Abstract

We report a full investigation of continuous-wave diode-pumped Nd:LuAG single crystal lasers on 4F3/24I13/2 transition around 1.3 and 1.4 μm. In free-running mode, a maximum output power of 4.18 W is achieved for a simultaneous dual-wavelength laser operation at 1321 and 1338 nm, which represents the highest output power for Nd:LuAG laser material at a 1.3 μm emission band. Three single wavelength lasers at 1340, 1332 and 1322 nm, as well as a dual-wavelength laser at 1334 and 1338 nm, are also generated with maximum output powers of 2.39, 2.63, 2.24 and 1.23 W, respectively, with the aid of a glass etalon. Moreover, a single wavelength laser at 1353 nm is also obtained with a maximum output power of 1.53 W. Furthermore, in free-running mode, simultaneous tri-wavelength eye-safe lasers at 1419, 1432 and 1442 nm are attained with a maximum output power of 1.83 W, and a 1.08 W single wavelength laser at 1419 nm is also yielded. Most of the 1.3 μm lasers and all of the 1.4 μm lasers are demonstrated for the first time to our knowledge. Thus, this work indicates that Nd:LuAG crystal is a very promising laser gain medium for high-power continuous-wave infrared laser generation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Continuous-wave laser operation of Nd:LuAG ceramic with 4F3∕24I11∕2 transition

Yanlin Ye, Haiyong Zhu, Yanmin Duan, Zhenhua Shao, Dewei Luo, Jian Zhang, Dingyuan Tang, and A. A. Kaminskii
Opt. Mater. Express 5(3) 611-616 (2015)

Eye-safe Nd:LuAG ceramic lasers

Dongyue Yan, Peng Liu, Xiaodong Xu, Jian Zhang, Dingyuan Tang, and Jun Xu
Opt. Mater. Express 7(4) 1374-1380 (2017)

Experimental and theoretical study of a passively Q-switched Nd:LuAG laser at 1.3  μm with a V3+:YAG saturable absorber

