Downconversion and upconversion dynamics in Pr-doped crystals,” J. Appl. Phys. 97(1), 013510 (2005).
    [Crossref]
  34. G. J. Gao and L. Wondraczek, “Near-infrared downconversion in Pr3+/Yb3+ co-doped boro-alumino silicate glasses and LaBO3 glass ceramics,” Opt. Mater. Express 3(5), 633–644 (2013).
    [Crossref]
  35. Y. Li, Q. L. Yu, L. Huang, J. Wang, and Q. Su, “Near ultraviolet and visible-to-near-infrared spectral converting properties and energy transfer mechanism of Sr2SiO4:Ce3+,Pr3+ phosphor,” Opt. Mater. Express 4(2), 227–233 (2014).
    [Crossref]
  36. B. Zhou, L. Tao, Y. H. Tsang, W. Jin, and E. Y.-B. Pun, “Superbroadband near-IR photoluminescence from Pr3+-doped fluorotellurite glasses,” Opt. Express 20(4), 3803–3813 (2012).
    [Crossref] [PubMed]
  37. D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β–NaYF4:Ho3+,” Appl. Phys. Lett. 99(16), 161904 (2011).
    [Crossref]
  38. B. M. Tissue and J. C. Wright, “Site-selective laser spectroscopy of CaF2:Pr3+ and CaF2:Pr3+, R3+ (R3+ =Y3+, Gd3+, Nd3+),” Phys. Rev. B 36(18), 9781–9789 (1987).
    [Crossref]
  39. K. Soga, W. Z. Wang, R. E. Riman, J. Bryan Brown, and K. R. Mikeska, “Luminescent properties of nanostructured Dy3+- and Tm3+-doped lanthanum chloride prepared by reactive atmosphere processing of sol-gel derived lanthanum hydroxide,” J. Appl. Phys. 93(5), 2946–2951 (2003).
    [Crossref]

2014 (1)

2013 (2)

G. J. Gao and L. Wondraczek, “Near-infrared downconversion in Pr3+/Yb3+ co-doped boro-alumino silicate glasses and LaBO3 glass ceramics,” Opt. Mater. Express 3(5), 633–644 (2013).
[Crossref]

O. M. ten Kate, M. de Jong, H. T. Hintzen, and E. van der Kolk, “Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function,” J. Appl. Phys. 114(8), 084502 (2013).
[Crossref]

2012 (7)

Q. J. Chen, W. J. Zhang, X. Y. Huang, G. P. Dong, M. Y. Peng, and Q. Y. Zhang, “Efficient down- and up-conversion of Pr3+-Yb3+ co-doped transparent oxyfluoride glass ceramics,” J. Alloys Compd. 513(5), 139–144 (2012).

A. Guille, A. Pereira, G. Breton, A. Bensalah-Ledoux, and B. Moine, “Energy transfer in CaYAlO4:Ce3+,Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+couple,” J. Appl. Phys. 111(4), 043104 (2012).
[Crossref]

A. Jaffrès, B. Viana, and E. van der Kolk, “Photon management in La2BaZnO5:Tm3+,Yb3+ and La2BaZnO5: Pr3+,Yb3+ by two step cross-relaxation and energy transfer,” Chem. Phys. Lett. 527(27), 42–46 (2012).
[Crossref]

J. X. Hu, H. P. Xia, H. Y. Hu, Y. P. Zhang, H. C. Jiang, and B. J. Chen, “Synthesis and efficient near-infrared quantum cutting of Pr3+/Yb3+ co-doped LiYF4 single crystals,” J. Appl. Phys. 112(7), 073518 (2012).
[Crossref]

J. J. Zhou, Y. Teng, S. Ye, G. Lin, and J. R. Qiu, “A discussion on spectral modification from visible to near-infrared based on energy transfer for silicon solar cells,” Opt. Mater. 34(5), 901–905 (2012).
[Crossref]

D. C. Yu, S. Ye, X. Y. Huang, and Q. Y. Zhang, “Enhanced three-photon near-infrared quantum splitting in β-NaYF4:Ho3+ by codoping Yb3+,” AIP Adv. 2(2), 022124 (2012).
[Crossref]

B. Zhou, L. Tao, Y. H. Tsang, W. Jin, and E. Y.-B. Pun, “Superbroadband near-IR photoluminescence from Pr3+-doped fluorotellurite glasses,” Opt. Express 20(4), 3803–3813 (2012).
[Crossref] [PubMed]

2011 (4)

L. Aarts, S. Jaeqx, B. M. van der Ende, and A. Meijerink, “Downconversion for the Er3+,Yb3+ couple in KPb2Cl5-A low-phonon frequency host,” J. Lumin. 131(4), 608–613 (2011).
[Crossref]

D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β–NaYF4:Ho3+,” Appl. Phys. Lett. 99(16), 161904 (2011).
[Crossref]

K. Deng, T. Gong, L. Hu, X. Wei, Y. Chen, and M. Yin, “Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics,” Opt. Express 19(3), 1749–1754 (2011).
[Crossref] [PubMed]

D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+,Yb3+,” J. Alloys Compd. 509(41), 9919–9923 (2011).
[Crossref]

2010 (4)

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+,Yb3+) couple,” Phys. Rev. B 81(15), 155112 (2010).
[Crossref]

J. J. Eilers, D. Biner, J. T. van Wijngaaerden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

J.-M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+,Yb3+,” Phys. Rev. B 81(3), 035107 (2010).
[Crossref]

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
[Crossref]

2009 (3)

