Abstract

The spinel lithium titanates materials Li4Ti5O12 and LiTi2O4 were fabricated by pulsed laser deposition. High quality and single phase thin films were successfully grown, thus opening the door for a systematic investigation of the optical properties of the spinel system Li1+xTi2-xO4 (0≤ x ≤1/3). The microstructure of Li1+xTi2-xO4 films were characterized by X-ray diffraction and atomic force microscope. The optical properties of the films were studied by spectroscopic ellipsometry at room temperature. The refractive index, extinction coefficient, and the thickness of the films were obtained by fitting the experimental data over the entire measured wavelength range. The results show that the two spinel oxides exhibit absolutely different dispersion trends in the visible region. The optical band gap of Li4Ti5O12 is about 3.14eV. The crystal-field energy splitting of LiTi2O4 is about 2.09eV between the eg and the t2g orbitals.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable optical properties of co-sputtered Ti-SiO2 nanocomposite thin films

Er-Tao Hu, Xin-Xing Liu, Qing-Yuan Cai, Yuan Yao, Kai-Yan Zang, Ke-Han Yu, Wei Wei, Xiang-Xing Xu, Yu-Xiang Zheng, Song-You Wang, Rong-Jun Zhang, and Liang-Yao Chen
Opt. Mater. Express 7(7) 2387-2395 (2017)

Tunable optical properties of plasmonic Au/Al2O3 nanocomposite thin films analyzed by spectroscopic ellipsometry accounting surface characteristics

Jyoti Jaiswal, Satyendra Mourya, Gaurav Malik, and Ramesh Chandra
J. Opt. Soc. Am. A 35(5) 740-747 (2018)

Investigation on the optical properties of annealed Mn-Co-Ni-O thin films by spectroscopic ellipsometry

Wei Zhou, Yi Liu, Yimin Yin, Wanli Ma, and Zhiming Huang
Opt. Lett. 44(11) 2701-2704 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Moritomo, Sh. Xu, A. Machida, T. Akimoto, E. Nishibori, M. Takata, and M. Sakata, “Electronic structure of double-perovskite transition-metal oxides,” Phys. Rev. B 61(12), R7827–R7830 (2000).
    [Crossref]
  2. D. C. Johnston, “Superconducting and normal state properties of Li1+x Ti2−x O4 spinel compounds. I. Preparation, crystallography, superconducting properties, electrical resistivity, dielectric behavior, and magnetic susceptibility,” J. Low Temp. Phys. 25(1-2), 145–175 (1976).
    [Crossref]
  3. R. N. Bhowmik and R. Ranganathan, “Magnetic order and electrical conductivity scaling of the spinel oxide Mn0.5Ru0.5Co2O4,” Phys. Rev. B 74(21), 214417 (2006).
    [Crossref]
  4. E. Dagotto, “Complexity in strongly correlated electronic systems,” Science 309(5732), 257–262 (2005).
    [Crossref] [PubMed]
  5. D. C. Johnston, H. Prakash, W. H. Zachariasen, and R. Viswanathan, “High temperature superconductivity in the Li1+xTi2-xO4 ternary system,” Mater. Res. Bull. 8(7), 777–784 (1973).
    [Crossref]
  6. S. Maruyama, J. Shin, X. Zhang, R. Suchoski, S. Yasui, K. Jin, R. L. Greene, and I. Takeuchi, “Reversible electrochemical modulation of the superconducting transition temperature of LiTi2O4 ultrathin films by ionic liquid gating,” Appl. Phys. Lett. 107(14), 142602 (2015).
    [Crossref]
  7. K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H. S. Yu, J. Yuan, L. Shan, F. V. Kusmartsev, R. L. Greene, and I. Takeuchi, “Anomalous magnetoresistance in the spinel superconductor LiTi2O4.,” Nat. Commun. 6, 7183 (2015).
    [Crossref] [PubMed]
  8. T. Ohzuku, A. Ueda, and N. Yamamoto, “Zero‐strain insertion material of Li [Li1/3Ti5/3] O4 for Rechargeable Lithium Cells,” J. Electrochem. Soc. 142(5), 1431–1435 (1995).
    [Crossref]
  9. A. Guerfia, S. Sévignya, M. Lagacéa, P. Hovingtona, K. Kinoshitab, and K. Zaghiba, “Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators,” J. Power Sources 119, 88–94 (2003).
    [Crossref]
  10. K. Amine, I. Belharouak, Z. Chen, T. Tran, H. Yumoto, N. Ota, S. T. Myung, and Y. K. Sun, “Nanostructured anode material for high-power battery system in electric vehicles,” Adv. Mater. 22(28), 3052–3057 (2010).
    [Crossref] [PubMed]
  11. M. R. Harrison, P. P. Edwards, and J. B. Goodenough, “The superconductor-semiconductor transition in the Li1+xTi2-xO4 spinel system,” Philos. Mag. B 52(3), 679–699 (1985).
    [Crossref]
  12. M. Dalton, I. Gameson, A. R. Armstrong, and P. P. Edwards, “Structure of the Li1+xTi2−xO4 superconducting system: A neutron diffraction study,” Physica C 221(1-2), 149–156 (1994).
    [Crossref]
  13. M. Ýapinski, B. Kościelska, A. Winiarski, and W. Sadowski, “XPS study of superconducting LiTi2O4 and LiTi2-xCuxO4 Sol-Gel derived powders and thin films,” Acta Phys. Pol. A 126, 107–109 (2014).
    [Crossref]
  14. W. Ra, M. Nakayama, Y. Uchimoto, and M. Wakihara, “Experimental and computational study of the electronic structural changes in LiTi2O4 spinel compounds upon electrochemical Li insertion reactions,” J. Phys. Chem. B 109(3), 1130–1134 (2005).
    [Crossref] [PubMed]
  15. M. Xiangdong, W. Xiaocen, Z. Yuxue, T. Ling, Z. Xianghua, and C. Xiaobing, “Spinel lithium titanate from brookite nanocrystallites,” Ceram. Int. 40(3), 4989–4993 (2014).
    [Crossref]
  16. A. Kumatani, T. Ohsawa, R. Shimizu, Y. Takagi, S. Shiraki, and T. Hitosugi, “Growth processes of lithium titanate thin films deposited by using pulsed laser deposition,” Appl. Phys. Lett. 101(12), 123103 (2012).
    [Crossref]
  17. T. Inukai, T. Murakami, and T. Inamura, “Preparation of superconducting LiTi2O4 thin films,” Thin Solid Films 94(1), 47–50 (1982).
    [Crossref]
  18. L. Tang, P. Y. Zou, L. Shan, A. F. Dong, G. C. Che, and H. H. Wen, “Electrical resistivity and Andreev reflection spectroscopy of the superconducting oxide spinel LiTi2O4,” Phys. Rev. B 73(18), 184521 (2006).
    [Crossref]
  19. J. Mosaa, M. Aparicioa, K. Tadanagab, A. Hayashib, and M. Tatsumisagob, “Li4Ti5O12 thin-film electrodes by in-situ synthesis of lithium alkoxide for Li-ion microbatteries,” Electrochim. Acta 149, 293–299 (2014).
    [Crossref]
  20. S. Özen, V. Şenay, S. Pat, and Ş. Korkmaz, “Optical, morphological properties and surface energy of the transparent Li4Ti5O12 (LTO) thin film as anode material for secondary type batteries,” J. Phys. D Appl. Phys. 49(10), 105303 (2016).
    [Crossref]
  21. V. Miikkulainen, O. Nilsen, M. Laitinen, T. Sajavaara, and H. Fjellvåg, “Atomic layer deposition of LixTiyOz thin films,” RSC Advances 3(20), 7537–7542 (2013).
    [Crossref]
  22. Y. L. Jia, G. He, and et al.., “Crystallographic dependent transport properties and oxygen issue in superconduct-ing LiTi2O4 thin films,” http://arxiv.org/abs/1608.06683 .
  23. J. I. Pankove, Optical Processes in Semiconductors (Dover, 1971).
  24. C. Y. Ouyang, Z. Y. Zhong, and M. S. Lei, “Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel,” Electrochem. Commun. 9(5), 1107–1112 (2007).
    [Crossref]
  25. D. T. Liu, C. Y. Ouyang, J. Shu, J. Jiang, Z. X. Wang, and L. Q. Chen, “Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12,” Phys. Status Solidi, B Basic Res. 243(8), 1835–1841 (2006).
    [Crossref]
  26. K. Kanamura, T. Umegak, H. Naito, Z. Takehara, and T. Yao, “Structural and electrochemical characteristics of Li4/3Ti5/3O4 as an anode material for rechargeable lithium batteries,” J. Appl. Electrochem. 31(1), 73–78 (2001).
    [Crossref]
  27. Y. R. Jhan and J. G. Duh, “Electrochemical performance and low discharge cut-off voltage behavior of ruthenium doped Li4Ti5O12 with improved energy density,” Electrochim. Acta 63, 9–15 (2012).
    [Crossref]
  28. H. Duan, J. Li, S. W. Chiang, H. Du, and W. H. Duan, “First-principles study of native defects in LiTi2O4,” Comput. Mater. Sci. 96, 263–267 (2015).
    [Crossref]
  29. S. Satpathy and R. M. Martin, “Electronic structure of the superconducting oxide spinel LiTi2O4,” Phys. Rev. B 36(13), 7269–7272 (1987).
    [Crossref]
  30. S. Massidda, J. Yu, and A. J. Freeman, “Electronic structure and properties of superconducting LiTi2O4.,” Phys. Rev. B Condens. Matter 38(16), 11352–11357 (1988).
    [Crossref] [PubMed]
  31. W. Ra, M. Nakayama, Y. Uchimoto, and M. Wakihara, “Experimental and Computational Study of the Electronic Structural Changes in LiTi2O4 Spinel Compounds upon Electrochemical Li Insertion Reactions,” J. Phys. Chem. B 109(3), 1130–1134 (2005).
    [Crossref] [PubMed]
  32. W. F. J. Fontijn, P. J. van der Zaag, L. F. Feiner, R. Metselaar, and M. A. C. Devillers, “A consistent interpretation of the magneto-optical spectra of spinel type ferrites (invited),” J. Appl. Phys. 85(8), 5100–5105 (1999).
    [Crossref]
  33. J. S. Griffith, The Theory of Transition Metal Ions (Cambridge University Press, Cambridge, 1971).
  34. K. J. Kim and J. H. Lee, “Effects of nickel doping on structural and optical properties of spinel lithium manganate thin films,” Solid State Commun. 141(2), 99–103 (2007).
    [Crossref]