Cheng Liu, Shengzhi Zhao, Guiqiu Li, Kejian Yang, Dechun Li, Tao Li, Wenchao Qiao, Tianli Feng, Xintian Chen, Xiaodong Xu, Lihe Zheng, and Jun Xu
J. Opt. Soc. Am. B 32(5) 1001-1006 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. H. Allik, W. W. Hovis, D. P. Caffey, and V. King, “Efficient diode-array-pumped Nd:YAG and Nd:Lu:YAG lasers,” Opt. Lett. 14(2), 116–118 (1989).
    [Crossref] [PubMed]
  2. J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
    [Crossref]
  3. X. Xu, S. Cheng, J. Meng, D. Li, D. Zhou, L. Zheng, J. Xu, W. Ryba-Romanowski, and R. Lisiecki, “Spectral characterization and laser performance of a mixed crystal Nd:(LuxY1-x)3Al5O12.,” Opt. Express 18(20), 21370–21375 (2010).
    [Crossref] [PubMed]
  4. C. W. Xu, D. Y. Tang, H. Y. Zhu, and J. Zhang, “Mode locking of Yb:GdYAG ceramic lasers with an isotropic cavity,” Laser Phys. Lett. 10(9), 095702 (2013).
    [Crossref]
  5. Y. G. Zhao, Z. P. Wang, H. H. Yu, X. D. Xu, J. Xu, and X. G. Xu, “Efficient multi-wavelength lasers made of Nd:GdLuAG crystal,” Chin. Opt. Lett. 13(2), 021404 (2015).
    [Crossref]
  6. X. D. Xu, X. D. Wang, J. Q. Meng, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
    [Crossref]
  7. J. He, X. Liang, J. Li, H. Yu, X. Xu, Z. Zhao, J. Xu, and Z. Xu, “LD pumped Yb:LuAG mode-locked laser with 7.63ps duration,” Opt. Express 17(14), 11537–11542 (2009).
    [Crossref] [PubMed]
  8. T. Dai, J. Wu, Z. Zhang, Y. Ju, B. Yao, and Y. Wang, “Diode-end-pumped single-longitudinal-mode Er:LuAG laser with intracavity etalons at 1.6 μm,” Appl. Opt. 54(32), 9500–9503 (2015).
    [Crossref] [PubMed]
  9. N. P. Barnes, M. G. Jani, and R. L. Hutcheson, “Diode-pumped, room-temperature Tm:LuAG laser,” Appl. Opt. 34(21), 4290–4294 (1995).
    [Crossref] [PubMed]
  10. X. Duan, B. Yao, G. Li, Y. Ju, Y. Wang, and G. Zhao, “High efficient actively Q-switched Ho:LuAG laser,” Opt. Express 17(24), 21691–21697 (2009).
    [Crossref] [PubMed]
  11. D. W. Hart, M. Jani, and N. P. Barnes, “Room-temperature lasing of end-pumped Ho:Lu3Al5O12,” Opt. Lett. 21(10), 728–730 (1996).
    [Crossref] [PubMed]
  12. http://www.scientificmaterials.com/products/luag_Lu3Al5O12_lutetium_ aluminum.php .
  13. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
    [Crossref]
  14. B. Xu, Y. Wang, X. Huang, J. Lan, Z. Lin, Z. Luo, H. Xu, Z. Cai, and R. Moncorgé, “Watt-level narrow-linewidth Nd:YAG laser operating on 4F3/2→4I15/2 transition at 1834 nm,” Opt. Express 24(4), 3601–3606 (2016).
    [Crossref] [PubMed]
  15. J. Q. Di, X. D. Xu, J. Q. Meng, D. Z. Li, D. H. Zhou, F. Wu, and J. Xu, “Diode-Pumped Continuous Wave and Q-switched Operation of Nd:LuAG Crystal,” Laser Phys. 21(5), 844–846 (2011).
    [Crossref]
  16. X. D. Xu, J. Q. Di, W. D. Tan, J. Zhang, D. Y. Tang, D. Z. Li, D. H. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
    [Crossref]
  17. X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, “Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube,” Opt. Laser Technol. 64, 7–10 (2014).
    [Crossref]
  18. C. Liu, S. Z. Zhao, G. Q. Li, K. Yang, D. Li, T. Li, W. C. Qiao, T. Feng, X. T. Chen, X. D. Xu, L. Zheng, and J. Xu, “Experimental and theoretical study of a passively Q-switched Nd:LuAG laser at 1.3 μm with a V3+:YAG saturable absorber,” J. Opt. Soc. Am. B 32(5), 1001–1006 (2015).
    [Crossref]
  19. Y. L. Ye, H. Y. Zhu, Y. M. Duan, Z. H. Shao, D. W. Luo, J. Zhang, D. Y. Tang, and A. A. Kaminskii, “Continuous-wave laser operation of Nd:LuAG ceramic with 4F3/2→4I11⁄2 transition,” Opt. Mater. Express 5(3), 611–616 (2015).
    [Crossref]
  20. K. C. Tark, J. E. Jung, and S. Y. Song, “Superior Lipolytic Effect of the 1,444 nm Nd:YAG Laser: Comparison With the 1,064 nm Nd:YAG Laser,” Lasers Surg. Med. 41(10), 721–727 (2009).
    [Crossref] [PubMed]
  21. H. C. Lee, S. U. Byeon, and A. Lukashev, “Diode-pumped continuous-wave eye-safe Nd:YAG laser at 1415 nm,” Opt. Lett. 37(7), 1160–1162 (2012).
    [Crossref] [PubMed]
  22. B. Lin, K. Xiao, Q. L. Zhang, D. X. Zhang, B. H. Feng, Q. N. Li, and J. L. He, “Dual-wavelength Nd:YAG laser operation at 1319 and 1338 nm by direct pumping at 885 nm,” Appl. Opt. 55(8), 1844–1848 (2016).
    [Crossref] [PubMed]
  23. B. Xu, Y. Wang, Y. J. Cheng, H. Y. Xu, Z. P. Cai, and R. Moncorgé, “Single- and multi-wavelength laser operation of a diode-pumped Nd:GGG single crystal around 1.33 µm,” Opt. Commun. 345, 111–115 (2015).
    [Crossref]
  24. Y. S. Tzeng, Y. J. Huang, C. Y. Tang, K. W. Su, W. D. Chen, G. Zhang, and Y. F. Chen, “High-power tunable single- and multi-wavelength diode-pumped Nd:YAP laser in the 4F3/2 → 4I11/2 transition,” Opt. Express 21(22), 26261–26268 (2013).
    [Crossref] [PubMed]
  25. Y. P. Huang, Y. T. Chang, K. W. Su, Y. F. Chen, and K. F. Huang, “AlGaInAs intracavity selective absorber for an efficient high-power Nd:YAG laser operation at 1.44 µm,” Opt. Lett. 33(13), 1452–1454 (2008).
    [Crossref] [PubMed]