G. Lakshminarayana and J. R. Qiu, “Near-infrared quantum cutting in RE3+/Yb3+ (RE=Pr, Tb, and Tm): GeO2-B2O3-ZnO-LaF3 glasses via downconversion,” J. Alloys Compd. 481(1–2), 582–589 (2009).
[Crossref]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (3)

Z. Nie, J. Zhang, X. Zhang, X. Ren, X. J. Wang, and G. Zhang, “Evidence for visible quantum cutting via energy transfer in SrAl12O19:Pr,Cr,” Opt. Lett. 32(8), 991–993 (2007).
[Crossref] [PubMed]

S. Q. Man, H. L. Zhang, Y. L. Liu, J. X. Meng, E. Y. B. Pun, and P. S. Chung, “Energy transfer in Pr3+/Yb3+ codoped tellurite glasses,” Opt. Mater. 30(2), 334–337 (2007).
[Crossref]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[Crossref]

2006 (2)

Y. H. Chen, C. S. Shi, W. Z. Yan, Z. M. Qi, and Y. B. Fu, “Energy transfer between Pr3+ and Mn2+ in SrB4O7:Pr,Mn,” Appl. Phys. Lett. 88(6), 061906 (2006).
[Crossref]

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
[Crossref]

2005 (3)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[Crossref]

P. Vergeer, V. Babin, and A. Meijerink, “Quenching of Pr3+ 1S0 emission by Eu3+ and Yb3+,” J. Lumin. 114(3–4), 267–274 (2005).
[Crossref]

G. Özen, O. Forte, and B. Di Bartolo, “Downconversion and upconversion dynamics in Pr-doped crystals,” J. Appl. Phys. 97(1), 013510 (2005).
[Crossref]

2003 (2)

K. Soga, W. Z. Wang, R. E. Riman, J. Bryan Brown, and K. R. Mikeska, “Luminescent properties of nanostructured Dy3+- and Tm3+-doped lanthanum chloride prepared by reactive atmosphere processing of sol-gel derived lanthanum hydroxide,” J. Appl. Phys. 93(5), 2946–2951 (2003).
[Crossref]

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
[Crossref]

2002 (1)

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

2001 (1)

X.-J. Wang, S. Huang, L. Lu, W. M. Yen, A. M. Srivastava, and A. A. Setlur, “Energy transfer in Pr3+- and Er3+-codoped CaAl12O19crystal,” Opt. Commun. 195(5–6), 405–410 (2001).
[Crossref]

2000 (1)

R. T. Wegh, E. V. D. van Loef, and A. Meijerink, “Visible quantum cutting via downconversion in LiGdF4:Er3+,Tb3+ upon Er3+ 4f11→4f105d excitation,” J. Lumin. 90(3–4), 111–122 (2000).
[Crossref]

1999 (1)

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
[Crossref] [PubMed]

1987 (1)

B. M. Tissue and J. C. Wright, “Site-selective laser spectroscopy of CaF2:Pr3+ and CaF2:Pr3+, R3+ (R3+ =Y3+, Gd3+, Nd3+),” Phys. Rev. B 36(18), 9781–9789 (1987).
[Crossref]

1974 (1)

W. W. Piper, J. A. De Luca, and F. D. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin. 8(4), 344–348 (1974).
[Crossref]

1957 (1)

D. L. Dexter, “Possibility of luminescent quantum yields greater than unit,” Phys. Rev. 108(3), 630–633 (1957).
[Crossref]

Aarts, L.

L. Aarts, S. Jaeqx, B. M. van der Ende, and A. Meijerink, “Downconversion for the Er3+,Yb3+ couple in KPb2Cl5-A low-phonon frequency host,” J. Lumin. 131(4), 608–613 (2011).
[Crossref]

J.-M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+,Yb3+,” Phys. Rev. B 81(3), 035107 (2010).
[Crossref]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

Babin, V.

P. Vergeer, V. Babin, and A. Meijerink, “Quenching of Pr3+ 1S0 emission by Eu3+ and Yb3+,” J. Lumin. 114(3–4), 267–274 (2005).
[Crossref]

Bensalah-Ledoux, A.

A. Guille, A. Pereira, G. Breton, A. Bensalah-Ledoux, and B. Moine, “Energy transfer in CaYAlO4:Ce3+,Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+couple,” J. Appl. Phys. 111(4), 043104 (2012).
[Crossref]

Biner, D.

J. J. Eilers, D. Biner, J. T. van Wijngaaerden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

Breton, G.

A. Guille, A. Pereira, G. Breton, A. Bensalah-Ledoux, and B. Moine, “Energy transfer in CaYAlO4:Ce3+,Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+couple,” J. Appl. Phys. 111(4), 043104 (2012).
[Crossref]

Bryan Brown, J.

K. Soga, W. Z. Wang, R. E. Riman, J. Bryan Brown, and K. R. Mikeska, “Luminescent properties of nanostructured Dy3+- and Tm3+-doped lanthanum chloride prepared by reactive atmosphere processing of sol-gel derived lanthanum hydroxide,” J. Appl. Phys. 93(5), 2946–2951 (2003).
[Crossref]

Chen, B. J.

J. X. Hu, H. P. Xia, H. Y. Hu, Y. P. Zhang, H. C. Jiang, and B. J. Chen, “Synthesis and efficient near-infrared quantum cutting of Pr3+/Yb3+ co-doped LiYF4 single crystals,” J. Appl. Phys. 112(7), 073518 (2012).
[Crossref]

Chen, D.

Chen, Q. J.

Q. J. Chen, W. J. Zhang, X. Y. Huang, G. P. Dong, M. Y. Peng, and Q. Y. Zhang, “Efficient down- and up-conversion of Pr3+-Yb3+ co-doped transparent oxyfluoride glass ceramics,” J. Alloys Compd. 513(5), 139–144 (2012).

