Abstract

A polarization-stepping method for measurement of the Faraday rotation in magneto-active materials has been modified for evaluating the Verdet constant as a function of wavelength and temperature. It has been used for a comparison of wavelength and temperature dependent Verdet constant, dominant electronic transition wavelength, and Curie-Weiss temperature in terbium gallium garnet (TGG) single crystals and TGG ceramics samples. The room-temperature values of Verdet constant varied from 36.6 to 44.2 rad/T.m at 1.064 μm wavelength and from 122.4 to 155.5 rad/T.m at 0.632 μm wavelength for all samples under investigation. These results match very well the values obtained from single wavelength measurement in the literature and show the same measurement error for single crystal and ceramics, respectively. The Curie-Weiss temperature has been evaluated for the first time in TGG ceramics. This method could be used for the detailed characterization of magneto-optical properties of the materials over a wide range of wavelengths and temperatures which is of great importance for the proper design of Faraday devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics

Ryo Yasuhara, Shigeki Tokita, Junji Kawanaka, Toshiyuki Kawashima, Hirofumi Kan, Hideki Yagi, Hoshiteru Nozawa, Takagimi Yanagitani, Yasushi Fujimoto, Hidetsugu Yoshida, and Masahiro Nakatsuka
Opt. Express 15(18) 11255-11261 (2007)

High Verdet constant of Ti-doped terbium aluminum garnet (TAG) ceramics

Hiroaki Furuse, Ryo Yasuhara, Keijiro Hiraga, and Shengming Zhou
Opt. Mater. Express 6(1) 191-196 (2016)

Wavelength dependence of magneto-optic properties of terbium gallium garnet ceramics