2016 (1)

S. Özen, V. Şenay, S. Pat, and Ş. Korkmaz, “Optical, morphological properties and surface energy of the transparent Li4Ti5O12 (LTO) thin film as anode material for secondary type batteries,” J. Phys. D Appl. Phys. 49(10), 105303 (2016).
[Crossref]

2015 (3)

H. Duan, J. Li, S. W. Chiang, H. Du, and W. H. Duan, “First-principles study of native defects in LiTi2O4,” Comput. Mater. Sci. 96, 263–267 (2015).
[Crossref]

S. Maruyama, J. Shin, X. Zhang, R. Suchoski, S. Yasui, K. Jin, R. L. Greene, and I. Takeuchi, “Reversible electrochemical modulation of the superconducting transition temperature of LiTi2O4 ultrathin films by ionic liquid gating,” Appl. Phys. Lett. 107(14), 142602 (2015).
[Crossref]

K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H. S. Yu, J. Yuan, L. Shan, F. V. Kusmartsev, R. L. Greene, and I. Takeuchi, “Anomalous magnetoresistance in the spinel superconductor LiTi2O4.,” Nat. Commun. 6, 7183 (2015).
[Crossref] [PubMed]

2014 (3)

M. Ýapinski, B. Kościelska, A. Winiarski, and W. Sadowski, “XPS study of superconducting LiTi2O4 and LiTi2-xCuxO4 Sol-Gel derived powders and thin films,” Acta Phys. Pol. A 126, 107–109 (2014).
[Crossref]

M. Xiangdong, W. Xiaocen, Z. Yuxue, T. Ling, Z. Xianghua, and C. Xiaobing, “Spinel lithium titanate from brookite nanocrystallites,” Ceram. Int. 40(3), 4989–4993 (2014).
[Crossref]

J. Mosaa, M. Aparicioa, K. Tadanagab, A. Hayashib, and M. Tatsumisagob, “Li4Ti5O12 thin-film electrodes by in-situ synthesis of lithium alkoxide for Li-ion microbatteries,” Electrochim. Acta 149, 293–299 (2014).
[Crossref]

2013 (1)

V. Miikkulainen, O. Nilsen, M. Laitinen, T. Sajavaara, and H. Fjellvåg, “Atomic layer deposition of LixTiyOz thin films,” RSC Advances 3(20), 7537–7542 (2013).
[Crossref]

2012 (2)

Y. R. Jhan and J. G. Duh, “Electrochemical performance and low discharge cut-off voltage behavior of ruthenium doped Li4Ti5O12 with improved energy density,” Electrochim. Acta 63, 9–15 (2012).
[Crossref]

A. Kumatani, T. Ohsawa, R. Shimizu, Y. Takagi, S. Shiraki, and T. Hitosugi, “Growth processes of lithium titanate thin films deposited by using pulsed laser deposition,” Appl. Phys. Lett. 101(12), 123103 (2012).
[Crossref]

2010 (1)

K. Amine, I. Belharouak, Z. Chen, T. Tran, H. Yumoto, N. Ota, S. T. Myung, and Y. K. Sun, “Nanostructured anode material for high-power battery system in electric vehicles,” Adv. Mater. 22(28), 3052–3057 (2010).
[Crossref] [PubMed]

2007 (2)

C. Y. Ouyang, Z. Y. Zhong, and M. S. Lei, “Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel,” Electrochem. Commun. 9(5), 1107–1112 (2007).
[Crossref]

K. J. Kim and J. H. Lee, “Effects of nickel doping on structural and optical properties of spinel lithium manganate thin films,” Solid State Commun. 141(2), 99–103 (2007).
[Crossref]

2006 (3)

D. T. Liu, C. Y. Ouyang, J. Shu, J. Jiang, Z. X. Wang, and L. Q. Chen, “Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12,” Phys. Status Solidi, B Basic Res. 243(8), 1835–1841 (2006).
[Crossref]

R. N. Bhowmik and R. Ranganathan, “Magnetic order and electrical conductivity scaling of the spinel oxide Mn0.5Ru0.5Co2O4,” Phys. Rev. B 74(21), 214417 (2006).
[Crossref]

L. Tang, P. Y. Zou, L. Shan, A. F. Dong, G. C. Che, and H. H. Wen, “Electrical resistivity and Andreev reflection spectroscopy of the superconducting oxide spinel LiTi2O4,” Phys. Rev. B 73(18), 184521 (2006).
[Crossref]

2005 (3)

W. Ra, M. Nakayama, Y. Uchimoto, and M. Wakihara, “Experimental and computational study of the electronic structural changes in LiTi2O4 spinel compounds upon electrochemical Li insertion reactions,” J. Phys. Chem. B 109(3), 1130–1134 (2005).
[Crossref] [PubMed]

E. Dagotto, “Complexity in strongly correlated electronic systems,” Science 309(5732), 257–262 (2005).
[Crossref] [PubMed]

W. Ra, M. Nakayama, Y. Uchimoto, and M. Wakihara, “Experimental and Computational Study of the Electronic Structural Changes in LiTi2O4 Spinel Compounds upon Electrochemical Li Insertion Reactions,” J. Phys. Chem. B 109(3), 1130–1134 (2005).
[Crossref] [PubMed]

2003 (1)

A. Guerfia, S. Sévignya, M. Lagacéa, P. Hovingtona, K. Kinoshitab, and K. Zaghiba, “Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators,” J. Power Sources 119, 88–94 (2003).
[Crossref]

2001 (1)

K. Kanamura, T. Umegak, H. Naito, Z. Takehara, and T. Yao, “Structural and electrochemical characteristics of Li4/3Ti5/3O4 as an anode material for rechargeable lithium batteries,” J. Appl. Electrochem. 31(1), 73–78 (2001).
[Crossref]

2000 (1)

Y. Moritomo, Sh. Xu, A. Machida, T. Akimoto, E. Nishibori, M. Takata, and M. Sakata, “Electronic structure of double-perovskite transition-metal oxides,” Phys. Rev. B 61(12), R7827–R7830 (2000).
[Crossref]

1999 (1)

W. F. J. Fontijn, P. J. van der Zaag, L. F. Feiner, R. Metselaar, and M. A. C. Devillers, “A consistent interpretation of the magneto-optical spectra of spinel type ferrites (invited),” J. Appl. Phys. 85(8), 5100–5105 (1999).
[Crossref]

1995 (1)

T. Ohzuku, A. Ueda, and N. Yamamoto, “Zero‐strain insertion material of Li [Li1/3Ti5/3] O4 for Rechargeable Lithium Cells,” J. Electrochem. Soc. 142(5), 1431–1435 (1995).
[Crossref]

1994 (1)

M. Dalton, I. Gameson, A. R. Armstrong, and P. P. Edwards, “Structure of the Li1+xTi2−xO4 superconducting system: A neutron diffraction study,” Physica C 221(1-2), 149–156 (1994).
[Crossref]

1988 (1)

S. Massidda, J. Yu, and A. J. Freeman, “Electronic structure and properties of superconducting LiTi2O4.,” Phys. Rev. B Condens. Matter 38(16), 11352–11357 (1988).
[Crossref] [PubMed]

1987 (1)

S. Satpathy and R. M. Martin, “Electronic structure of the superconducting oxide spinel LiTi2O4,” Phys. Rev. B 36(13), 7269–7272 (1987).
[Crossref]

1985 (1)

M. R. Harrison, P. P. Edwards, and J. B. Goodenough, “The superconductor-semiconductor transition in the Li1+xTi2-xO4 spinel system,” Philos. Mag. B 52(3), 679–699 (1985).
[Crossref]

1982 (1)

T. Inukai, T. Murakami, and T. Inamura, “Preparation of superconducting LiTi2O4 thin films,” Thin Solid Films 94(1), 47–50 (1982).
[Crossref]

1976 (1)

D. C. Johnston, “Superconducting and normal state properties of Li1+x Ti2−x O4 spinel compounds. I. Preparation, crystallography, superconducting properties, electrical resistivity, dielectric behavior, and magnetic susceptibility,” J. Low Temp. Phys. 25(1-2), 145–175 (1976).
[Crossref]

1973 (1)

D. C. Johnston, H. Prakash, W. H. Zachariasen, and R. Viswanathan, “High temperature superconductivity in the Li1+xTi2-xO4 ternary system,” Mater. Res. Bull. 8(7), 777–784 (1973).
[Crossref]

Akimoto, T.