Chen, Y.

Chen, Y. H.

Y. H. Chen, C. S. Shi, W. Z. Yan, Z. M. Qi, and Y. B. Fu, “Energy transfer between Pr3+ and Mn2+ in SrB4O7:Pr,Mn,” Appl. Phys. Lett. 88(6), 061906 (2006).
[Crossref]

Chung, P. S.

S. Q. Man, H. L. Zhang, Y. L. Liu, J. X. Meng, E. Y. B. Pun, and P. S. Chung, “Energy transfer in Pr3+/Yb3+ codoped tellurite glasses,” Opt. Mater. 30(2), 334–337 (2007).
[Crossref]

de Jong, M.

O. M. ten Kate, M. de Jong, H. T. Hintzen, and E. van der Kolk, “Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function,” J. Appl. Phys. 114(8), 084502 (2013).
[Crossref]

De Luca, J. A.

W. W. Piper, J. A. De Luca, and F. D. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin. 8(4), 344–348 (1974).
[Crossref]

den Hertog, M. I.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[Crossref]

Deng, K.

Dexter, D. L.

D. L. Dexter, “Possibility of luminescent quantum yields greater than unit,” Phys. Rev. 108(3), 630–633 (1957).
[Crossref]

Di Bartolo, B.

G. Özen, O. Forte, and B. Di Bartolo, “Downconversion and upconversion dynamics in Pr-doped crystals,” J. Appl. Phys. 97(1), 013510 (2005).
[Crossref]

Dong, G. P.

Q. J. Chen, W. J. Zhang, X. Y. Huang, G. P. Dong, M. Y. Peng, and Q. Y. Zhang, “Efficient down- and up-conversion of Pr3+-Yb3+ co-doped transparent oxyfluoride glass ceramics,” J. Alloys Compd. 513(5), 139–144 (2012).

Donker, H.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
[Crossref] [PubMed]

Eilers, J. J.

J. J. Eilers, D. Biner, J. T. van Wijngaaerden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

Feldmann, C.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
[Crossref]

Forte, O.

G. Özen, O. Forte, and B. Di Bartolo, “Downconversion and upconversion dynamics in Pr-doped crystals,” J. Appl. Phys. 97(1), 013510 (2005).
[Crossref]

Fu, Y. B.

Y. H. Chen, C. S. Shi, W. Z. Yan, Z. M. Qi, and Y. B. Fu, “Energy transfer between Pr3+ and Mn2+ in SrB4O7:Pr,Mn,” Appl. Phys. Lett. 88(6), 061906 (2006).
[Crossref]

Gao, G. J.

Gong, T.

Green, M. A.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

Güdel, H.-U.

J. J. Eilers, D. Biner, J. T. van Wijngaaerden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

Guille, A.

A. Guille, A. Pereira, G. Breton, A. Bensalah-Ledoux, and B. Moine, “Energy transfer in CaYAlO4:Ce3+,Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+couple,” J. Appl. Phys. 111(4), 043104 (2012).
[Crossref]

Ham, F. D.

W. W. Piper, J. A. De Luca, and F. D. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin. 8(4), 344–348 (1974).
[Crossref]

Hintzen, H. T.

O. M. ten Kate, M. de Jong, H. T. Hintzen, and E. van der Kolk, “Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function,” J. Appl. Phys. 114(8), 084502 (2013).
[Crossref]

Hu, H. Y.

J. X. Hu, H. P. Xia, H. Y. Hu, Y. P. Zhang, H. C. Jiang, and B. J. Chen, “Synthesis and efficient near-infrared quantum cutting of Pr3+/Yb3+ co-doped LiYF4 single crystals,” J. Appl. Phys. 112(7), 073518 (2012).
[Crossref]

Hu, J. X.

J. X. Hu, H. P. Xia, H. Y. Hu, Y. P. Zhang, H. C. Jiang, and B. J. Chen, “Synthesis and efficient near-infrared quantum cutting of Pr3+/Yb3+ co-doped LiYF4 single crystals,” J. Appl. Phys. 112(7), 073518 (2012).
[Crossref]

Hu, L.

Huang, L.

Huang, P.

Huang, S.

X.-J. Wang, S. Huang, L. Lu, W. M. Yen, A. M. Srivastava, and A. A. Setlur, “Energy transfer in Pr3+- and Er3+-codoped CaAl12O19crystal,” Opt. Commun. 195(5–6), 405–410 (2001).
[Crossref]

Huang, X. Y.

Q. J. Chen, W. J. Zhang, X. Y. Huang, G. P. Dong, M. Y. Peng, and Q. Y. Zhang, “Efficient down- and up-conversion of Pr3+-Yb3+ co-doped transparent oxyfluoride glass ceramics,” J. Alloys Compd. 513(5), 139–144 (2012).

D. C. Yu, S. Ye, X. Y. Huang, and Q. Y. Zhang, “Enhanced three-photon near-infrared quantum splitting in β-NaYF4:Ho3+ by codoping Yb3+,” AIP Adv. 2(2), 022124 (2012).
[Crossref]

D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β–NaYF4:Ho3+,” Appl. Phys. Lett. 99(16), 161904 (2011).
[Crossref]

D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+,Yb3+,” J. Alloys Compd. 509(41), 9919–9923 (2011).
[Crossref]

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
[Crossref]

Jaeqx, S.