Ondrej Slezak, Ryo Yasuhara, Antonio Lucianetti, and Tomas Mocek
Opt. Express 23(10) 13641-13647 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Pan, X. Xue, H. Shang, B. Luo, J. Chen, and H. Guo, “Hollow cathode lamp based Faraday anomalous dispersion optical filter,” Sci. Rep. 6, 29882 (2016).
    [Crossref] [PubMed]
  2. W. Kiefer, R. Löw, J. Wrachtrup, and I. Gerhardt, “Na-Faraday filter: The optimum point,” Sci. Rep. 4, 6552 (2014).
    [Crossref]
  3. V. Vasyliev, E. G. Víllora, M. Nakamura, Y. Sugahara, and K. Shimamura, “UV-visible Faraday rotators based on rare-earth fluoride single crystals: LiREF4 (RE = Tb, Dy, Ho, Er, and Yb), PrF3 and CeF3,” Opt. Express 20(13), 14460–14470 (2012).
    [Crossref] [PubMed]
  4. P. Molina, V. Vasyliev, E. G. Víllora, and K. Shimamura, “CeF3 and PrF3 as UV-visible Faraday rotators,” Opt. Express 19(12), 11786–11791 (2011).
    [Crossref] [PubMed]
  5. D. Zheleznov, A. Starobor, O. Palashov, C. Chen, and S. Zhou, “High-power Faraday isolators based on TAG ceramics,” Opt. Express 22(3), 2578–2583 (2014).
    [Crossref] [PubMed]
  6. D. Zheleznov, A. Starobor, O. Palashov, H. Lin, and S. Zhou, “Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping,” Opt. Lett. 39(7), 2183–2186 (2014).
    [Crossref] [PubMed]
  7. H. Furuse, R. Yasuhara, K. Hiraga, and S. Zhou, “High Verdet constant of Ti-doped terbium aluminum garnet (TAG) ceramics,” Opt. Mater. Express 6(1), 191–196 (2016).
    [Crossref]
  8. A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
    [Crossref]
  9. I. L. Snetkov, R. Yasuhara, A. V. Starobor, E. A. Mironov, and O. V. Palashov, “Thermo-Optical and Magneto-Optical Characteristics of Terbium Scandium Aluminum Garnet Crystals,” IEEE J. Quantum Electron. 51(7), 7000307 (2015).
    [Crossref]
  10. I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
    [Crossref]
  11. Z. Chen, Y. Hang, L. Yang, J. Wang, X. Wang, J. Hong, P. Zhang, C. Shi, and Y. Wang, “Fabrication and characterization of cerium-doped terbium gallium garnet with high magneto-optical properties,” Opt. Lett. 40(5), 820–822 (2015).
    [Crossref] [PubMed]
  12. Z. Chen, Y. Hang, X. Wang, and J. Hong, “Fabrication and characterization of TGG crystals containing paramagnetic rare-earth ions,” Solid State Commun. 241, 38–42 (2016).
    [Crossref]
  13. Z. Chen, L. Yang, X. Wang, and H. Yin, “High magneto-optical characteristics of Holmium-doped terbium gallium garnet crystal,” Opt. Lett. 41(11), 2580–2583 (2016).
    [Crossref] [PubMed]
  14. R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
    [Crossref] [PubMed]
  15. R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
    [Crossref]
  16. N. P. Barnes and L. B. Petway, “Variation of the Verdet constant with temperature of terbium gallium garnet,” J. Opt. Soc. Am. B 9(10), 1912–1915 (1992).
    [Crossref]
  17. K. M. Mukimov, B. Yu. Sokolov, and U. V. Valiev, “The Faraday Effect of Rare-Earth Ions in Garnets,” Phys. Status Solidi 119(1), 307–315 (1990).
    [Crossref]
  18. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
    [Crossref] [PubMed]
  19. O. Slezak, R. Yasuhara, A. Lucianetti, and T. Mocek, “Wavelength dependence of magneto-optic properties of terbium gallium garnet ceramics,” Opt. Express 23(10), 13641–13647 (2015).
    [Crossref]
  20. O. V. Palashov, D. S. Zheleznov, A. V. Voitovich, V. V. Zelenogorsky, E. E. Kamenetsky, E. A. Khazanov, R. M. Martin, K. L. Dooley, L. Williams, A. Lucianetti, V. Questschke, G. Mueller, D. H. Reitze, D. B. Tanner, E. Genin, B. Canuel, and J. Marque, “High-vacuum compatible high-power Faraday isolators for gravitational-wave interferometers,” J. Opt. Soc. Am. B 29(7), 1784–1792 (2012).
    [Crossref]
  21. J. L. Flores and J. A. Ferrari, “Verdet constant dispersion measurement using polarization-stepping techniques,” Appl. Opt. 47(24), 4396–4399 (2008).
    [Crossref] [PubMed]
  22. D. N. Karimov, B. P. Sobolev, I. A. Ivanov, S. I. Kanorsky, and A. V. Masalov, “Growth and Magneto-Optical Properties of Na0.37Tb0.63F2.26 Cubic Single Crystal,” Crystallogr. Rep. 59(5), 718–723 (2014).
    [Crossref]
  23. R. Serber, “The theory of the Faraday effect in molecules,” Phys. Rev. 41(4), 489–506 (1932).
    [Crossref]
  24. J. H. Van Vleck and M. H. Hebb, “On the Paramagnetic Rotation of Tysonite,” Phys. Rev. 46(1), 17–32 (1934).
    [Crossref]
  25. A. D. Buckingham and P. J. Stephens, “Magnetic optical activity,” Annu. Rev. Phys. Chem. 17(1), 399–432 (1966).
    [Crossref]
  26. G. S. Krinchik and M. V. Chetkin, “Transparent ferromagnets,” Usp. Fiziol. Nauk 98(5), 3–25 (1969).
    [Crossref]
  27. M. J. Weber, “Faraday Rotator Materials for Laser Systems,”, Proc. SPIE: Laser and Nonlinear Optical Materials, 0681, 75 (1987)
    [Crossref]
  28. Y. J. Yu and R. K. Osborn, “Effect of nonlinear Refractive Index on Faraday Rotation,” Phys. Rev. A 15(6), 2404–2409 (1977).
    [Crossref]
  29. A. K. Zvezdin and V. A. Kotov, eds., Modern Magnetooptics and Magnetooptical Materials (Condensed Matter Physics), 1st ed. (CRC Press, 1997)
  30. C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc. 2004).
  31. U. V. Valiev, J. B. Gruber, and G. W. Burdick, Magnetooptical Spectroscopy of the Rare-Earth Compounds: Deveopment and Application (Scientific Research Publishing, 2012).
  32. U. Löw, S. Zherlitsyn, K. Araki, M. Akatsu, Y. Nemoto, T. Goto, U. Zeitler, and B. Lüthi, “Magneto-elastic effects in Tb3Ga5O12,” J. Phys. Soc. Jpn. 83(4), 044603 (2014).
    [Crossref]
  33. K. Kamazawa, D. Louca, R. Morinaga, T. J. Sato, Q. Huang, J. R. D. Copley, and Y. Qiu, “Filed-induced antiferromagnetism and competition in the metamagnetic state of terbium gallium garnet,” Phys. Rev. B 78(6), 064412 (2008).
    [Crossref]
  34. U. Löw, S. Zherlitsyn, M. Ozerov, U. Schaufuss, V. Kataev, B. Wolf, and B. Lüthi, “Magnetization, Magnetic Susceptibility and ESR in Tb3Ga5O12,” Eur. Phys. J. B 86(3), 87 (2013).
    [Crossref]
  35. H. A. Kramers, “Théorie générale de la rotation paramagnétique dans les cristaux,” Proc. Koninkl. Akad. Wet. 33, 959–972 (1930).