2016 (2)

2015 (5)

2014 (1)

X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, “Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube,” Opt. Laser Technol. 64, 7–10 (2014).
[Crossref]

2013 (2)

2012 (2)

X. D. Xu, J. Q. Di, W. D. Tan, J. Zhang, D. Y. Tang, D. Z. Li, D. H. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

H. C. Lee, S. U. Byeon, and A. Lukashev, “Diode-pumped continuous-wave eye-safe Nd:YAG laser at 1415 nm,” Opt. Lett. 37(7), 1160–1162 (2012).
[Crossref] [PubMed]

2011 (2)

J. Q. Di, X. D. Xu, J. Q. Meng, D. Z. Li, D. H. Zhou, F. Wu, and J. Xu, “Diode-Pumped Continuous Wave and Q-switched Operation of Nd:LuAG Crystal,” Laser Phys. 21(5), 844–846 (2011).
[Crossref]

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

2010 (1)

2009 (4)

X. D. Xu, X. D. Wang, J. Q. Meng, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

J. He, X. Liang, J. Li, H. Yu, X. Xu, Z. Zhao, J. Xu, and Z. Xu, “LD pumped Yb:LuAG mode-locked laser with 7.63ps duration,” Opt. Express 17(14), 11537–11542 (2009).
[Crossref] [PubMed]

X. Duan, B. Yao, G. Li, Y. Ju, Y. Wang, and G. Zhao, “High efficient actively Q-switched Ho:LuAG laser,” Opt. Express 17(24), 21691–21697 (2009).
[Crossref] [PubMed]

K. C. Tark, J. E. Jung, and S. Y. Song, “Superior Lipolytic Effect of the 1,444 nm Nd:YAG Laser: Comparison With the 1,064 nm Nd:YAG Laser,” Lasers Surg. Med. 41(10), 721–727 (2009).
[Crossref] [PubMed]

2008 (1)

2005 (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

1996 (1)

1995 (1)

1989 (1)

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Allik, T. H.

Barnes, N. P.

Byeon, S. U.

Caffey, D. P.

Cai, Z.

Cai, Z. P.

B. Xu, Y. Wang, Y. J. Cheng, H. Y. Xu, Z. P. Cai, and R. Moncorgé, “Single- and multi-wavelength laser operation of a diode-pumped Nd:GGG single crystal around 1.33 µm,” Opt. Commun. 345, 111–115 (2015).
[Crossref]

Chang, Y. T.

Chen, W. D.

Chen, X. T.