L. Aarts, S. Jaeqx, B. M. van der Ende, and A. Meijerink, “Downconversion for the Er3+,Yb3+ couple in KPb2Cl5-A low-phonon frequency host,” J. Lumin. 131(4), 608–613 (2011).
[Crossref]

Jaffrès, A.

A. Jaffrès, B. Viana, and E. van der Kolk, “Photon management in La2BaZnO5:Tm3+,Yb3+ and La2BaZnO5: Pr3+,Yb3+ by two step cross-relaxation and energy transfer,” Chem. Phys. Lett. 527(27), 42–46 (2012).
[Crossref]

Jiang, H. C.

J. X. Hu, H. P. Xia, H. Y. Hu, Y. P. Zhang, H. C. Jiang, and B. J. Chen, “Synthesis and efficient near-infrared quantum cutting of Pr3+/Yb3+ co-doped LiYF4 single crystals,” J. Appl. Phys. 112(7), 073518 (2012).
[Crossref]

Jiang, Z. H.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[Crossref]

Jin, W.

Jüstel, T.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
[Crossref]

Kox, M. H. F.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[Crossref]

Krämer, K.

J. J. Eilers, D. Biner, J. T. van Wijngaaerden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

Lakshminarayana, G.

G. Lakshminarayana and J. R. Qiu, “Near-infrared quantum cutting in RE3+/Yb3+ (RE=Pr, Tb, and Tm): GeO2-B2O3-ZnO-LaF3 glasses via downconversion,” J. Alloys Compd. 481(1–2), 582–589 (2009).
[Crossref]

Li, Y.

Lin, G.

J. J. Zhou, Y. Teng, S. Ye, G. Lin, and J. R. Qiu, “A discussion on spectral modification from visible to near-infrared based on energy transfer for silicon solar cells,” Opt. Mater. 34(5), 901–905 (2012).
[Crossref]

Liu, Y. L.

S. Q. Man, H. L. Zhang, Y. L. Liu, J. X. Meng, E. Y. B. Pun, and P. S. Chung, “Energy transfer in Pr3+/Yb3+ codoped tellurite glasses,” Opt. Mater. 30(2), 334–337 (2007).
[Crossref]

Lu, L.

X.-J. Wang, S. Huang, L. Lu, W. M. Yen, A. M. Srivastava, and A. A. Setlur, “Energy transfer in Pr3+- and Er3+-codoped CaAl12O19crystal,” Opt. Commun. 195(5–6), 405–410 (2001).
[Crossref]

Man, S. Q.

S. Q. Man, H. L. Zhang, Y. L. Liu, J. X. Meng, E. Y. B. Pun, and P. S. Chung, “Energy transfer in Pr3+/Yb3+ codoped tellurite glasses,” Opt. Mater. 30(2), 334–337 (2007).
[Crossref]

Meijer, J.-M.

J.-M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+,Yb3+,” Phys. Rev. B 81(3), 035107 (2010).
[Crossref]

Meijerink, A.

L. Aarts, S. Jaeqx, B. M. van der Ende, and A. Meijerink, “Downconversion for the Er3+,Yb3+ couple in KPb2Cl5-A low-phonon frequency host,” J. Lumin. 131(4), 608–613 (2011).
[Crossref]

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+,Yb3+) couple,” Phys. Rev. B 81(15), 155112 (2010).
[Crossref]

J.-M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+,Yb3+,” Phys. Rev. B 81(3), 035107 (2010).
[Crossref]

J. J. Eilers, D. Biner, J. T. van Wijngaaerden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[Crossref]

P. Vergeer, V. Babin, and A. Meijerink, “Quenching of Pr3+ 1S0 emission by Eu3+ and Yb3+,” J. Lumin. 114(3–4), 267–274 (2005).
[Crossref]

R. T. Wegh, E. V. D. van Loef, and A. Meijerink, “Visible quantum cutting via downconversion in LiGdF4:Er3+,Tb3+ upon Er3+ 4f11→4f105d excitation,” J. Lumin. 90(3–4), 111–122 (2000).
[Crossref]

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
[Crossref] [PubMed]

Meng, J. X.

S. Q. Man, H. L. Zhang, Y. L. Liu, J. X. Meng, E. Y. B. Pun, and P. S. Chung, “Energy transfer in Pr3+/Yb3+ codoped tellurite glasses,” Opt. Mater. 30(2), 334–337 (2007).
[Crossref]

Mikeska, K. R.

K. Soga, W. Z. Wang, R. E. Riman, J. Bryan Brown, and K. R. Mikeska, “Luminescent properties of nanostructured Dy3+- and Tm3+-doped lanthanum chloride prepared by reactive atmosphere processing of sol-gel derived lanthanum hydroxide,” J. Appl. Phys. 93(5), 2946–2951 (2003).
[Crossref]

Moine, B.

A. Guille, A. Pereira, G. Breton, A. Bensalah-Ledoux, and B. Moine, “Energy transfer in CaYAlO4:Ce3+,Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+couple,” J. Appl. Phys. 111(4), 043104 (2012).
[Crossref]

Nie, Z.

Oskam, K. D.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
[Crossref] [PubMed]

Özen, G.

G. Özen, O. Forte, and B. Di Bartolo, “Downconversion and upconversion dynamics in Pr-doped crystals,” J. Appl. Phys. 97(1), 013510 (2005).
[Crossref]

Peng, M. Y.

Q. J. Chen, W. J. Zhang, X. Y. Huang, G. P. Dong, M. Y. Peng, and Q. Y. Zhang, “Efficient down- and up-conversion of Pr3+-Yb3+ co-doped transparent oxyfluoride glass ceramics,” J. Alloys Compd. 513(5), 139–144 (2012).