Y. Moritomo, Sh. Xu, A. Machida, T. Akimoto, E. Nishibori, M. Takata, and M. Sakata, “Electronic structure of double-perovskite transition-metal oxides,” Phys. Rev. B 61(12), R7827–R7830 (2000).
[Crossref]

Amine, K.

K. Amine, I. Belharouak, Z. Chen, T. Tran, H. Yumoto, N. Ota, S. T. Myung, and Y. K. Sun, “Nanostructured anode material for high-power battery system in electric vehicles,” Adv. Mater. 22(28), 3052–3057 (2010).
[Crossref] [PubMed]

Aparicioa, M.

J. Mosaa, M. Aparicioa, K. Tadanagab, A. Hayashib, and M. Tatsumisagob, “Li4Ti5O12 thin-film electrodes by in-situ synthesis of lithium alkoxide for Li-ion microbatteries,” Electrochim. Acta 149, 293–299 (2014).
[Crossref]

Armstrong, A. R.

M. Dalton, I. Gameson, A. R. Armstrong, and P. P. Edwards, “Structure of the Li1+xTi2−xO4 superconducting system: A neutron diffraction study,” Physica C 221(1-2), 149–156 (1994).
[Crossref]

Belharouak, I.

K. Amine, I. Belharouak, Z. Chen, T. Tran, H. Yumoto, N. Ota, S. T. Myung, and Y. K. Sun, “Nanostructured anode material for high-power battery system in electric vehicles,” Adv. Mater. 22(28), 3052–3057 (2010).
[Crossref] [PubMed]

Bhowmik, R. N.

R. N. Bhowmik and R. Ranganathan, “Magnetic order and electrical conductivity scaling of the spinel oxide Mn0.5Ru0.5Co2O4,” Phys. Rev. B 74(21), 214417 (2006).
[Crossref]

Che, G. C.

L. Tang, P. Y. Zou, L. Shan, A. F. Dong, G. C. Che, and H. H. Wen, “Electrical resistivity and Andreev reflection spectroscopy of the superconducting oxide spinel LiTi2O4,” Phys. Rev. B 73(18), 184521 (2006).
[Crossref]

Chen, L. Q.

D. T. Liu, C. Y. Ouyang, J. Shu, J. Jiang, Z. X. Wang, and L. Q. Chen, “Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12,” Phys. Status Solidi, B Basic Res. 243(8), 1835–1841 (2006).
[Crossref]

Chen, Z.

K. Amine, I. Belharouak, Z. Chen, T. Tran, H. Yumoto, N. Ota, S. T. Myung, and Y. K. Sun, “Nanostructured anode material for high-power battery system in electric vehicles,” Adv. Mater. 22(28), 3052–3057 (2010).
[Crossref] [PubMed]

Chiang, S. W.

H. Duan, J. Li, S. W. Chiang, H. Du, and W. H. Duan, “First-principles study of native defects in LiTi2O4,” Comput. Mater. Sci. 96, 263–267 (2015).
[Crossref]

Dagotto, E.

E. Dagotto, “Complexity in strongly correlated electronic systems,” Science 309(5732), 257–262 (2005).
[Crossref] [PubMed]

Dalton, M.

M. Dalton, I. Gameson, A. R. Armstrong, and P. P. Edwards, “Structure of the Li1+xTi2−xO4 superconducting system: A neutron diffraction study,” Physica C 221(1-2), 149–156 (1994).
[Crossref]

Devillers, M. A. C.

W. F. J. Fontijn, P. J. van der Zaag, L. F. Feiner, R. Metselaar, and M. A. C. Devillers, “A consistent interpretation of the magneto-optical spectra of spinel type ferrites (invited),” J. Appl. Phys. 85(8), 5100–5105 (1999).
[Crossref]

Dong, A. F.

L. Tang, P. Y. Zou, L. Shan, A. F. Dong, G. C. Che, and H. H. Wen, “Electrical resistivity and Andreev reflection spectroscopy of the superconducting oxide spinel LiTi2O4,” Phys. Rev. B 73(18), 184521 (2006).
[Crossref]

Du, H.

H. Duan, J. Li, S. W. Chiang, H. Du, and W. H. Duan, “First-principles study of native defects in LiTi2O4,” Comput. Mater. Sci. 96, 263–267 (2015).
[Crossref]

Duan, H.

H. Duan, J. Li, S. W. Chiang, H. Du, and W. H. Duan, “First-principles study of native defects in LiTi2O4,” Comput. Mater. Sci. 96, 263–267 (2015).
[Crossref]

Duan, W. H.

H. Duan, J. Li, S. W. Chiang, H. Du, and W. H. Duan, “First-principles study of native defects in LiTi2O4,” Comput. Mater. Sci. 96, 263–267 (2015).
[Crossref]

Duh, J. G.

Y. R. Jhan and J. G. Duh, “Electrochemical performance and low discharge cut-off voltage behavior of ruthenium doped Li4Ti5O12 with improved energy density,” Electrochim. Acta 63, 9–15 (2012).
[Crossref]

Edwards, P. P.

M. Dalton, I. Gameson, A. R. Armstrong, and P. P. Edwards, “Structure of the Li1+xTi2−xO4 superconducting system: A neutron diffraction study,” Physica C 221(1-2), 149–156 (1994).
[Crossref]

M. R. Harrison, P. P. Edwards, and J. B. Goodenough, “The superconductor-semiconductor transition in the Li1+xTi2-xO4 spinel system,” Philos. Mag. B 52(3), 679–699 (1985).
[Crossref]

Feiner, L. F.

W. F. J. Fontijn, P. J. van der Zaag, L. F. Feiner, R. Metselaar, and M. A. C. Devillers, “A consistent interpretation of the magneto-optical spectra of spinel type ferrites (invited),” J. Appl. Phys. 85(8), 5100–5105 (1999).
[Crossref]

Fjellvåg, H.

V. Miikkulainen, O. Nilsen, M. Laitinen, T. Sajavaara, and H. Fjellvåg, “Atomic layer deposition of LixTiyOz thin films,” RSC Advances 3(20), 7537–7542 (2013).
[Crossref]

Fontijn, W. F. J.

W. F. J. Fontijn, P. J. van der Zaag, L. F. Feiner, R. Metselaar, and M. A. C. Devillers, “A consistent interpretation of the magneto-optical spectra of spinel type ferrites (invited),” J. Appl. Phys. 85(8), 5100–5105 (1999).
[Crossref]

Freeman, A. J.

S. Massidda, J. Yu, and A. J. Freeman, “Electronic structure and properties of superconducting LiTi2O4.,” Phys. Rev. B Condens. Matter 38(16), 11352–11357 (1988).
[Crossref] [PubMed]

Gameson, I.

M. Dalton, I. Gameson, A. R. Armstrong, and P. P. Edwards, “Structure of the Li1+xTi2−xO4 superconducting system: A neutron diffraction study,” Physica C 221(1-2), 149–156 (1994).
[Crossref]

Goodenough, J. B.

M. R. Harrison, P. P. Edwards, and J. B. Goodenough, “The superconductor-semiconductor transition in the Li1+xTi2-xO4 spinel system,” Philos. Mag. B 52(3), 679–699 (1985).
[Crossref]

Greene, R. L.

K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H. S. Yu, J. Yuan, L. Shan, F. V. Kusmartsev, R. L. Greene, and I. Takeuchi, “Anomalous magnetoresistance in the spinel superconductor LiTi2O4.,” Nat. Commun. 6, 7183 (2015).
[Crossref] [PubMed]

S. Maruyama, J. Shin, X. Zhang, R. Suchoski, S. Yasui, K. Jin, R. L. Greene, and I. Takeuchi, “Reversible electrochemical modulation of the superconducting transition temperature of LiTi2O4 ultrathin films by ionic liquid gating,” Appl. Phys. Lett. 107(14), 142602 (2015).
[Crossref]

Guerfia, A.