2016 (5)

I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
[Crossref]

D. Pan, X. Xue, H. Shang, B. Luo, J. Chen, and H. Guo, “Hollow cathode lamp based Faraday anomalous dispersion optical filter,” Sci. Rep. 6, 29882 (2016).
[Crossref] [PubMed]

Z. Chen, Y. Hang, X. Wang, and J. Hong, “Fabrication and characterization of TGG crystals containing paramagnetic rare-earth ions,” Solid State Commun. 241, 38–42 (2016).
[Crossref]

H. Furuse, R. Yasuhara, K. Hiraga, and S. Zhou, “High Verdet constant of Ti-doped terbium aluminum garnet (TAG) ceramics,” Opt. Mater. Express 6(1), 191–196 (2016).
[Crossref]

Z. Chen, L. Yang, X. Wang, and H. Yin, “High magneto-optical characteristics of Holmium-doped terbium gallium garnet crystal,” Opt. Lett. 41(11), 2580–2583 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (6)

W. Kiefer, R. Löw, J. Wrachtrup, and I. Gerhardt, “Na-Faraday filter: The optimum point,” Sci. Rep. 4, 6552 (2014).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

D. N. Karimov, B. P. Sobolev, I. A. Ivanov, S. I. Kanorsky, and A. V. Masalov, “Growth and Magneto-Optical Properties of Na0.37Tb0.63F2.26 Cubic Single Crystal,” Crystallogr. Rep. 59(5), 718–723 (2014).
[Crossref]

U. Löw, S. Zherlitsyn, K. Araki, M. Akatsu, Y. Nemoto, T. Goto, U. Zeitler, and B. Lüthi, “Magneto-elastic effects in Tb3Ga5O12,” J. Phys. Soc. Jpn. 83(4), 044603 (2014).
[Crossref]

D. Zheleznov, A. Starobor, O. Palashov, C. Chen, and S. Zhou, “High-power Faraday isolators based on TAG ceramics,” Opt. Express 22(3), 2578–2583 (2014).
[Crossref] [PubMed]

D. Zheleznov, A. Starobor, O. Palashov, H. Lin, and S. Zhou, “Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping,” Opt. Lett. 39(7), 2183–2186 (2014).
[Crossref] [PubMed]

2013 (2)

R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
[Crossref] [PubMed]

U. Löw, S. Zherlitsyn, M. Ozerov, U. Schaufuss, V. Kataev, B. Wolf, and B. Lüthi, “Magnetization, Magnetic Susceptibility and ESR in Tb3Ga5O12,” Eur. Phys. J. B 86(3), 87 (2013).
[Crossref]

2012 (2)

2011 (1)

2008 (2)

J. L. Flores and J. A. Ferrari, “Verdet constant dispersion measurement using polarization-stepping techniques,” Appl. Opt. 47(24), 4396–4399 (2008).
[Crossref] [PubMed]

K. Kamazawa, D. Louca, R. Morinaga, T. J. Sato, Q. Huang, J. R. D. Copley, and Y. Qiu, “Filed-induced antiferromagnetism and competition in the metamagnetic state of terbium gallium garnet,” Phys. Rev. B 78(6), 064412 (2008).
[Crossref]

2007 (1)

2002 (1)

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

1992 (1)

1990 (1)

K. M. Mukimov, B. Yu. Sokolov, and U. V. Valiev, “The Faraday Effect of Rare-Earth Ions in Garnets,” Phys. Status Solidi 119(1), 307–315 (1990).
[Crossref]

1977 (1)

Y. J. Yu and R. K. Osborn, “Effect of nonlinear Refractive Index on Faraday Rotation,” Phys. Rev. A 15(6), 2404–2409 (1977).
[Crossref]

1969 (1)

G. S. Krinchik and M. V. Chetkin, “Transparent ferromagnets,” Usp. Fiziol. Nauk 98(5), 3–25 (1969).
[Crossref]

1966 (1)

A. D. Buckingham and P. J. Stephens, “Magnetic optical activity,” Annu. Rev. Phys. Chem. 17(1), 399–432 (1966).
[Crossref]

1934 (1)

J. H. Van Vleck and M. H. Hebb, “On the Paramagnetic Rotation of Tysonite,” Phys. Rev. 46(1), 17–32 (1934).
[Crossref]

1932 (1)

R. Serber, “The theory of the Faraday effect in molecules,” Phys. Rev. 41(4), 489–506 (1932).
[Crossref]

1930 (1)

H. A. Kramers, “Théorie générale de la rotation paramagnétique dans les cristaux,” Proc. Koninkl. Akad. Wet. 33, 959–972 (1930).