D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β–NaYF4:Ho3+,” Appl. Phys. Lett. 99(16), 161904 (2011).
[Crossref]

Pereira, A.

A. Guille, A. Pereira, G. Breton, A. Bensalah-Ledoux, and B. Moine, “Energy transfer in CaYAlO4:Ce3+,Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+couple,” J. Appl. Phys. 111(4), 043104 (2012).
[Crossref]

Piper, W. W.

W. W. Piper, J. A. De Luca, and F. D. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin. 8(4), 344–348 (1974).
[Crossref]

Pun, E. Y. B.

S. Q. Man, H. L. Zhang, Y. L. Liu, J. X. Meng, E. Y. B. Pun, and P. S. Chung, “Energy transfer in Pr3+/Yb3+ codoped tellurite glasses,” Opt. Mater. 30(2), 334–337 (2007).
[Crossref]

Pun, E. Y.-B.

Qi, Z. M.

Y. H. Chen, C. S. Shi, W. Z. Yan, Z. M. Qi, and Y. B. Fu, “Energy transfer between Pr3+ and Mn2+ in SrB4O7:Pr,Mn,” Appl. Phys. Lett. 88(6), 061906 (2006).
[Crossref]

Qiu, J. R.

J. J. Zhou, Y. Teng, S. Ye, G. Lin, and J. R. Qiu, “A discussion on spectral modification from visible to near-infrared based on energy transfer for silicon solar cells,” Opt. Mater. 34(5), 901–905 (2012).
[Crossref]

G. Lakshminarayana and J. R. Qiu, “Near-infrared quantum cutting in RE3+/Yb3+ (RE=Pr, Tb, and Tm): GeO2-B2O3-ZnO-LaF3 glasses via downconversion,” J. Alloys Compd. 481(1–2), 582–589 (2009).
[Crossref]

Reid, M. F.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+,Yb3+) couple,” Phys. Rev. B 81(15), 155112 (2010).
[Crossref]

Ren, X.

Richards, B. S.

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
[Crossref]

Riman, R. E.

K. Soga, W. Z. Wang, R. E. Riman, J. Bryan Brown, and K. R. Mikeska, “Luminescent properties of nanostructured Dy3+- and Tm3+-doped lanthanum chloride prepared by reactive atmosphere processing of sol-gel derived lanthanum hydroxide,” J. Appl. Phys. 93(5), 2946–2951 (2003).
[Crossref]

Ronda, C. R.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
[Crossref]

Scheidelaar, S.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+,Yb3+) couple,” Phys. Rev. B 81(15), 155112 (2010).
[Crossref]

Schmidt, P. J.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
[Crossref]

Setlur, A. A.

X.-J. Wang, S. Huang, L. Lu, W. M. Yen, A. M. Srivastava, and A. A. Setlur, “Energy transfer in Pr3+- and Er3+-codoped CaAl12O19crystal,” Opt. Commun. 195(5–6), 405–410 (2001).
[Crossref]

Shi, C. S.

Y. H. Chen, C. S. Shi, W. Z. Yan, Z. M. Qi, and Y. B. Fu, “Energy transfer between Pr3+ and Mn2+ in SrB4O7:Pr,Mn,” Appl. Phys. Lett. 88(6), 061906 (2006).
[Crossref]

Soga, K.

K. Soga, W. Z. Wang, R. E. Riman, J. Bryan Brown, and K. R. Mikeska, “Luminescent properties of nanostructured Dy3+- and Tm3+-doped lanthanum chloride prepared by reactive atmosphere processing of sol-gel derived lanthanum hydroxide,” J. Appl. Phys. 93(5), 2946–2951 (2003).
[Crossref]

Srivastava, A. M.

X.-J. Wang, S. Huang, L. Lu, W. M. Yen, A. M. Srivastava, and A. A. Setlur, “Energy transfer in Pr3+- and Er3+-codoped CaAl12O19crystal,” Opt. Commun. 195(5–6), 405–410 (2001).
[Crossref]

Su, Q.

Tao, L.

ten Kate, O. M.

O. M. ten Kate, M. de Jong, H. T. Hintzen, and E. van der Kolk, “Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function,” J. Appl. Phys. 114(8), 084502 (2013).
[Crossref]

Teng, Y.

J. J. Zhou, Y. Teng, S. Ye, G. Lin, and J. R. Qiu, “A discussion on spectral modification from visible to near-infrared based on energy transfer for silicon solar cells,” Opt. Mater. 34(5), 901–905 (2012).
[Crossref]

Tissue, B. M.

B. M. Tissue and J. C. Wright, “Site-selective laser spectroscopy of CaF2:Pr3+ and CaF2:Pr3+, R3+ (R3+ =Y3+, Gd3+, Nd3+),” Phys. Rev. B 36(18), 9781–9789 (1987).
[Crossref]

Trupke, T.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

Tsang, Y. H.

van der Eerden, J. P. J. M.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[Crossref]

van der Ende, B. M.

L. Aarts, S. Jaeqx, B. M. van der Ende, and A. Meijerink, “Downconversion for the Er3+,Yb3+ couple in KPb2Cl5-A low-phonon frequency host,” J. Lumin. 131(4), 608–613 (2011).
[Crossref]

J.-M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+,Yb3+,” Phys. Rev. B 81(3), 035107 (2010).
[Crossref]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

van der Kolk, E.