C. Liu, S. Z. Zhao, G. Q. Li, K. Yang, D. Li, T. Li, W. C. Qiao, T. Feng, X. T. Chen, X. D. Xu, L. Zheng, and J. Xu, “Experimental and theoretical study of a passively Q-switched Nd:LuAG laser at 1.3 μm with a V3+:YAG saturable absorber,” J. Opt. Soc. Am. B 32(5), 1001–1006 (2015).
[Crossref]

X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, “Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube,” Opt. Laser Technol. 64, 7–10 (2014).
[Crossref]

Chen, Y. F.

Cheng, S.

Cheng, S. S.

X. D. Xu, X. D. Wang, J. Q. Meng, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Cheng, Y.

X. D. Xu, X. D. Wang, J. Q. Meng, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Cheng, Y. J.

B. Xu, Y. Wang, Y. J. Cheng, H. Y. Xu, Z. P. Cai, and R. Moncorgé, “Single- and multi-wavelength laser operation of a diode-pumped Nd:GGG single crystal around 1.33 µm,” Opt. Commun. 345, 111–115 (2015).
[Crossref]

Dai, T.

Di, J. Q.

X. D. Xu, J. Q. Di, W. D. Tan, J. Zhang, D. Y. Tang, D. Z. Li, D. H. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

J. Q. Di, X. D. Xu, J. Q. Meng, D. Z. Li, D. H. Zhou, F. Wu, and J. Xu, “Diode-Pumped Continuous Wave and Q-switched Operation of Nd:LuAG Crystal,” Laser Phys. 21(5), 844–846 (2011).
[Crossref]

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

Duan, X.

Duan, Y. M.

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Feng, B. H.

Feng, T.

Feng, T. L.

X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, “Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube,” Opt. Laser Technol. 64, 7–10 (2014).
[Crossref]

Hart, D. W.

He, J.

He, J. L.

Hovis, W. W.

Huang, K. F.

Huang, X.

Huang, Y. J.

Huang, Y. P.

Hutcheson, R. L.

Jani, M.

Jani, M. G.

Ju, Y.

Jung, J. E.

K. C. Tark, J. E. Jung, and S. Y. Song, “Superior Lipolytic Effect of the 1,444 nm Nd:YAG Laser: Comparison With the 1,064 nm Nd:YAG Laser,” Lasers Surg. Med. 41(10), 721–727 (2009).
[Crossref] [PubMed]

Kaminskii, A. A.

King, V.

Lan, J.

Lee, H. C.

Li, D.

Li, D. C.

X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, “Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube,” Opt. Laser Technol. 64, 7–10 (2014).
[Crossref]

Li, D. Z.

X. D. Xu, J. Q. Di, W. D. Tan, J. Zhang, D. Y. Tang, D. Z. Li, D. H. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

J. Q. Di, X. D. Xu, J. Q. Meng, D. Z. Li, D. H. Zhou, F. Wu, and J. Xu, “Diode-Pumped Continuous Wave and Q-switched Operation of Nd:LuAG Crystal,” Laser Phys. 21(5), 844–846 (2011).
[Crossref]

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

X. D. Xu, X. D. Wang, J. Q. Meng, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Li, G.

Li, G. Q.

C. Liu, S. Z. Zhao, G. Q. Li, K. Yang, D. Li, T. Li, W. C. Qiao, T. Feng, X. T. Chen, X. D. Xu, L. Zheng, and J. Xu, “Experimental and theoretical study of a passively Q-switched Nd:LuAG laser at 1.3 μm with a V3+:YAG saturable absorber,” J. Opt. Soc. Am. B 32(5), 1001–1006 (2015).
[Crossref]

X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, “Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube,” Opt. Laser Technol. 64, 7–10 (2014).
[Crossref]

Li, J.

Li, Q. N.

Li, T.