A. Guerfia, S. Sévignya, M. Lagacéa, P. Hovingtona, K. Kinoshitab, and K. Zaghiba, “Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators,” J. Power Sources 119, 88–94 (2003).
[Crossref]

Harrison, M. R.

M. R. Harrison, P. P. Edwards, and J. B. Goodenough, “The superconductor-semiconductor transition in the Li1+xTi2-xO4 spinel system,” Philos. Mag. B 52(3), 679–699 (1985).
[Crossref]

Hayashib, A.

J. Mosaa, M. Aparicioa, K. Tadanagab, A. Hayashib, and M. Tatsumisagob, “Li4Ti5O12 thin-film electrodes by in-situ synthesis of lithium alkoxide for Li-ion microbatteries,” Electrochim. Acta 149, 293–299 (2014).
[Crossref]

He, G.

K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H. S. Yu, J. Yuan, L. Shan, F. V. Kusmartsev, R. L. Greene, and I. Takeuchi, “Anomalous magnetoresistance in the spinel superconductor LiTi2O4.,” Nat. Commun. 6, 7183 (2015).
[Crossref] [PubMed]

Hitosugi, T.

A. Kumatani, T. Ohsawa, R. Shimizu, Y. Takagi, S. Shiraki, and T. Hitosugi, “Growth processes of lithium titanate thin films deposited by using pulsed laser deposition,” Appl. Phys. Lett. 101(12), 123103 (2012).
[Crossref]

Hovingtona, P.

A. Guerfia, S. Sévignya, M. Lagacéa, P. Hovingtona, K. Kinoshitab, and K. Zaghiba, “Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators,” J. Power Sources 119, 88–94 (2003).
[Crossref]

Inamura, T.

T. Inukai, T. Murakami, and T. Inamura, “Preparation of superconducting LiTi2O4 thin films,” Thin Solid Films 94(1), 47–50 (1982).
[Crossref]

Inukai, T.

T. Inukai, T. Murakami, and T. Inamura, “Preparation of superconducting LiTi2O4 thin films,” Thin Solid Films 94(1), 47–50 (1982).
[Crossref]

Jhan, Y. R.

Y. R. Jhan and J. G. Duh, “Electrochemical performance and low discharge cut-off voltage behavior of ruthenium doped Li4Ti5O12 with improved energy density,” Electrochim. Acta 63, 9–15 (2012).
[Crossref]

Jiang, J.

D. T. Liu, C. Y. Ouyang, J. Shu, J. Jiang, Z. X. Wang, and L. Q. Chen, “Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12,” Phys. Status Solidi, B Basic Res. 243(8), 1835–1841 (2006).
[Crossref]

Jiang, Y.

K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H. S. Yu, J. Yuan, L. Shan, F. V. Kusmartsev, R. L. Greene, and I. Takeuchi, “Anomalous magnetoresistance in the spinel superconductor LiTi2O4.,” Nat. Commun. 6, 7183 (2015).
[Crossref] [PubMed]

Jin, K.

S. Maruyama, J. Shin, X. Zhang, R. Suchoski, S. Yasui, K. Jin, R. L. Greene, and I. Takeuchi, “Reversible electrochemical modulation of the superconducting transition temperature of LiTi2O4 ultrathin films by ionic liquid gating,” Appl. Phys. Lett. 107(14), 142602 (2015).
[Crossref]

K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H. S. Yu, J. Yuan, L. Shan, F. V. Kusmartsev, R. L. Greene, and I. Takeuchi, “Anomalous magnetoresistance in the spinel superconductor LiTi2O4.,” Nat. Commun. 6, 7183 (2015).
[Crossref] [PubMed]

Johnston, D. C.

D. C. Johnston, “Superconducting and normal state properties of Li1+x Ti2−x O4 spinel compounds. I. Preparation, crystallography, superconducting properties, electrical resistivity, dielectric behavior, and magnetic susceptibility,” J. Low Temp. Phys. 25(1-2), 145–175 (1976).
[Crossref]

D. C. Johnston, H. Prakash, W. H. Zachariasen, and R. Viswanathan, “High temperature superconductivity in the Li1+xTi2-xO4 ternary system,” Mater. Res. Bull. 8(7), 777–784 (1973).
[Crossref]

Kanamura, K.

K. Kanamura, T. Umegak, H. Naito, Z. Takehara, and T. Yao, “Structural and electrochemical characteristics of Li4/3Ti5/3O4 as an anode material for rechargeable lithium batteries,” J. Appl. Electrochem. 31(1), 73–78 (2001).
[Crossref]

Kim, K. J.

K. J. Kim and J. H. Lee, “Effects of nickel doping on structural and optical properties of spinel lithium manganate thin films,” Solid State Commun. 141(2), 99–103 (2007).
[Crossref]

Kinoshitab, K.

A. Guerfia, S. Sévignya, M. Lagacéa, P. Hovingtona, K. Kinoshitab, and K. Zaghiba, “Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators,” J. Power Sources 119, 88–94 (2003).
[Crossref]

Korkmaz, S.

S. Özen, V. Şenay, S. Pat, and Ş. Korkmaz, “Optical, morphological properties and surface energy of the transparent Li4Ti5O12 (LTO) thin film as anode material for secondary type batteries,” J. Phys. D Appl. Phys. 49(10), 105303 (2016).
[Crossref]

Koscielska, B.

M. Ýapinski, B. Kościelska, A. Winiarski, and W. Sadowski, “XPS study of superconducting LiTi2O4 and LiTi2-xCuxO4 Sol-Gel derived powders and thin films,” Acta Phys. Pol. A 126, 107–109 (2014).
[Crossref]

Kumatani, A.

A. Kumatani, T. Ohsawa, R. Shimizu, Y. Takagi, S. Shiraki, and T. Hitosugi, “Growth processes of lithium titanate thin films deposited by using pulsed laser deposition,” Appl. Phys. Lett. 101(12), 123103 (2012).
[Crossref]

Kusmartsev, F. V.

K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H. S. Yu, J. Yuan, L. Shan, F. V. Kusmartsev, R. L. Greene, and I. Takeuchi, “Anomalous magnetoresistance in the spinel superconductor LiTi2O4.,” Nat. Commun. 6, 7183 (2015).
[Crossref] [PubMed]

Lagacéa, M.

A. Guerfia, S. Sévignya, M. Lagacéa, P. Hovingtona, K. Kinoshitab, and K. Zaghiba, “Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators,” J. Power Sources 119, 88–94 (2003).
[Crossref]

Laitinen, M.

V. Miikkulainen, O. Nilsen, M. Laitinen, T. Sajavaara, and H. Fjellvåg, “Atomic layer deposition of LixTiyOz thin films,” RSC Advances 3(20), 7537–7542 (2013).
[Crossref]

Lee, J. H.

K. J. Kim and J. H. Lee, “Effects of nickel doping on structural and optical properties of spinel lithium manganate thin films,” Solid State Commun. 141(2), 99–103 (2007).
[Crossref]

Lei, M. S.

C. Y. Ouyang, Z. Y. Zhong, and M. S. Lei, “Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel,” Electrochem. Commun. 9(5), 1107–1112 (2007).
[Crossref]

Li, J.

H. Duan, J. Li, S. W. Chiang, H. Du, and W. H. Duan, “First-principles study of native defects in LiTi2O4,” Comput. Mater. Sci. 96, 263–267 (2015).
[Crossref]

Ling, T.

M. Xiangdong, W. Xiaocen, Z. Yuxue, T. Ling, Z. Xianghua, and C. Xiaobing, “Spinel lithium titanate from brookite nanocrystallites,” Ceram. Int. 40(3), 4989–4993 (2014).
[Crossref]

Liu, D. T.

D. T. Liu, C. Y. Ouyang, J. Shu, J. Jiang, Z. X. Wang, and L. Q. Chen, “Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12,” Phys. Status Solidi, B Basic Res. 243(8), 1835–1841 (2006).
[Crossref]

Machida, A.

Y. Moritomo, Sh. Xu, A. Machida, T. Akimoto, E. Nishibori, M. Takata, and M. Sakata, “Electronic structure of double-perovskite transition-metal oxides,” Phys. Rev. B 61(12), R7827–R7830 (2000).
[Crossref]

Martin, R. M.

S. Satpathy and R. M. Martin, “Electronic structure of the superconducting oxide spinel LiTi2O4,” Phys. Rev. B 36(13), 7269–7272 (1987).
[Crossref]

Maruyama, S.