Akatsu, M.

U. Löw, S. Zherlitsyn, K. Araki, M. Akatsu, Y. Nemoto, T. Goto, U. Zeitler, and B. Lüthi, “Magneto-elastic effects in Tb3Ga5O12,” J. Phys. Soc. Jpn. 83(4), 044603 (2014).
[Crossref]

Araki, K.

U. Löw, S. Zherlitsyn, K. Araki, M. Akatsu, Y. Nemoto, T. Goto, U. Zeitler, and B. Lüthi, “Magneto-elastic effects in Tb3Ga5O12,” J. Phys. Soc. Jpn. 83(4), 044603 (2014).
[Crossref]

Balabanov, S. S.

I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
[Crossref]

Barnes, N. P.

Buckingham, A. D.

A. D. Buckingham and P. J. Stephens, “Magnetic optical activity,” Annu. Rev. Phys. Chem. 17(1), 399–432 (1966).
[Crossref]

Canuel, B.

Chen, C.

Chen, J.

D. Pan, X. Xue, H. Shang, B. Luo, J. Chen, and H. Guo, “Hollow cathode lamp based Faraday anomalous dispersion optical filter,” Sci. Rep. 6, 29882 (2016).
[Crossref] [PubMed]

Chen, Z.

Chetkin, M. V.

G. S. Krinchik and M. V. Chetkin, “Transparent ferromagnets,” Usp. Fiziol. Nauk 98(5), 3–25 (1969).
[Crossref]

Copley, J. R. D.

K. Kamazawa, D. Louca, R. Morinaga, T. J. Sato, Q. Huang, J. R. D. Copley, and Y. Qiu, “Filed-induced antiferromagnetism and competition in the metamagnetic state of terbium gallium garnet,” Phys. Rev. B 78(6), 064412 (2008).
[Crossref]

Dooley, K. L.

Ferrari, J. A.

Flores, J. L.

Fujimoto, Y.

Fukuda, T.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Furuse, H.

Genin, E.

Gerhardt, I.

W. Kiefer, R. Löw, J. Wrachtrup, and I. Gerhardt, “Na-Faraday filter: The optimum point,” Sci. Rep. 4, 6552 (2014).
[Crossref]

Goto, T.

U. Löw, S. Zherlitsyn, K. Araki, M. Akatsu, Y. Nemoto, T. Goto, U. Zeitler, and B. Lüthi, “Magneto-elastic effects in Tb3Ga5O12,” J. Phys. Soc. Jpn. 83(4), 044603 (2014).
[Crossref]

Guo, H.

D. Pan, X. Xue, H. Shang, B. Luo, J. Chen, and H. Guo, “Hollow cathode lamp based Faraday anomalous dispersion optical filter,” Sci. Rep. 6, 29882 (2016).
[Crossref] [PubMed]

Hang, Y.

Z. Chen, Y. Hang, X. Wang, and J. Hong, “Fabrication and characterization of TGG crystals containing paramagnetic rare-earth ions,” Solid State Commun. 241, 38–42 (2016).
[Crossref]

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Wang, J. Hong, P. Zhang, C. Shi, and Y. Wang, “Fabrication and characterization of cerium-doped terbium gallium garnet with high magneto-optical properties,” Opt. Lett. 40(5), 820–822 (2015).
[Crossref] [PubMed]

Hebb, M. H.

J. H. Van Vleck and M. H. Hebb, “On the Paramagnetic Rotation of Tysonite,” Phys. Rev. 46(1), 17–32 (1934).
[Crossref]

Hiraga, K.

Hong, J.

Z. Chen, Y. Hang, X. Wang, and J. Hong, “Fabrication and characterization of TGG crystals containing paramagnetic rare-earth ions,” Solid State Commun. 241, 38–42 (2016).
[Crossref]

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Wang, J. Hong, P. Zhang, C. Shi, and Y. Wang, “Fabrication and characterization of cerium-doped terbium gallium garnet with high magneto-optical properties,” Opt. Lett. 40(5), 820–822 (2015).
[Crossref] [PubMed]

Huang, Q.