C. Liu, S. Z. Zhao, G. Q. Li, K. Yang, D. Li, T. Li, W. C. Qiao, T. Feng, X. T. Chen, X. D. Xu, L. Zheng, and J. Xu, “Experimental and theoretical study of a passively Q-switched Nd:LuAG laser at 1.3 μm with a V3+:YAG saturable absorber,” J. Opt. Soc. Am. B 32(5), 1001–1006 (2015).
[Crossref]

X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, “Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube,” Opt. Laser Technol. 64, 7–10 (2014).
[Crossref]

Liang, X.

Lin, B.

Lin, Z.

Lisiecki, R.

Liu, C.

Lukashev, A.

Luo, D. W.

Luo, Z.

Meng, J.

Meng, J. Q.

J. Q. Di, X. D. Xu, J. Q. Meng, D. Z. Li, D. H. Zhou, F. Wu, and J. Xu, “Diode-Pumped Continuous Wave and Q-switched Operation of Nd:LuAG Crystal,” Laser Phys. 21(5), 844–846 (2011).
[Crossref]

X. D. Xu, X. D. Wang, J. Q. Meng, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Moncorgé, R.

B. Xu, Y. Wang, X. Huang, J. Lan, Z. Lin, Z. Luo, H. Xu, Z. Cai, and R. Moncorgé, “Watt-level narrow-linewidth Nd:YAG laser operating on 4F3/2→4I15/2 transition at 1834 nm,” Opt. Express 24(4), 3601–3606 (2016).
[Crossref] [PubMed]

B. Xu, Y. Wang, Y. J. Cheng, H. Y. Xu, Z. P. Cai, and R. Moncorgé, “Single- and multi-wavelength laser operation of a diode-pumped Nd:GGG single crystal around 1.33 µm,” Opt. Commun. 345, 111–115 (2015).
[Crossref]

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Qiao, W. C.

C. Liu, S. Z. Zhao, G. Q. Li, K. Yang, D. Li, T. Li, W. C. Qiao, T. Feng, X. T. Chen, X. D. Xu, L. Zheng, and J. Xu, “Experimental and theoretical study of a passively Q-switched Nd:LuAG laser at 1.3 μm with a V3+:YAG saturable absorber,” J. Opt. Soc. Am. B 32(5), 1001–1006 (2015).
[Crossref]

X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, “Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube,” Opt. Laser Technol. 64, 7–10 (2014).
[Crossref]

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Ryba-Romanowski, W.

Shao, Z. H.

Song, S. Y.

K. C. Tark, J. E. Jung, and S. Y. Song, “Superior Lipolytic Effect of the 1,444 nm Nd:YAG Laser: Comparison With the 1,064 nm Nd:YAG Laser,” Lasers Surg. Med. 41(10), 721–727 (2009).
[Crossref] [PubMed]

Su, K. W.

Tan, W. D.

X. D. Xu, J. Q. Di, W. D. Tan, J. Zhang, D. Y. Tang, D. Z. Li, D. H. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

Tang, C. Y.

Tang, D. Y.

Y. L. Ye, H. Y. Zhu, Y. M. Duan, Z. H. Shao, D. W. Luo, J. Zhang, D. Y. Tang, and A. A. Kaminskii, “Continuous-wave laser operation of Nd:LuAG ceramic with 4F3/2→4I11⁄2 transition,” Opt. Mater. Express 5(3), 611–616 (2015).
[Crossref]

C. W. Xu, D. Y. Tang, H. Y. Zhu, and J. Zhang, “Mode locking of Yb:GdYAG ceramic lasers with an isotropic cavity,” Laser Phys. Lett. 10(9), 095702 (2013).
[Crossref]

X. D. Xu, J. Q. Di, W. D. Tan, J. Zhang, D. Y. Tang, D. Z. Li, D. H. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

Tark, K. C.

K. C. Tark, J. E. Jung, and S. Y. Song, “Superior Lipolytic Effect of the 1,444 nm Nd:YAG Laser: Comparison With the 1,064 nm Nd:YAG Laser,” Lasers Surg. Med. 41(10), 721–727 (2009).
[Crossref] [PubMed]

Tzeng, Y. S.