S. Maruyama, J. Shin, X. Zhang, R. Suchoski, S. Yasui, K. Jin, R. L. Greene, and I. Takeuchi, “Reversible electrochemical modulation of the superconducting transition temperature of LiTi2O4 ultrathin films by ionic liquid gating,” Appl. Phys. Lett. 107(14), 142602 (2015).
[Crossref]

K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H. S. Yu, J. Yuan, L. Shan, F. V. Kusmartsev, R. L. Greene, and I. Takeuchi, “Anomalous magnetoresistance in the spinel superconductor LiTi2O4.,” Nat. Commun. 6, 7183 (2015).
[Crossref] [PubMed]

Massidda, S.

S. Massidda, J. Yu, and A. J. Freeman, “Electronic structure and properties of superconducting LiTi2O4.,” Phys. Rev. B Condens. Matter 38(16), 11352–11357 (1988).
[Crossref] [PubMed]

Metselaar, R.

W. F. J. Fontijn, P. J. van der Zaag, L. F. Feiner, R. Metselaar, and M. A. C. Devillers, “A consistent interpretation of the magneto-optical spectra of spinel type ferrites (invited),” J. Appl. Phys. 85(8), 5100–5105 (1999).
[Crossref]

Miikkulainen, V.

V. Miikkulainen, O. Nilsen, M. Laitinen, T. Sajavaara, and H. Fjellvåg, “Atomic layer deposition of LixTiyOz thin films,” RSC Advances 3(20), 7537–7542 (2013).
[Crossref]

Moritomo, Y.

Y. Moritomo, Sh. Xu, A. Machida, T. Akimoto, E. Nishibori, M. Takata, and M. Sakata, “Electronic structure of double-perovskite transition-metal oxides,” Phys. Rev. B 61(12), R7827–R7830 (2000).
[Crossref]

Mosaa, J.

J. Mosaa, M. Aparicioa, K. Tadanagab, A. Hayashib, and M. Tatsumisagob, “Li4Ti5O12 thin-film electrodes by in-situ synthesis of lithium alkoxide for Li-ion microbatteries,” Electrochim. Acta 149, 293–299 (2014).
[Crossref]

Murakami, T.

T. Inukai, T. Murakami, and T. Inamura, “Preparation of superconducting LiTi2O4 thin films,” Thin Solid Films 94(1), 47–50 (1982).
[Crossref]

Myung, S. T.

K. Amine, I. Belharouak, Z. Chen, T. Tran, H. Yumoto, N. Ota, S. T. Myung, and Y. K. Sun, “Nanostructured anode material for high-power battery system in electric vehicles,” Adv. Mater. 22(28), 3052–3057 (2010).
[Crossref] [PubMed]

Naito, H.

K. Kanamura, T. Umegak, H. Naito, Z. Takehara, and T. Yao, “Structural and electrochemical characteristics of Li4/3Ti5/3O4 as an anode material for rechargeable lithium batteries,” J. Appl. Electrochem. 31(1), 73–78 (2001).
[Crossref]

Nakayama, M.

W. Ra, M. Nakayama, Y. Uchimoto, and M. Wakihara, “Experimental and Computational Study of the Electronic Structural Changes in LiTi2O4 Spinel Compounds upon Electrochemical Li Insertion Reactions,” J. Phys. Chem. B 109(3), 1130–1134 (2005).
[Crossref] [PubMed]

W. Ra, M. Nakayama, Y. Uchimoto, and M. Wakihara, “Experimental and computational study of the electronic structural changes in LiTi2O4 spinel compounds upon electrochemical Li insertion reactions,” J. Phys. Chem. B 109(3), 1130–1134 (2005).
[Crossref] [PubMed]

Nilsen, O.

V. Miikkulainen, O. Nilsen, M. Laitinen, T. Sajavaara, and H. Fjellvåg, “Atomic layer deposition of LixTiyOz thin films,” RSC Advances 3(20), 7537–7542 (2013).
[Crossref]

Nishibori, E.

Y. Moritomo, Sh. Xu, A. Machida, T. Akimoto, E. Nishibori, M. Takata, and M. Sakata, “Electronic structure of double-perovskite transition-metal oxides,” Phys. Rev. B 61(12), R7827–R7830 (2000).
[Crossref]

Ohsawa, T.

A. Kumatani, T. Ohsawa, R. Shimizu, Y. Takagi, S. Shiraki, and T. Hitosugi, “Growth processes of lithium titanate thin films deposited by using pulsed laser deposition,” Appl. Phys. Lett. 101(12), 123103 (2012).
[Crossref]

Ohzuku, T.

T. Ohzuku, A. Ueda, and N. Yamamoto, “Zero‐strain insertion material of Li [Li1/3Ti5/3] O4 for Rechargeable Lithium Cells,” J. Electrochem. Soc. 142(5), 1431–1435 (1995).
[Crossref]

Ota, N.

K. Amine, I. Belharouak, Z. Chen, T. Tran, H. Yumoto, N. Ota, S. T. Myung, and Y. K. Sun, “Nanostructured anode material for high-power battery system in electric vehicles,” Adv. Mater. 22(28), 3052–3057 (2010).
[Crossref] [PubMed]

Ouyang, C. Y.

C. Y. Ouyang, Z. Y. Zhong, and M. S. Lei, “Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel,” Electrochem. Commun. 9(5), 1107–1112 (2007).
[Crossref]

D. T. Liu, C. Y. Ouyang, J. Shu, J. Jiang, Z. X. Wang, and L. Q. Chen, “Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12,” Phys. Status Solidi, B Basic Res. 243(8), 1835–1841 (2006).
[Crossref]

Özen, S.

S. Özen, V. Şenay, S. Pat, and Ş. Korkmaz, “Optical, morphological properties and surface energy of the transparent Li4Ti5O12 (LTO) thin film as anode material for secondary type batteries,” J. Phys. D Appl. Phys. 49(10), 105303 (2016).
[Crossref]

Pat, S.

S. Özen, V. Şenay, S. Pat, and Ş. Korkmaz, “Optical, morphological properties and surface energy of the transparent Li4Ti5O12 (LTO) thin film as anode material for secondary type batteries,” J. Phys. D Appl. Phys. 49(10), 105303 (2016).
[Crossref]

Prakash, H.

D. C. Johnston, H. Prakash, W. H. Zachariasen, and R. Viswanathan, “High temperature superconductivity in the Li1+xTi2-xO4 ternary system,” Mater. Res. Bull. 8(7), 777–784 (1973).
[Crossref]

Ra, W.

W. Ra, M. Nakayama, Y. Uchimoto, and M. Wakihara, “Experimental and computational study of the electronic structural changes in LiTi2O4 spinel compounds upon electrochemical Li insertion reactions,” J. Phys. Chem. B 109(3), 1130–1134 (2005).
[Crossref] [PubMed]

W. Ra, M. Nakayama, Y. Uchimoto, and M. Wakihara, “Experimental and Computational Study of the Electronic Structural Changes in LiTi2O4 Spinel Compounds upon Electrochemical Li Insertion Reactions,” J. Phys. Chem. B 109(3), 1130–1134 (2005).
[Crossref] [PubMed]

Ranganathan, R.

R. N. Bhowmik and R. Ranganathan, “Magnetic order and electrical conductivity scaling of the spinel oxide Mn0.5Ru0.5Co2O4,” Phys. Rev. B 74(21), 214417 (2006).
[Crossref]

Sadowski, W.

M. Ýapinski, B. Kościelska, A. Winiarski, and W. Sadowski, “XPS study of superconducting LiTi2O4 and LiTi2-xCuxO4 Sol-Gel derived powders and thin films,” Acta Phys. Pol. A 126, 107–109 (2014).
[Crossref]

Sajavaara, T.

V. Miikkulainen, O. Nilsen, M. Laitinen, T. Sajavaara, and H. Fjellvåg, “Atomic layer deposition of LixTiyOz thin films,” RSC Advances 3(20), 7537–7542 (2013).
[Crossref]

Sakata, M.

Y. Moritomo, Sh. Xu, A. Machida, T. Akimoto, E. Nishibori, M. Takata, and M. Sakata, “Electronic structure of double-perovskite transition-metal oxides,” Phys. Rev. B 61(12), R7827–R7830 (2000).
[Crossref]

Satpathy, S.

S. Satpathy and R. M. Martin, “Electronic structure of the superconducting oxide spinel LiTi2O4,” Phys. Rev. B 36(13), 7269–7272 (1987).
[Crossref]

Senay, V.

S. Özen, V. Şenay, S. Pat, and Ş. Korkmaz, “Optical, morphological properties and surface energy of the transparent Li4Ti5O12 (LTO) thin film as anode material for secondary type batteries,” J. Phys. D Appl. Phys. 49(10), 105303 (2016).
[Crossref]

Sévignya, S.

A. Guerfia, S. Sévignya, M. Lagacéa, P. Hovingtona, K. Kinoshitab, and K. Zaghiba, “Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators,” J. Power Sources 119, 88–94 (2003).
[Crossref]

Shan, L.