K. Kamazawa, D. Louca, R. Morinaga, T. J. Sato, Q. Huang, J. R. D. Copley, and Y. Qiu, “Filed-induced antiferromagnetism and competition in the metamagnetic state of terbium gallium garnet,” Phys. Rev. B 78(6), 064412 (2008).
[Crossref]

Ivanov, I. A.

D. N. Karimov, B. P. Sobolev, I. A. Ivanov, S. I. Kanorsky, and A. V. Masalov, “Growth and Magneto-Optical Properties of Na0.37Tb0.63F2.26 Cubic Single Crystal,” Crystallogr. Rep. 59(5), 718–723 (2014).
[Crossref]

Kagamitani, Y.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Kamazawa, K.

K. Kamazawa, D. Louca, R. Morinaga, T. J. Sato, Q. Huang, J. R. D. Copley, and Y. Qiu, “Filed-induced antiferromagnetism and competition in the metamagnetic state of terbium gallium garnet,” Phys. Rev. B 78(6), 064412 (2008).
[Crossref]

Kamenetsky, E. E.

Kan, H.

Kanorsky, S. I.

D. N. Karimov, B. P. Sobolev, I. A. Ivanov, S. I. Kanorsky, and A. V. Masalov, “Growth and Magneto-Optical Properties of Na0.37Tb0.63F2.26 Cubic Single Crystal,” Crystallogr. Rep. 59(5), 718–723 (2014).
[Crossref]

Karimov, D. N.

D. N. Karimov, B. P. Sobolev, I. A. Ivanov, S. I. Kanorsky, and A. V. Masalov, “Growth and Magneto-Optical Properties of Na0.37Tb0.63F2.26 Cubic Single Crystal,” Crystallogr. Rep. 59(5), 718–723 (2014).
[Crossref]

Kataev, V.

U. Löw, S. Zherlitsyn, M. Ozerov, U. Schaufuss, V. Kataev, B. Wolf, and B. Lüthi, “Magnetization, Magnetic Susceptibility and ESR in Tb3Ga5O12,” Eur. Phys. J. B 86(3), 87 (2013).
[Crossref]

Kawanaka, J.

Kawashima, T.

Khazanov, E. A.

Kiefer, W.

W. Kiefer, R. Löw, J. Wrachtrup, and I. Gerhardt, “Na-Faraday filter: The optimum point,” Sci. Rep. 4, 6552 (2014).
[Crossref]

Kramers, H. A.

H. A. Kramers, “Théorie générale de la rotation paramagnétique dans les cristaux,” Proc. Koninkl. Akad. Wet. 33, 959–972 (1930).

Krinchik, G. S.

G. S. Krinchik and M. V. Chetkin, “Transparent ferromagnets,” Usp. Fiziol. Nauk 98(5), 3–25 (1969).
[Crossref]

Lin, H.

Louca, D.

K. Kamazawa, D. Louca, R. Morinaga, T. J. Sato, Q. Huang, J. R. D. Copley, and Y. Qiu, “Filed-induced antiferromagnetism and competition in the metamagnetic state of terbium gallium garnet,” Phys. Rev. B 78(6), 064412 (2008).
[Crossref]

Löw, R.

W. Kiefer, R. Löw, J. Wrachtrup, and I. Gerhardt, “Na-Faraday filter: The optimum point,” Sci. Rep. 4, 6552 (2014).
[Crossref]

Löw, U.

U. Löw, S. Zherlitsyn, K. Araki, M. Akatsu, Y. Nemoto, T. Goto, U. Zeitler, and B. Lüthi, “Magneto-elastic effects in Tb3Ga5O12,” J. Phys. Soc. Jpn. 83(4), 044603 (2014).
[Crossref]

U. Löw, S. Zherlitsyn, M. Ozerov, U. Schaufuss, V. Kataev, B. Wolf, and B. Lüthi, “Magnetization, Magnetic Susceptibility and ESR in Tb3Ga5O12,” Eur. Phys. J. B 86(3), 87 (2013).
[Crossref]

Lucianetti, A.

Luo, B.

D. Pan, X. Xue, H. Shang, B. Luo, J. Chen, and H. Guo, “Hollow cathode lamp based Faraday anomalous dispersion optical filter,” Sci. Rep. 6, 29882 (2016).
[Crossref] [PubMed]

Lüthi, B.

U. Löw, S. Zherlitsyn, K. Araki, M. Akatsu, Y. Nemoto, T. Goto, U. Zeitler, and B. Lüthi, “Magneto-elastic effects in Tb3Ga5O12,” J. Phys. Soc. Jpn. 83(4), 044603 (2014).
[Crossref]

U. Löw, S. Zherlitsyn, M. Ozerov, U. Schaufuss, V. Kataev, B. Wolf, and B. Lüthi, “Magnetization, Magnetic Susceptibility and ESR in Tb3Ga5O12,” Eur. Phys. J. B 86(3), 87 (2013).
[Crossref]

Machida, H.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Marque, J.