O. M. ten Kate, M. de Jong, H. T. Hintzen, and E. van der Kolk, “Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function,” J. Appl. Phys. 114(8), 084502 (2013).
[Crossref]

A. Jaffrès, B. Viana, and E. van der Kolk, “Photon management in La2BaZnO5:Tm3+,Yb3+ and La2BaZnO5: Pr3+,Yb3+ by two step cross-relaxation and energy transfer,” Chem. Phys. Lett. 527(27), 42–46 (2012).
[Crossref]

van Loef, E. V. D.

R. T. Wegh, E. V. D. van Loef, and A. Meijerink, “Visible quantum cutting via downconversion in LiGdF4:Er3+,Tb3+ upon Er3+ 4f11→4f105d excitation,” J. Lumin. 90(3–4), 111–122 (2000).
[Crossref]

van Wijngaaerden, J. T.

J. J. Eilers, D. Biner, J. T. van Wijngaaerden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

van Wijngaarden, J. T.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+,Yb3+) couple,” Phys. Rev. B 81(15), 155112 (2010).
[Crossref]

Vergeer, P.

P. Vergeer, V. Babin, and A. Meijerink, “Quenching of Pr3+ 1S0 emission by Eu3+ and Yb3+,” J. Lumin. 114(3–4), 267–274 (2005).
[Crossref]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[Crossref]

Viana, B.

A. Jaffrès, B. Viana, and E. van der Kolk, “Photon management in La2BaZnO5:Tm3+,Yb3+ and La2BaZnO5: Pr3+,Yb3+ by two step cross-relaxation and energy transfer,” Chem. Phys. Lett. 527(27), 42–46 (2012).
[Crossref]

Vlugt, T. J. H.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+,Yb3+) couple,” Phys. Rev. B 81(15), 155112 (2010).
[Crossref]

J.-M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+,Yb3+,” Phys. Rev. B 81(3), 035107 (2010).
[Crossref]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[Crossref]

Wang, J.

Wang, W. Z.

K. Soga, W. Z. Wang, R. E. Riman, J. Bryan Brown, and K. R. Mikeska, “Luminescent properties of nanostructured Dy3+- and Tm3+-doped lanthanum chloride prepared by reactive atmosphere processing of sol-gel derived lanthanum hydroxide,” J. Appl. Phys. 93(5), 2946–2951 (2003).
[Crossref]

Wang, X. J.

Wang, X.-J.

X.-J. Wang, S. Huang, L. Lu, W. M. Yen, A. M. Srivastava, and A. A. Setlur, “Energy transfer in Pr3+- and Er3+-codoped CaAl12O19crystal,” Opt. Commun. 195(5–6), 405–410 (2001).
[Crossref]

Wang, Y.

Wegh, R. T.

R. T. Wegh, E. V. D. van Loef, and A. Meijerink, “Visible quantum cutting via downconversion in LiGdF4:Er3+,Tb3+ upon Er3+ 4f11→4f105d excitation,” J. Lumin. 90(3–4), 111–122 (2000).
[Crossref]

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
[Crossref] [PubMed]

Wei, X.

Weng, F.

Wondraczek, L.

G. J. Gao and L. Wondraczek, “Near-infrared downconversion in Pr3+/Yb3+ co-doped boro-alumino silicate glasses and LaBO3 glass ceramics,” Opt. Mater. Express 3(5), 633–644 (2013).
[Crossref]

D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β–NaYF4:Ho3+,” Appl. Phys. Lett. 99(16), 161904 (2011).
[Crossref]

Wright, J. C.

B. M. Tissue and J. C. Wright, “Site-selective laser spectroscopy of CaF2:Pr3+ and CaF2:Pr3+, R3+ (R3+ =Y3+, Gd3+, Nd3+),” Phys. Rev. B 36(18), 9781–9789 (1987).
[Crossref]

Würfel, P.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

Xia, H. P.

J. X. Hu, H. P. Xia, H. Y. Hu, Y. P. Zhang, H. C. Jiang, and B. J. Chen, “Synthesis and efficient near-infrared quantum cutting of Pr3+/Yb3+ co-doped LiYF4 single crystals,” J. Appl. Phys. 112(7), 073518 (2012).
[Crossref]

Yan, W. Z.

Y. H. Chen, C. S. Shi, W. Z. Yan, Z. M. Qi, and Y. B. Fu, “Energy transfer between Pr3+ and Mn2+ in SrB4O7:Pr,Mn,” Appl. Phys. Lett. 88(6), 061906 (2006).
[Crossref]

Yang, G. F.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[Crossref]

Ye, S.

J. J. Zhou, Y. Teng, S. Ye, G. Lin, and J. R. Qiu, “A discussion on spectral modification from visible to near-infrared based on energy transfer for silicon solar cells,” Opt. Mater. 34(5), 901–905 (2012).
[Crossref]

D. C. Yu, S. Ye, X. Y. Huang, and Q. Y. Zhang, “Enhanced three-photon near-infrared quantum splitting in β-NaYF4:Ho3+ by codoping Yb3+,” AIP Adv. 2(2), 022124 (2012).
[Crossref]

D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β–NaYF4:Ho3+,” Appl. Phys. Lett. 99(16), 161904 (2011).
[Crossref]

D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+,Yb3+,” J. Alloys Compd. 509(41), 9919–9923 (2011).
[Crossref]

Yen, W. M.

X.-J. Wang, S. Huang, L. Lu, W. M. Yen, A. M. Srivastava, and A. A. Setlur, “Energy transfer in Pr3+- and Er3+-codoped CaAl12O19crystal,” Opt. Commun. 195(5–6), 405–410 (2001).
[Crossref]

Yin, M.

Yu, D. C.