K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H. S. Yu, J. Yuan, L. Shan, F. V. Kusmartsev, R. L. Greene, and I. Takeuchi, “Anomalous magnetoresistance in the spinel superconductor LiTi2O4.,” Nat. Commun. 6, 7183 (2015).
[Crossref] [PubMed]

L. Tang, P. Y. Zou, L. Shan, A. F. Dong, G. C. Che, and H. H. Wen, “Electrical resistivity and Andreev reflection spectroscopy of the superconducting oxide spinel LiTi2O4,” Phys. Rev. B 73(18), 184521 (2006).
[Crossref]

Shimizu, R.

A. Kumatani, T. Ohsawa, R. Shimizu, Y. Takagi, S. Shiraki, and T. Hitosugi, “Growth processes of lithium titanate thin films deposited by using pulsed laser deposition,” Appl. Phys. Lett. 101(12), 123103 (2012).
[Crossref]

Shin, J.

K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H. S. Yu, J. Yuan, L. Shan, F. V. Kusmartsev, R. L. Greene, and I. Takeuchi, “Anomalous magnetoresistance in the spinel superconductor LiTi2O4.,” Nat. Commun. 6, 7183 (2015).
[Crossref] [PubMed]

S. Maruyama, J. Shin, X. Zhang, R. Suchoski, S. Yasui, K. Jin, R. L. Greene, and I. Takeuchi, “Reversible electrochemical modulation of the superconducting transition temperature of LiTi2O4 ultrathin films by ionic liquid gating,” Appl. Phys. Lett. 107(14), 142602 (2015).
[Crossref]

Shiraki, S.

A. Kumatani, T. Ohsawa, R. Shimizu, Y. Takagi, S. Shiraki, and T. Hitosugi, “Growth processes of lithium titanate thin films deposited by using pulsed laser deposition,” Appl. Phys. Lett. 101(12), 123103 (2012).
[Crossref]

Shu, J.

D. T. Liu, C. Y. Ouyang, J. Shu, J. Jiang, Z. X. Wang, and L. Q. Chen, “Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12,” Phys. Status Solidi, B Basic Res. 243(8), 1835–1841 (2006).
[Crossref]

Suchoski, R.

K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H. S. Yu, J. Yuan, L. Shan, F. V. Kusmartsev, R. L. Greene, and I. Takeuchi, “Anomalous magnetoresistance in the spinel superconductor LiTi2O4.,” Nat. Commun. 6, 7183 (2015).
[Crossref] [PubMed]

S. Maruyama, J. Shin, X. Zhang, R. Suchoski, S. Yasui, K. Jin, R. L. Greene, and I. Takeuchi, “Reversible electrochemical modulation of the superconducting transition temperature of LiTi2O4 ultrathin films by ionic liquid gating,” Appl. Phys. Lett. 107(14), 142602 (2015).
[Crossref]

Sun, Y. K.

K. Amine, I. Belharouak, Z. Chen, T. Tran, H. Yumoto, N. Ota, S. T. Myung, and Y. K. Sun, “Nanostructured anode material for high-power battery system in electric vehicles,” Adv. Mater. 22(28), 3052–3057 (2010).
[Crossref] [PubMed]

Tadanagab, K.

J. Mosaa, M. Aparicioa, K. Tadanagab, A. Hayashib, and M. Tatsumisagob, “Li4Ti5O12 thin-film electrodes by in-situ synthesis of lithium alkoxide for Li-ion microbatteries,” Electrochim. Acta 149, 293–299 (2014).
[Crossref]

Takagi, Y.

A. Kumatani, T. Ohsawa, R. Shimizu, Y. Takagi, S. Shiraki, and T. Hitosugi, “Growth processes of lithium titanate thin films deposited by using pulsed laser deposition,” Appl. Phys. Lett. 101(12), 123103 (2012).
[Crossref]

Takata, M.

Y. Moritomo, Sh. Xu, A. Machida, T. Akimoto, E. Nishibori, M. Takata, and M. Sakata, “Electronic structure of double-perovskite transition-metal oxides,” Phys. Rev. B 61(12), R7827–R7830 (2000).
[Crossref]

Takehara, Z.

K. Kanamura, T. Umegak, H. Naito, Z. Takehara, and T. Yao, “Structural and electrochemical characteristics of Li4/3Ti5/3O4 as an anode material for rechargeable lithium batteries,” J. Appl. Electrochem. 31(1), 73–78 (2001).
[Crossref]

Takeuchi, I.

S. Maruyama, J. Shin, X. Zhang, R. Suchoski, S. Yasui, K. Jin, R. L. Greene, and I. Takeuchi, “Reversible electrochemical modulation of the superconducting transition temperature of LiTi2O4 ultrathin films by ionic liquid gating,” Appl. Phys. Lett. 107(14), 142602 (2015).
[Crossref]

K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H. S. Yu, J. Yuan, L. Shan, F. V. Kusmartsev, R. L. Greene, and I. Takeuchi, “Anomalous magnetoresistance in the spinel superconductor LiTi2O4.,” Nat. Commun. 6, 7183 (2015).
[Crossref] [PubMed]

Tang, L.

L. Tang, P. Y. Zou, L. Shan, A. F. Dong, G. C. Che, and H. H. Wen, “Electrical resistivity and Andreev reflection spectroscopy of the superconducting oxide spinel LiTi2O4,” Phys. Rev. B 73(18), 184521 (2006).
[Crossref]

Tatsumisagob, M.

J. Mosaa, M. Aparicioa, K. Tadanagab, A. Hayashib, and M. Tatsumisagob, “Li4Ti5O12 thin-film electrodes by in-situ synthesis of lithium alkoxide for Li-ion microbatteries,” Electrochim. Acta 149, 293–299 (2014).
[Crossref]

Tran, T.

K. Amine, I. Belharouak, Z. Chen, T. Tran, H. Yumoto, N. Ota, S. T. Myung, and Y. K. Sun, “Nanostructured anode material for high-power battery system in electric vehicles,” Adv. Mater. 22(28), 3052–3057 (2010).
[Crossref] [PubMed]

Uchimoto, Y.

W. Ra, M. Nakayama, Y. Uchimoto, and M. Wakihara, “Experimental and computational study of the electronic structural changes in LiTi2O4 spinel compounds upon electrochemical Li insertion reactions,” J. Phys. Chem. B 109(3), 1130–1134 (2005).
[Crossref] [PubMed]

W. Ra, M. Nakayama, Y. Uchimoto, and M. Wakihara, “Experimental and Computational Study of the Electronic Structural Changes in LiTi2O4 Spinel Compounds upon Electrochemical Li Insertion Reactions,” J. Phys. Chem. B 109(3), 1130–1134 (2005).
[Crossref] [PubMed]

Ueda, A.

T. Ohzuku, A. Ueda, and N. Yamamoto, “Zero‐strain insertion material of Li [Li1/3Ti5/3] O4 for Rechargeable Lithium Cells,” J. Electrochem. Soc. 142(5), 1431–1435 (1995).
[Crossref]

Umegak, T.

K. Kanamura, T. Umegak, H. Naito, Z. Takehara, and T. Yao, “Structural and electrochemical characteristics of Li4/3Ti5/3O4 as an anode material for rechargeable lithium batteries,” J. Appl. Electrochem. 31(1), 73–78 (2001).
[Crossref]

van der Zaag, P. J.

W. F. J. Fontijn, P. J. van der Zaag, L. F. Feiner, R. Metselaar, and M. A. C. Devillers, “A consistent interpretation of the magneto-optical spectra of spinel type ferrites (invited),” J. Appl. Phys. 85(8), 5100–5105 (1999).
[Crossref]

Viswanathan, R.

D. C. Johnston, H. Prakash, W. H. Zachariasen, and R. Viswanathan, “High temperature superconductivity in the Li1+xTi2-xO4 ternary system,” Mater. Res. Bull. 8(7), 777–784 (1973).
[Crossref]

Wakihara, M.

W. Ra, M. Nakayama, Y. Uchimoto, and M. Wakihara, “Experimental and computational study of the electronic structural changes in LiTi2O4 spinel compounds upon electrochemical Li insertion reactions,” J. Phys. Chem. B 109(3), 1130–1134 (2005).
[Crossref] [PubMed]

W. Ra, M. Nakayama, Y. Uchimoto, and M. Wakihara, “Experimental and Computational Study of the Electronic Structural Changes in LiTi2O4 Spinel Compounds upon Electrochemical Li Insertion Reactions,” J. Phys. Chem. B 109(3), 1130–1134 (2005).
[Crossref] [PubMed]

Wang, Z. X.

D. T. Liu, C. Y. Ouyang, J. Shu, J. Jiang, Z. X. Wang, and L. Q. Chen, “Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12,” Phys. Status Solidi, B Basic Res. 243(8), 1835–1841 (2006).
[Crossref]

Wen, H. H.

L. Tang, P. Y. Zou, L. Shan, A. F. Dong, G. C. Che, and H. H. Wen, “Electrical resistivity and Andreev reflection spectroscopy of the superconducting oxide spinel LiTi2O4,” Phys. Rev. B 73(18), 184521 (2006).
[Crossref]

Winiarski, A.