Martin, R. M.

Masalov, A. V.

D. N. Karimov, B. P. Sobolev, I. A. Ivanov, S. I. Kanorsky, and A. V. Masalov, “Growth and Magneto-Optical Properties of Na0.37Tb0.63F2.26 Cubic Single Crystal,” Crystallogr. Rep. 59(5), 718–723 (2014).
[Crossref]

Mironov, E. A.

I. L. Snetkov, R. Yasuhara, A. V. Starobor, E. A. Mironov, and O. V. Palashov, “Thermo-Optical and Magneto-Optical Characteristics of Terbium Scandium Aluminum Garnet Crystals,” IEEE J. Quantum Electron. 51(7), 7000307 (2015).
[Crossref]

Mocek, T.

Molina, P.

Morinaga, R.

K. Kamazawa, D. Louca, R. Morinaga, T. J. Sato, Q. Huang, J. R. D. Copley, and Y. Qiu, “Filed-induced antiferromagnetism and competition in the metamagnetic state of terbium gallium garnet,” Phys. Rev. B 78(6), 064412 (2008).
[Crossref]

Motokoshi, S.

Mueller, G.

Mukimov, K. M.

K. M. Mukimov, B. Yu. Sokolov, and U. V. Valiev, “The Faraday Effect of Rare-Earth Ions in Garnets,” Phys. Status Solidi 119(1), 307–315 (1990).
[Crossref]

Nakamura, M.

Nakatsuka, M.

Nemoto, Y.

U. Löw, S. Zherlitsyn, K. Araki, M. Akatsu, Y. Nemoto, T. Goto, U. Zeitler, and B. Lüthi, “Magneto-elastic effects in Tb3Ga5O12,” J. Phys. Soc. Jpn. 83(4), 044603 (2014).
[Crossref]

Nozawa, H.

Osborn, R. K.

Y. J. Yu and R. K. Osborn, “Effect of nonlinear Refractive Index on Faraday Rotation,” Phys. Rev. A 15(6), 2404–2409 (1977).
[Crossref]

Ozerov, M.

U. Löw, S. Zherlitsyn, M. Ozerov, U. Schaufuss, V. Kataev, B. Wolf, and B. Lüthi, “Magnetization, Magnetic Susceptibility and ESR in Tb3Ga5O12,” Eur. Phys. J. B 86(3), 87 (2013).
[Crossref]

Palashov, O.

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

D. Zheleznov, A. Starobor, O. Palashov, C. Chen, and S. Zhou, “High-power Faraday isolators based on TAG ceramics,” Opt. Express 22(3), 2578–2583 (2014).
[Crossref] [PubMed]

D. Zheleznov, A. Starobor, O. Palashov, H. Lin, and S. Zhou, “Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping,” Opt. Lett. 39(7), 2183–2186 (2014).
[Crossref] [PubMed]

Palashov, O. V.

I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
[Crossref]

I. L. Snetkov, R. Yasuhara, A. V. Starobor, E. A. Mironov, and O. V. Palashov, “Thermo-Optical and Magneto-Optical Characteristics of Terbium Scandium Aluminum Garnet Crystals,” IEEE J. Quantum Electron. 51(7), 7000307 (2015).
[Crossref]

O. V. Palashov, D. S. Zheleznov, A. V. Voitovich, V. V. Zelenogorsky, E. E. Kamenetsky, E. A. Khazanov, R. M. Martin, K. L. Dooley, L. Williams, A. Lucianetti, V. Questschke, G. Mueller, D. H. Reitze, D. B. Tanner, E. Genin, B. Canuel, and J. Marque, “High-vacuum compatible high-power Faraday isolators for gravitational-wave interferometers,” J. Opt. Soc. Am. B 29(7), 1784–1792 (2012).
[Crossref]

Pan, D.

D. Pan, X. Xue, H. Shang, B. Luo, J. Chen, and H. Guo, “Hollow cathode lamp based Faraday anomalous dispersion optical filter,” Sci. Rep. 6, 29882 (2016).
[Crossref] [PubMed]

Pawlak, D. A.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Permin, D. A.

I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
[Crossref]

Petway, L. B.

Qiu, Y.