D. C. Yu, S. Ye, X. Y. Huang, and Q. Y. Zhang, “Enhanced three-photon near-infrared quantum splitting in β-NaYF4:Ho3+ by codoping Yb3+,” AIP Adv. 2(2), 022124 (2012).
[Crossref]

D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β–NaYF4:Ho3+,” Appl. Phys. Lett. 99(16), 161904 (2011).
[Crossref]

D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+,Yb3+,” J. Alloys Compd. 509(41), 9919–9923 (2011).
[Crossref]

Yu, Q. L.

Yu, Y.

Zhang, G.

Zhang, H. L.

S. Q. Man, H. L. Zhang, Y. L. Liu, J. X. Meng, E. Y. B. Pun, and P. S. Chung, “Energy transfer in Pr3+/Yb3+ codoped tellurite glasses,” Opt. Mater. 30(2), 334–337 (2007).
[Crossref]

Zhang, J.

Zhang, Q. Y.

D. C. Yu, S. Ye, X. Y. Huang, and Q. Y. Zhang, “Enhanced three-photon near-infrared quantum splitting in β-NaYF4:Ho3+ by codoping Yb3+,” AIP Adv. 2(2), 022124 (2012).
[Crossref]

Q. J. Chen, W. J. Zhang, X. Y. Huang, G. P. Dong, M. Y. Peng, and Q. Y. Zhang, “Efficient down- and up-conversion of Pr3+-Yb3+ co-doped transparent oxyfluoride glass ceramics,” J. Alloys Compd. 513(5), 139–144 (2012).

D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β–NaYF4:Ho3+,” Appl. Phys. Lett. 99(16), 161904 (2011).
[Crossref]

D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+,Yb3+,” J. Alloys Compd. 509(41), 9919–9923 (2011).
[Crossref]

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
[Crossref]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[Crossref]

Zhang, W. J.

Q. J. Chen, W. J. Zhang, X. Y. Huang, G. P. Dong, M. Y. Peng, and Q. Y. Zhang, “Efficient down- and up-conversion of Pr3+-Yb3+ co-doped transparent oxyfluoride glass ceramics,” J. Alloys Compd. 513(5), 139–144 (2012).

Zhang, X.

Zhang, Y. P.

J. X. Hu, H. P. Xia, H. Y. Hu, Y. P. Zhang, H. C. Jiang, and B. J. Chen, “Synthesis and efficient near-infrared quantum cutting of Pr3+/Yb3+ co-doped LiYF4 single crystals,” J. Appl. Phys. 112(7), 073518 (2012).
[Crossref]

Zhou, B.

Zhou, J. J.

J. J. Zhou, Y. Teng, S. Ye, G. Lin, and J. R. Qiu, “A discussion on spectral modification from visible to near-infrared based on energy transfer for silicon solar cells,” Opt. Mater. 34(5), 901–905 (2012).
[Crossref]

Adv. Funct. Mater. (1)

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
[Crossref]

Adv. Mater. (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

AIP Adv. (1)

D. C. Yu, S. Ye, X. Y. Huang, and Q. Y. Zhang, “Enhanced three-photon near-infrared quantum splitting in β-NaYF4:Ho3+ by codoping Yb3+,” AIP Adv. 2(2), 022124 (2012).
[Crossref]

Appl. Phys. Lett. (4)

J. J. Eilers, D. Biner, J. T. van Wijngaaerden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

Y. H. Chen, C. S. Shi, W. Z. Yan, Z. M. Qi, and Y. B. Fu, “Energy transfer between Pr3+ and Mn2+ in SrB4O7:Pr,Mn,” Appl. Phys. Lett. 88(6), 061906 (2006).
[Crossref]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[Crossref]

D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β–NaYF4:Ho3+,” Appl. Phys. Lett. 99(16), 161904 (2011).
[Crossref]

Chem. Phys. Lett. (1)

A. Jaffrès, B. Viana, and E. van der Kolk, “Photon management in La2BaZnO5:Tm3+,Yb3+ and La2BaZnO5: Pr3+,Yb3+ by two step cross-relaxation and energy transfer,” Chem. Phys. Lett. 527(27), 42–46 (2012).
[Crossref]

J. Alloys Compd. (3)

Q. J. Chen, W. J. Zhang, X. Y. Huang, G. P. Dong, M. Y. Peng, and Q. Y. Zhang, “Efficient down- and up-conversion of Pr3+-Yb3+ co-doped transparent oxyfluoride glass ceramics,” J. Alloys Compd. 513(5), 139–144 (2012).

D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+,Yb3+,” J. Alloys Compd. 509(41), 9919–9923 (2011).
[Crossref]

G. Lakshminarayana and J. R. Qiu, “Near-infrared quantum cutting in RE3+/Yb3+ (RE=Pr, Tb, and Tm): GeO2-B2O3-ZnO-LaF3 glasses via downconversion,” J. Alloys Compd. 481(1–2), 582–589 (2009).
[Crossref]

J. Appl. Phys. (6)

A. Guille, A. Pereira, G. Breton, A. Bensalah-Ledoux, and B. Moine, “Energy transfer in CaYAlO4:Ce3+,Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+couple,” J. Appl. Phys. 111(4), 043104 (2012).
[Crossref]

G. Özen, O. Forte, and B. Di Bartolo, “Downconversion and upconversion dynamics in Pr-doped crystals,” J. Appl. Phys. 97(1), 013510 (2005).
[Crossref]

J. X. Hu, H. P. Xia, H. Y. Hu, Y. P. Zhang, H. C. Jiang, and B. J. Chen, “Synthesis and efficient near-infrared quantum cutting of Pr3+/Yb3+ co-doped LiYF4 single crystals,” J. Appl. Phys. 112(7), 073518 (2012).
[Crossref]