M. Ýapinski, B. Kościelska, A. Winiarski, and W. Sadowski, “XPS study of superconducting LiTi2O4 and LiTi2-xCuxO4 Sol-Gel derived powders and thin films,” Acta Phys. Pol. A 126, 107–109 (2014).
[Crossref]

Xiangdong, M.

M. Xiangdong, W. Xiaocen, Z. Yuxue, T. Ling, Z. Xianghua, and C. Xiaobing, “Spinel lithium titanate from brookite nanocrystallites,” Ceram. Int. 40(3), 4989–4993 (2014).
[Crossref]

Xianghua, Z.

M. Xiangdong, W. Xiaocen, Z. Yuxue, T. Ling, Z. Xianghua, and C. Xiaobing, “Spinel lithium titanate from brookite nanocrystallites,” Ceram. Int. 40(3), 4989–4993 (2014).
[Crossref]

Xiaobing, C.

M. Xiangdong, W. Xiaocen, Z. Yuxue, T. Ling, Z. Xianghua, and C. Xiaobing, “Spinel lithium titanate from brookite nanocrystallites,” Ceram. Int. 40(3), 4989–4993 (2014).
[Crossref]

Xiaocen, W.

M. Xiangdong, W. Xiaocen, Z. Yuxue, T. Ling, Z. Xianghua, and C. Xiaobing, “Spinel lithium titanate from brookite nanocrystallites,” Ceram. Int. 40(3), 4989–4993 (2014).
[Crossref]

Xu, Sh.

Y. Moritomo, Sh. Xu, A. Machida, T. Akimoto, E. Nishibori, M. Takata, and M. Sakata, “Electronic structure of double-perovskite transition-metal oxides,” Phys. Rev. B 61(12), R7827–R7830 (2000).
[Crossref]

Yamamoto, N.

T. Ohzuku, A. Ueda, and N. Yamamoto, “Zero‐strain insertion material of Li [Li1/3Ti5/3] O4 for Rechargeable Lithium Cells,” J. Electrochem. Soc. 142(5), 1431–1435 (1995).
[Crossref]

Yao, T.

K. Kanamura, T. Umegak, H. Naito, Z. Takehara, and T. Yao, “Structural and electrochemical characteristics of Li4/3Ti5/3O4 as an anode material for rechargeable lithium batteries,” J. Appl. Electrochem. 31(1), 73–78 (2001).
[Crossref]

Ýapinski, M.

M. Ýapinski, B. Kościelska, A. Winiarski, and W. Sadowski, “XPS study of superconducting LiTi2O4 and LiTi2-xCuxO4 Sol-Gel derived powders and thin films,” Acta Phys. Pol. A 126, 107–109 (2014).
[Crossref]

Yasui, S.

S. Maruyama, J. Shin, X. Zhang, R. Suchoski, S. Yasui, K. Jin, R. L. Greene, and I. Takeuchi, “Reversible electrochemical modulation of the superconducting transition temperature of LiTi2O4 ultrathin films by ionic liquid gating,” Appl. Phys. Lett. 107(14), 142602 (2015).
[Crossref]

K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H. S. Yu, J. Yuan, L. Shan, F. V. Kusmartsev, R. L. Greene, and I. Takeuchi, “Anomalous magnetoresistance in the spinel superconductor LiTi2O4.,” Nat. Commun. 6, 7183 (2015).
[Crossref] [PubMed]

Yu, H. S.

K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H. S. Yu, J. Yuan, L. Shan, F. V. Kusmartsev, R. L. Greene, and I. Takeuchi, “Anomalous magnetoresistance in the spinel superconductor LiTi2O4.,” Nat. Commun. 6, 7183 (2015).
[Crossref] [PubMed]

Yu, J.

S. Massidda, J. Yu, and A. J. Freeman, “Electronic structure and properties of superconducting LiTi2O4.,” Phys. Rev. B Condens. Matter 38(16), 11352–11357 (1988).
[Crossref] [PubMed]

Yuan, J.

K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H. S. Yu, J. Yuan, L. Shan, F. V. Kusmartsev, R. L. Greene, and I. Takeuchi, “Anomalous magnetoresistance in the spinel superconductor LiTi2O4.,” Nat. Commun. 6, 7183 (2015).
[Crossref] [PubMed]

Yumoto, H.

K. Amine, I. Belharouak, Z. Chen, T. Tran, H. Yumoto, N. Ota, S. T. Myung, and Y. K. Sun, “Nanostructured anode material for high-power battery system in electric vehicles,” Adv. Mater. 22(28), 3052–3057 (2010).
[Crossref] [PubMed]

Yuxue, Z.

M. Xiangdong, W. Xiaocen, Z. Yuxue, T. Ling, Z. Xianghua, and C. Xiaobing, “Spinel lithium titanate from brookite nanocrystallites,” Ceram. Int. 40(3), 4989–4993 (2014).
[Crossref]

Zachariasen, W. H.

D. C. Johnston, H. Prakash, W. H. Zachariasen, and R. Viswanathan, “High temperature superconductivity in the Li1+xTi2-xO4 ternary system,” Mater. Res. Bull. 8(7), 777–784 (1973).
[Crossref]

Zaghiba, K.

A. Guerfia, S. Sévignya, M. Lagacéa, P. Hovingtona, K. Kinoshitab, and K. Zaghiba, “Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators,” J. Power Sources 119, 88–94 (2003).
[Crossref]

Zhang, X.

S. Maruyama, J. Shin, X. Zhang, R. Suchoski, S. Yasui, K. Jin, R. L. Greene, and I. Takeuchi, “Reversible electrochemical modulation of the superconducting transition temperature of LiTi2O4 ultrathin films by ionic liquid gating,” Appl. Phys. Lett. 107(14), 142602 (2015).
[Crossref]

K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H. S. Yu, J. Yuan, L. Shan, F. V. Kusmartsev, R. L. Greene, and I. Takeuchi, “Anomalous magnetoresistance in the spinel superconductor LiTi2O4.,” Nat. Commun. 6, 7183 (2015).
[Crossref] [PubMed]

Zhong, Z. Y.

C. Y. Ouyang, Z. Y. Zhong, and M. S. Lei, “Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel,” Electrochem. Commun. 9(5), 1107–1112 (2007).
[Crossref]

Zou, P. Y.

L. Tang, P. Y. Zou, L. Shan, A. F. Dong, G. C. Che, and H. H. Wen, “Electrical resistivity and Andreev reflection spectroscopy of the superconducting oxide spinel LiTi2O4,” Phys. Rev. B 73(18), 184521 (2006).
[Crossref]

Acta Phys. Pol. A (1)

M. Ýapinski, B. Kościelska, A. Winiarski, and W. Sadowski, “XPS study of superconducting LiTi2O4 and LiTi2-xCuxO4 Sol-Gel derived powders and thin films,” Acta Phys. Pol. A 126, 107–109 (2014).
[Crossref]

Adv. Mater. (1)

K. Amine, I. Belharouak, Z. Chen, T. Tran, H. Yumoto, N. Ota, S. T. Myung, and Y. K. Sun, “Nanostructured anode material for high-power battery system in electric vehicles,” Adv. Mater. 22(28), 3052–3057 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

A. Kumatani, T. Ohsawa, R. Shimizu, Y. Takagi, S. Shiraki, and T. Hitosugi, “Growth processes of lithium titanate thin films deposited by using pulsed laser deposition,” Appl. Phys. Lett. 101(12), 123103 (2012).
[Crossref]

S. Maruyama, J. Shin, X. Zhang, R. Suchoski, S. Yasui, K. Jin, R. L. Greene, and I. Takeuchi, “Reversible electrochemical modulation of the superconducting transition temperature of LiTi2O4 ultrathin films by ionic liquid gating,” Appl. Phys. Lett. 107(14), 142602 (2015).
[Crossref]

Ceram. Int. (1)

M. Xiangdong, W. Xiaocen, Z. Yuxue, T. Ling, Z. Xianghua, and C. Xiaobing, “Spinel lithium titanate from brookite nanocrystallites,” Ceram. Int. 40(3), 4989–4993 (2014).
[Crossref]

Comput. Mater. Sci. (1)

H. Duan, J. Li, S. W. Chiang, H. Du, and W. H. Duan, “First-principles study of native defects in LiTi2O4,” Comput. Mater. Sci. 96, 263–267 (2015).
[Crossref]

Electrochem. Commun. (1)

C. Y. Ouyang, Z. Y. Zhong, and M. S. Lei, “Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel,” Electrochem. Commun. 9(5), 1107–1112 (2007).
[Crossref]

Electrochim. Acta (2)

Y. R. Jhan and J. G. Duh, “Electrochemical performance and low discharge cut-off voltage behavior of ruthenium doped Li4Ti5O12 with improved energy density,” Electrochim. Acta 63, 9–15 (2012).
[Crossref]