Wang, X. D.

X. D. Xu, X. D. Wang, J. Q. Meng, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Wang, Y.

Wang, Y. G.

X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, “Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube,” Opt. Laser Technol. 64, 7–10 (2014).
[Crossref]

Wang, Y. S.

X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, “Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube,” Opt. Laser Technol. 64, 7–10 (2014).
[Crossref]

Wang, Z. P.

Wu, F.

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

J. Q. Di, X. D. Xu, J. Q. Meng, D. Z. Li, D. H. Zhou, F. Wu, and J. Xu, “Diode-Pumped Continuous Wave and Q-switched Operation of Nd:LuAG Crystal,” Laser Phys. 21(5), 844–846 (2011).
[Crossref]

X. D. Xu, X. D. Wang, J. Q. Meng, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Wu, J.

Xiao, K.

Xu, B.

B. Xu, Y. Wang, X. Huang, J. Lan, Z. Lin, Z. Luo, H. Xu, Z. Cai, and R. Moncorgé, “Watt-level narrow-linewidth Nd:YAG laser operating on 4F3/2→4I15/2 transition at 1834 nm,” Opt. Express 24(4), 3601–3606 (2016).
[Crossref] [PubMed]

B. Xu, Y. Wang, Y. J. Cheng, H. Y. Xu, Z. P. Cai, and R. Moncorgé, “Single- and multi-wavelength laser operation of a diode-pumped Nd:GGG single crystal around 1.33 µm,” Opt. Commun. 345, 111–115 (2015).
[Crossref]

Xu, C. W.

C. W. Xu, D. Y. Tang, H. Y. Zhu, and J. Zhang, “Mode locking of Yb:GdYAG ceramic lasers with an isotropic cavity,” Laser Phys. Lett. 10(9), 095702 (2013).
[Crossref]

Xu, H.

Xu, H. Y.

B. Xu, Y. Wang, Y. J. Cheng, H. Y. Xu, Z. P. Cai, and R. Moncorgé, “Single- and multi-wavelength laser operation of a diode-pumped Nd:GGG single crystal around 1.33 µm,” Opt. Commun. 345, 111–115 (2015).
[Crossref]

Xu, J.

C. Liu, S. Z. Zhao, G. Q. Li, K. Yang, D. Li, T. Li, W. C. Qiao, T. Feng, X. T. Chen, X. D. Xu, L. Zheng, and J. Xu, “Experimental and theoretical study of a passively Q-switched Nd:LuAG laser at 1.3 μm with a V3+:YAG saturable absorber,” J. Opt. Soc. Am. B 32(5), 1001–1006 (2015).
[Crossref]

Y. G. Zhao, Z. P. Wang, H. H. Yu, X. D. Xu, J. Xu, and X. G. Xu, “Efficient multi-wavelength lasers made of Nd:GdLuAG crystal,” Chin. Opt. Lett. 13(2), 021404 (2015).
[Crossref]

X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, “Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube,” Opt. Laser Technol. 64, 7–10 (2014).
[Crossref]

X. D. Xu, J. Q. Di, W. D. Tan, J. Zhang, D. Y. Tang, D. Z. Li, D. H. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

J. Q. Di, X. D. Xu, J. Q. Meng, D. Z. Li, D. H. Zhou, F. Wu, and J. Xu, “Diode-Pumped Continuous Wave and Q-switched Operation of Nd:LuAG Crystal,” Laser Phys. 21(5), 844–846 (2011).
[Crossref]

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

X. Xu, S. Cheng, J. Meng, D. Li, D. Zhou, L. Zheng, J. Xu, W. Ryba-Romanowski, and R. Lisiecki, “Spectral characterization and laser performance of a mixed crystal Nd:(LuxY1-x)3Al5O12.,” Opt. Express 18(20), 21370–21375 (2010).
[Crossref] [PubMed]

J. He, X. Liang, J. Li, H. Yu, X. Xu, Z. Zhao, J. Xu, and Z. Xu, “LD pumped Yb:LuAG mode-locked laser with 7.63ps duration,” Opt. Express 17(14), 11537–11542 (2009).
[Crossref] [PubMed]

X. D. Xu, X. D. Wang, J. Q. Meng, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Xu, X.

Xu, X. D.