O. M. ten Kate, M. de Jong, H. T. Hintzen, and E. van der Kolk, “Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function,” J. Appl. Phys. 114(8), 084502 (2013).
[Crossref]

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

K. Soga, W. Z. Wang, R. E. Riman, J. Bryan Brown, and K. R. Mikeska, “Luminescent properties of nanostructured Dy3+- and Tm3+-doped lanthanum chloride prepared by reactive atmosphere processing of sol-gel derived lanthanum hydroxide,” J. Appl. Phys. 93(5), 2946–2951 (2003).
[Crossref]

J. Lumin. (4)

R. T. Wegh, E. V. D. van Loef, and A. Meijerink, “Visible quantum cutting via downconversion in LiGdF4:Er3+,Tb3+ upon Er3+ 4f11→4f105d excitation,” J. Lumin. 90(3–4), 111–122 (2000).
[Crossref]

P. Vergeer, V. Babin, and A. Meijerink, “Quenching of Pr3+ 1S0 emission by Eu3+ and Yb3+,” J. Lumin. 114(3–4), 267–274 (2005).
[Crossref]

W. W. Piper, J. A. De Luca, and F. D. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin. 8(4), 344–348 (1974).
[Crossref]

L. Aarts, S. Jaeqx, B. M. van der Ende, and A. Meijerink, “Downconversion for the Er3+,Yb3+ couple in KPb2Cl5-A low-phonon frequency host,” J. Lumin. 131(4), 608–613 (2011).
[Crossref]

Opt. Commun. (1)

X.-J. Wang, S. Huang, L. Lu, W. M. Yen, A. M. Srivastava, and A. A. Setlur, “Energy transfer in Pr3+- and Er3+-codoped CaAl12O19crystal,” Opt. Commun. 195(5–6), 405–410 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (2)

J. J. Zhou, Y. Teng, S. Ye, G. Lin, and J. R. Qiu, “A discussion on spectral modification from visible to near-infrared based on energy transfer for silicon solar cells,” Opt. Mater. 34(5), 901–905 (2012).
[Crossref]

S. Q. Man, H. L. Zhang, Y. L. Liu, J. X. Meng, E. Y. B. Pun, and P. S. Chung, “Energy transfer in Pr3+/Yb3+ codoped tellurite glasses,” Opt. Mater. 30(2), 334–337 (2007).
[Crossref]

Opt. Mater. Express (2)

Phys. Chem. Chem. Phys. (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

Phys. Rev. (1)

D. L. Dexter, “Possibility of luminescent quantum yields greater than unit,” Phys. Rev. 108(3), 630–633 (1957).
[Crossref]

Phys. Rev. B (4)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[Crossref]

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+,Yb3+) couple,” Phys. Rev. B 81(15), 155112 (2010).
[Crossref]

J.-M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+,Yb3+,” Phys. Rev. B 81(3), 035107 (2010).
[Crossref]

B. M. Tissue and J. C. Wright, “Site-selective laser spectroscopy of CaF2:Pr3+ and CaF2:Pr3+, R3+ (R3+ =Y3+, Gd3+, Nd3+),” Phys. Rev. B 36(18), 9781–9789 (1987).
[Crossref]

Prog. Mater. Sci. (1)

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
[Crossref]

Science (1)

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Visible-to-NIR emission spectra of GCPr0.1 under excitation of (a) 440 nm and (b) 585 nm, respectively. In Fig. 1(a), curve a represents NIR emission band centered at ~1040 nm in 934-1150 nm, curve 0 is Gauss fit of curve a, and curves 1 and 2 are Gauss fit peaks 1 and 2, respectively. In Fig. 1(b), curve a′ refers to NIR emission at ~1040 nm in 927-1150 nm, curve 0′ is Gauss fit of curve a′, and curves 1′ and 2′ are Gauss fit peaks 1′ and 2′, respectively. In comparison with visible emissions, the NIR emissions of Pr3+are extremely feeble as measured under the same conditions, which shown in Fig. 1(a) was recorded by enlarging bandwidth of monochromator slits for clarity.
Fig. 2
Fig. 2 Simplified energy-level diagram of Pr3+ illustrating the visible-to-NIR emission mechanisms, significantly undergoing the process of a sequential two-step NIR-QC: 1) the first-step 3P01G4 at 915 nm, and 2) the second-step 1G43H4 at 990 nm. Solid arrows represent optical transitions and short-dotted arrows are NR processes.
Fig. 3
Fig. 3 Time-resolved emission spectra of GCPr0.1 upon (a) 440 and (b) 585 nm pulsed light excitation, respectively. In the inset of Fig. 3(b), curve a′′ indicates the corresponding emission band in 920-1150 nm recorded at 19.5 μs delay time, curve 0′′ is Gauss fit of curve a′′, and curves 1′′ and 2′′ are Gauss fit peaks 1′′ and 2′′ for curve a′′, respectively.
Fig. 4
Fig. 4 Luminescence decay curves of GCPr0.1 monitoring at 482, 873, 915, 990 and 1040 nm under excitation of 440 nm pulsed light. The dot lines represent the experimental data, and the solid lines are the fitting results.

Tables (1)

Tables Icon

Table 1 Decay curves of emission peaks, fitting function, R-squared (R2), calculated decay time, electronic transitions and FWHM of Pr3+ in GCPr0.1 upon 440 nm pulsed light excitation

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η Pr 3+ = η Vis + η NIR = η P 3 0 +( β P 3 0 D 1 2 + β P 3 0 G 1 4 ) η P 3 0 η G 1 4

Metrics