J. Mosaa, M. Aparicioa, K. Tadanagab, A. Hayashib, and M. Tatsumisagob, “Li4Ti5O12 thin-film electrodes by in-situ synthesis of lithium alkoxide for Li-ion microbatteries,” Electrochim. Acta 149, 293–299 (2014).
[Crossref]

J. Appl. Electrochem. (1)

K. Kanamura, T. Umegak, H. Naito, Z. Takehara, and T. Yao, “Structural and electrochemical characteristics of Li4/3Ti5/3O4 as an anode material for rechargeable lithium batteries,” J. Appl. Electrochem. 31(1), 73–78 (2001).
[Crossref]

J. Appl. Phys. (1)

W. F. J. Fontijn, P. J. van der Zaag, L. F. Feiner, R. Metselaar, and M. A. C. Devillers, “A consistent interpretation of the magneto-optical spectra of spinel type ferrites (invited),” J. Appl. Phys. 85(8), 5100–5105 (1999).
[Crossref]

J. Electrochem. Soc. (1)

T. Ohzuku, A. Ueda, and N. Yamamoto, “Zero‐strain insertion material of Li [Li1/3Ti5/3] O4 for Rechargeable Lithium Cells,” J. Electrochem. Soc. 142(5), 1431–1435 (1995).
[Crossref]

J. Low Temp. Phys. (1)

D. C. Johnston, “Superconducting and normal state properties of Li1+x Ti2−x O4 spinel compounds. I. Preparation, crystallography, superconducting properties, electrical resistivity, dielectric behavior, and magnetic susceptibility,” J. Low Temp. Phys. 25(1-2), 145–175 (1976).
[Crossref]

J. Phys. Chem. B (2)

W. Ra, M. Nakayama, Y. Uchimoto, and M. Wakihara, “Experimental and computational study of the electronic structural changes in LiTi2O4 spinel compounds upon electrochemical Li insertion reactions,” J. Phys. Chem. B 109(3), 1130–1134 (2005).
[Crossref] [PubMed]

W. Ra, M. Nakayama, Y. Uchimoto, and M. Wakihara, “Experimental and Computational Study of the Electronic Structural Changes in LiTi2O4 Spinel Compounds upon Electrochemical Li Insertion Reactions,” J. Phys. Chem. B 109(3), 1130–1134 (2005).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

S. Özen, V. Şenay, S. Pat, and Ş. Korkmaz, “Optical, morphological properties and surface energy of the transparent Li4Ti5O12 (LTO) thin film as anode material for secondary type batteries,” J. Phys. D Appl. Phys. 49(10), 105303 (2016).
[Crossref]

J. Power Sources (1)

A. Guerfia, S. Sévignya, M. Lagacéa, P. Hovingtona, K. Kinoshitab, and K. Zaghiba, “Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators,” J. Power Sources 119, 88–94 (2003).
[Crossref]

Mater. Res. Bull. (1)

D. C. Johnston, H. Prakash, W. H. Zachariasen, and R. Viswanathan, “High temperature superconductivity in the Li1+xTi2-xO4 ternary system,” Mater. Res. Bull. 8(7), 777–784 (1973).
[Crossref]

Nat. Commun. (1)

K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H. S. Yu, J. Yuan, L. Shan, F. V. Kusmartsev, R. L. Greene, and I. Takeuchi, “Anomalous magnetoresistance in the spinel superconductor LiTi2O4.,” Nat. Commun. 6, 7183 (2015).
[Crossref] [PubMed]

Philos. Mag. B (1)

M. R. Harrison, P. P. Edwards, and J. B. Goodenough, “The superconductor-semiconductor transition in the Li1+xTi2-xO4 spinel system,” Philos. Mag. B 52(3), 679–699 (1985).
[Crossref]

Phys. Rev. B (4)

L. Tang, P. Y. Zou, L. Shan, A. F. Dong, G. C. Che, and H. H. Wen, “Electrical resistivity and Andreev reflection spectroscopy of the superconducting oxide spinel LiTi2O4,” Phys. Rev. B 73(18), 184521 (2006).
[Crossref]

Y. Moritomo, Sh. Xu, A. Machida, T. Akimoto, E. Nishibori, M. Takata, and M. Sakata, “Electronic structure of double-perovskite transition-metal oxides,” Phys. Rev. B 61(12), R7827–R7830 (2000).
[Crossref]

R. N. Bhowmik and R. Ranganathan, “Magnetic order and electrical conductivity scaling of the spinel oxide Mn0.5Ru0.5Co2O4,” Phys. Rev. B 74(21), 214417 (2006).
[Crossref]

S. Satpathy and R. M. Martin, “Electronic structure of the superconducting oxide spinel LiTi2O4,” Phys. Rev. B 36(13), 7269–7272 (1987).
[Crossref]

Phys. Rev. B Condens. Matter (1)

S. Massidda, J. Yu, and A. J. Freeman, “Electronic structure and properties of superconducting LiTi2O4.,” Phys. Rev. B Condens. Matter 38(16), 11352–11357 (1988).
[Crossref] [PubMed]

Phys. Status Solidi, B Basic Res. (1)

D. T. Liu, C. Y. Ouyang, J. Shu, J. Jiang, Z. X. Wang, and L. Q. Chen, “Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12,” Phys. Status Solidi, B Basic Res. 243(8), 1835–1841 (2006).
[Crossref]

Physica C (1)

M. Dalton, I. Gameson, A. R. Armstrong, and P. P. Edwards, “Structure of the Li1+xTi2−xO4 superconducting system: A neutron diffraction study,” Physica C 221(1-2), 149–156 (1994).
[Crossref]

RSC Advances (1)

V. Miikkulainen, O. Nilsen, M. Laitinen, T. Sajavaara, and H. Fjellvåg, “Atomic layer deposition of LixTiyOz thin films,” RSC Advances 3(20), 7537–7542 (2013).
[Crossref]

Science (1)

E. Dagotto, “Complexity in strongly correlated electronic systems,” Science 309(5732), 257–262 (2005).
[Crossref] [PubMed]

Solid State Commun. (1)

K. J. Kim and J. H. Lee, “Effects of nickel doping on structural and optical properties of spinel lithium manganate thin films,” Solid State Commun. 141(2), 99–103 (2007).
[Crossref]

Thin Solid Films (1)

T. Inukai, T. Murakami, and T. Inamura, “Preparation of superconducting LiTi2O4 thin films,” Thin Solid Films 94(1), 47–50 (1982).
[Crossref]

Other (3)

J. S. Griffith, The Theory of Transition Metal Ions (Cambridge University Press, Cambridge, 1971).

Y. L. Jia, G. He, and et al.., “Crystallographic dependent transport properties and oxygen issue in superconduct-ing LiTi2O4 thin films,” http://arxiv.org/abs/1608.06683 .

J. I. Pankove, Optical Processes in Semiconductors (Dover, 1971).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 2D images of the LTO thin films and MgAl2O4 substrate surfaces performed by AFM, (a) MgAl2O4 substrate (b) LiTi2O4 thin film; (c) Li4Ti5O12 thin film.
Fig. 2
Fig. 2 XRD spectra (Cu Kα radiation = 1.5418 Å) of the LTO thin films grown on (001) MgAl2O4 substrate, Left: Li4Ti5O12 thin film; Right: LiTi2O4 thin film.
Fig. 3
Fig. 3 (a) Measured (dotted) and fitted (lines) ellipsometric spectra cos(2 ψ ) and sin(2 ψ )cos( Δ ) of Li4Ti5O12 thin film at the incident angle of 75° (b) Refractive index and extinction coefficient for Li4Ti5O12 thin film.
Fig. 4
Fig. 4 The relationship between ( α h ν ) 2 and photon energy ( h ν ) known as the Tauc plot for Li4Ti5O12 thin film.
Fig. 5
Fig. 5 (a) Measured (line-dots) and fitted (lines) ellipsometric spectra cos(2 ψ ) and sin(2 ψ )cos( Δ ) of LiTi2O4 thin film at the incident angle of 75°(b) Refractive index and extinction coefficient shown for LiTi2O4 thin film at room temperature, the inset shows the second derivative of extinction coefficient

Tables (2)

Tables Icon

Table 1 The best fitting parameters in Cauchy model for the Li4Ti5O12 film.

Tables Icon

Table 2 The best fitting parameters in the Lorentz oscillators and Drude model for the LiTi2O4 film.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ρ = tan ( ψ ) exp ( i Δ ) = r 1 p + r 2 p exp ( i δ ) 1 + r 1 p r 2 p exp ( i δ ) × 1 + r 1 s r 2 s exp ( i δ ) r 1 s + r 2 s exp ( i δ ) = f ( n 1 , n 2 , n , λ , d )
n ( λ ) = A + B / λ 2 + C / λ 4
k ( λ ) = D / λ + E / λ 3 + F / λ 5
E E g = { ( 4 π κ λ ) h ν B } n

Metrics