Y. G. Zhao, Z. P. Wang, H. H. Yu, X. D. Xu, J. Xu, and X. G. Xu, “Efficient multi-wavelength lasers made of Nd:GdLuAG crystal,” Chin. Opt. Lett. 13(2), 021404 (2015).
[Crossref]

C. Liu, S. Z. Zhao, G. Q. Li, K. Yang, D. Li, T. Li, W. C. Qiao, T. Feng, X. T. Chen, X. D. Xu, L. Zheng, and J. Xu, “Experimental and theoretical study of a passively Q-switched Nd:LuAG laser at 1.3 μm with a V3+:YAG saturable absorber,” J. Opt. Soc. Am. B 32(5), 1001–1006 (2015).
[Crossref]

X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, “Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube,” Opt. Laser Technol. 64, 7–10 (2014).
[Crossref]

X. D. Xu, J. Q. Di, W. D. Tan, J. Zhang, D. Y. Tang, D. Z. Li, D. H. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

J. Q. Di, X. D. Xu, J. Q. Meng, D. Z. Li, D. H. Zhou, F. Wu, and J. Xu, “Diode-Pumped Continuous Wave and Q-switched Operation of Nd:LuAG Crystal,” Laser Phys. 21(5), 844–846 (2011).
[Crossref]

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

X. D. Xu, X. D. Wang, J. Q. Meng, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Xu, X. G.

Xu, Z.

Yang, K.

Yang, K. J.

X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, “Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube,” Opt. Laser Technol. 64, 7–10 (2014).
[Crossref]

Yao, B.

Ye, Y. L.

Yu, H.

Yu, H. H.

Zhang, D. X.

Zhang, G.

Zhang, H. J.

X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, “Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube,” Opt. Laser Technol. 64, 7–10 (2014).
[Crossref]

Zhang, J.

Y. L. Ye, H. Y. Zhu, Y. M. Duan, Z. H. Shao, D. W. Luo, J. Zhang, D. Y. Tang, and A. A. Kaminskii, “Continuous-wave laser operation of Nd:LuAG ceramic with 4F3/2→4I11⁄2 transition,” Opt. Mater. Express 5(3), 611–616 (2015).
[Crossref]

C. W. Xu, D. Y. Tang, H. Y. Zhu, and J. Zhang, “Mode locking of Yb:GdYAG ceramic lasers with an isotropic cavity,” Laser Phys. Lett. 10(9), 095702 (2013).
[Crossref]

X. D. Xu, J. Q. Di, W. D. Tan, J. Zhang, D. Y. Tang, D. Z. Li, D. H. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

Zhang, Q. L.

Zhang, Z.

Zhao, G.

Zhao, J.

X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, “Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube,” Opt. Laser Technol. 64, 7–10 (2014).
[Crossref]

Zhao, S. Z.

C. Liu, S. Z. Zhao, G. Q. Li, K. Yang, D. Li, T. Li, W. C. Qiao, T. Feng, X. T. Chen, X. D. Xu, L. Zheng, and J. Xu, “Experimental and theoretical study of a passively Q-switched Nd:LuAG laser at 1.3 μm with a V3+:YAG saturable absorber,” J. Opt. Soc. Am. B 32(5), 1001–1006 (2015).
[Crossref]

X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, “Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube,” Opt. Laser Technol. 64, 7–10 (2014).
[Crossref]

Zhao, Y. G.

Zhao, Z.

Zhao, Z. W.