K. Kamazawa, D. Louca, R. Morinaga, T. J. Sato, Q. Huang, J. R. D. Copley, and Y. Qiu, “Filed-induced antiferromagnetism and competition in the metamagnetic state of terbium gallium garnet,” Phys. Rev. B 78(6), 064412 (2008).
[Crossref]

Questschke, V.

Reitze, D. H.

Sato, H.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Sato, T. J.

K. Kamazawa, D. Louca, R. Morinaga, T. J. Sato, Q. Huang, J. R. D. Copley, and Y. Qiu, “Filed-induced antiferromagnetism and competition in the metamagnetic state of terbium gallium garnet,” Phys. Rev. B 78(6), 064412 (2008).
[Crossref]

Schaufuss, U.

U. Löw, S. Zherlitsyn, M. Ozerov, U. Schaufuss, V. Kataev, B. Wolf, and B. Lüthi, “Magnetization, Magnetic Susceptibility and ESR in Tb3Ga5O12,” Eur. Phys. J. B 86(3), 87 (2013).
[Crossref]

Serber, R.

R. Serber, “The theory of the Faraday effect in molecules,” Phys. Rev. 41(4), 489–506 (1932).
[Crossref]

Shang, H.

D. Pan, X. Xue, H. Shang, B. Luo, J. Chen, and H. Guo, “Hollow cathode lamp based Faraday anomalous dispersion optical filter,” Sci. Rep. 6, 29882 (2016).
[Crossref] [PubMed]

Shi, C.

Shimamura, K.

Slezak, O.

Snetkov, I.

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

Snetkov, I. L.

I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
[Crossref]

I. L. Snetkov, R. Yasuhara, A. V. Starobor, E. A. Mironov, and O. V. Palashov, “Thermo-Optical and Magneto-Optical Characteristics of Terbium Scandium Aluminum Garnet Crystals,” IEEE J. Quantum Electron. 51(7), 7000307 (2015).
[Crossref]

Sobolev, B. P.

D. N. Karimov, B. P. Sobolev, I. A. Ivanov, S. I. Kanorsky, and A. V. Masalov, “Growth and Magneto-Optical Properties of Na0.37Tb0.63F2.26 Cubic Single Crystal,” Crystallogr. Rep. 59(5), 718–723 (2014).
[Crossref]

Sokolov, B. Yu.

K. M. Mukimov, B. Yu. Sokolov, and U. V. Valiev, “The Faraday Effect of Rare-Earth Ions in Garnets,” Phys. Status Solidi 119(1), 307–315 (1990).
[Crossref]

Starobor, A.

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

D. Zheleznov, A. Starobor, O. Palashov, H. Lin, and S. Zhou, “Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping,” Opt. Lett. 39(7), 2183–2186 (2014).
[Crossref] [PubMed]

D. Zheleznov, A. Starobor, O. Palashov, C. Chen, and S. Zhou, “High-power Faraday isolators based on TAG ceramics,” Opt. Express 22(3), 2578–2583 (2014).
[Crossref] [PubMed]

Starobor, A. V.

I. L. Snetkov, R. Yasuhara, A. V. Starobor, E. A. Mironov, and O. V. Palashov, “Thermo-Optical and Magneto-Optical Characteristics of Terbium Scandium Aluminum Garnet Crystals,” IEEE J. Quantum Electron. 51(7), 7000307 (2015).
[Crossref]

Stephens, P. J.

A. D. Buckingham and P. J. Stephens, “Magnetic optical activity,” Annu. Rev. Phys. Chem. 17(1), 399–432 (1966).
[Crossref]

Sugahara, Y.

Tanner, D. B.

Tokita, S.

Valiev, U. V.

K. M. Mukimov, B. Yu. Sokolov, and U. V. Valiev, “The Faraday Effect of Rare-Earth Ions in Garnets,” Phys. Status Solidi 119(1), 307–315 (1990).
[Crossref]

Van Vleck, J. H.

J. H. Van Vleck and M. H. Hebb, “On the Paramagnetic Rotation of Tysonite,” Phys. Rev. 46(1), 17–32 (1934).
[Crossref]

Vasyliev, V.

Víllora, E. G.

Voitovich, A. V.

Wang, J.

Wang, X.

Wang, Y.

Williams, L.

Wolf, B.

U. Löw, S. Zherlitsyn, M. Ozerov, U. Schaufuss, V. Kataev, B. Wolf, and B. Lüthi, “Magnetization, Magnetic Susceptibility and ESR in Tb3Ga5O12,” Eur. Phys. J. B 86(3), 87 (2013).
[Crossref]

Wrachtrup, J.