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

X. D. Xu, X. D. Wang, J. Q. Meng, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Zheng, L.

Zheng, L. H.

X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, “Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube,” Opt. Laser Technol. 64, 7–10 (2014).
[Crossref]

Zhou, D.

Zhou, D. H.

X. D. Xu, J. Q. Di, W. D. Tan, J. Zhang, D. Y. Tang, D. Z. Li, D. H. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

J. Q. Di, X. D. Xu, J. Q. Meng, D. Z. Li, D. H. Zhou, F. Wu, and J. Xu, “Diode-Pumped Continuous Wave and Q-switched Operation of Nd:LuAG Crystal,” Laser Phys. 21(5), 844–846 (2011).
[Crossref]

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

Zhu, H. Y.

Appl. Opt. (3)

Chin. Opt. Lett. (1)

J. Appl. Phys. (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (2)

J. Q. Di, X. D. Xu, J. Q. Meng, D. Z. Li, D. H. Zhou, F. Wu, and J. Xu, “Diode-Pumped Continuous Wave and Q-switched Operation of Nd:LuAG Crystal,” Laser Phys. 21(5), 844–846 (2011).
[Crossref]

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

Laser Phys. Lett. (3)

C. W. Xu, D. Y. Tang, H. Y. Zhu, and J. Zhang, “Mode locking of Yb:GdYAG ceramic lasers with an isotropic cavity,” Laser Phys. Lett. 10(9), 095702 (2013).
[Crossref]

X. D. Xu, J. Q. Di, W. D. Tan, J. Zhang, D. Y. Tang, D. Z. Li, D. H. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

X. D. Xu, X. D. Wang, J. Q. Meng, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Lasers Surg. Med. (1)

K. C. Tark, J. E. Jung, and S. Y. Song, “Superior Lipolytic Effect of the 1,444 nm Nd:YAG Laser: Comparison With the 1,064 nm Nd:YAG Laser,” Lasers Surg. Med. 41(10), 721–727 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

B. Xu, Y. Wang, Y. J. Cheng, H. Y. Xu, Z. P. Cai, and R. Moncorgé, “Single- and multi-wavelength laser operation of a diode-pumped Nd:GGG single crystal around 1.33 µm,” Opt. Commun. 345, 111–115 (2015).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, “Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube,” Opt. Laser Technol. 64, 7–10 (2014).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (1)

Other (1)

http://www.scientificmaterials.com/products/luag_Lu3Al5O12_lutetium_ aluminum.php .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Transmissions of IMs and OCs for 1.3 and 1.4 μm lasers.
Fig. 2
Fig. 2 Emission spectrum of Nd:LuAG single crystal from 900 to 1460 nm. Inset: emission spectrum with respect to the 1.3 and 1.4 μm spectral regions.
Fig. 3
Fig. 3 (a) Output powers versus absorbed powers for Nd:LuAG 1.3 μm laser in free-running mode, (b) single wavelength laser spectrum at 1338 nm at low pump powers, (c) dual-wavelength laser at 1321 and 1338 nm with the increasing of the pump powers and (d) dual-wavelength laser at the same two lines with maximum pump power.
Fig. 4
Fig. 4 (a) Laser output powers versus absorbed powers for single wavelength lasers at 1340, 1332, 1322 nm and dual-wavelength laser at 1334 and 1338 nm, as well as corresponding laser spectra at (b) 1340 nm, (c) 1332 nm, (d) 1322 nm and (e) 1334 and 1338 nm.
Fig. 5
Fig. 5 (a) Output powers versus absorbed powers of single wavelength 1353-nm laser and (b) Laser spectrum of the single wavelength 1353 nm emission.
Fig. 6
Fig. 6 (a) Output powers versus absorbed powers of 1.4 μm lasers and laser spectra of (b) tri-wavelength lasing at 1418, 1432 and 1442 nm, and (c) single wavelength lasing at 1418 nm

Metrics