W. Kiefer, R. Löw, J. Wrachtrup, and I. Gerhardt, “Na-Faraday filter: The optimum point,” Sci. Rep. 4, 6552 (2014).
[Crossref]

Xue, X.

D. Pan, X. Xue, H. Shang, B. Luo, J. Chen, and H. Guo, “Hollow cathode lamp based Faraday anomalous dispersion optical filter,” Sci. Rep. 6, 29882 (2016).
[Crossref] [PubMed]

Yagi, H.

Yanagitani, T.

Yang, L.

Yasuhara, R.

Yin, H.

Yoshida, H.

Yoshikawa, A.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Yu, Y. J.

Y. J. Yu and R. K. Osborn, “Effect of nonlinear Refractive Index on Faraday Rotation,” Phys. Rev. A 15(6), 2404–2409 (1977).
[Crossref]

Zeitler, U.

U. Löw, S. Zherlitsyn, K. Araki, M. Akatsu, Y. Nemoto, T. Goto, U. Zeitler, and B. Lüthi, “Magneto-elastic effects in Tb3Ga5O12,” J. Phys. Soc. Jpn. 83(4), 044603 (2014).
[Crossref]

Zelenogorsky, V. V.

Zhang, P.

Zheleznov, D.

Zheleznov, D. S.

Zherlitsyn, S.

U. Löw, S. Zherlitsyn, K. Araki, M. Akatsu, Y. Nemoto, T. Goto, U. Zeitler, and B. Lüthi, “Magneto-elastic effects in Tb3Ga5O12,” J. Phys. Soc. Jpn. 83(4), 044603 (2014).
[Crossref]

U. Löw, S. Zherlitsyn, M. Ozerov, U. Schaufuss, V. Kataev, B. Wolf, and B. Lüthi, “Magnetization, Magnetic Susceptibility and ESR in Tb3Ga5O12,” Eur. Phys. J. B 86(3), 87 (2013).
[Crossref]

Zhou, S.

Annu. Rev. Phys. Chem. (1)

A. D. Buckingham and P. J. Stephens, “Magnetic optical activity,” Annu. Rev. Phys. Chem. 17(1), 399–432 (1966).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

Crystallogr. Rep. (1)

D. N. Karimov, B. P. Sobolev, I. A. Ivanov, S. I. Kanorsky, and A. V. Masalov, “Growth and Magneto-Optical Properties of Na0.37Tb0.63F2.26 Cubic Single Crystal,” Crystallogr. Rep. 59(5), 718–723 (2014).
[Crossref]

Eur. Phys. J. B (1)

U. Löw, S. Zherlitsyn, M. Ozerov, U. Schaufuss, V. Kataev, B. Wolf, and B. Lüthi, “Magnetization, Magnetic Susceptibility and ESR in Tb3Ga5O12,” Eur. Phys. J. B 86(3), 87 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

I. L. Snetkov, R. Yasuhara, A. V. Starobor, E. A. Mironov, and O. V. Palashov, “Thermo-Optical and Magneto-Optical Characteristics of Terbium Scandium Aluminum Garnet Crystals,” IEEE J. Quantum Electron. 51(7), 7000307 (2015).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Soc. Jpn. (1)

U. Löw, S. Zherlitsyn, K. Araki, M. Akatsu, Y. Nemoto, T. Goto, U. Zeitler, and B. Lüthi, “Magneto-elastic effects in Tb3Ga5O12,” J. Phys. Soc. Jpn. 83(4), 044603 (2014).
[Crossref]

Mater. Res. Bull. (1)

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. (2)

R. Serber, “The theory of the Faraday effect in molecules,” Phys. Rev. 41(4), 489–506 (1932).
[Crossref]

J. H. Van Vleck and M. H. Hebb, “On the Paramagnetic Rotation of Tysonite,” Phys. Rev. 46(1), 17–32 (1934).
[Crossref]

Phys. Rev. A (1)

Y. J. Yu and R. K. Osborn, “Effect of nonlinear Refractive Index on Faraday Rotation,” Phys. Rev. A 15(6), 2404–2409 (1977).
[Crossref]

Phys. Rev. B (1)

K. Kamazawa, D. Louca, R. Morinaga, T. J. Sato, Q. Huang, J. R. D. Copley, and Y. Qiu, “Filed-induced antiferromagnetism and competition in the metamagnetic state of terbium gallium garnet,” Phys. Rev. B 78(6), 064412 (2008).
[Crossref]

Phys. Status Solidi (1)

K. M. Mukimov, B. Yu. Sokolov, and U. V. Valiev, “The Faraday Effect of Rare-Earth Ions in Garnets,” Phys. Status Solidi 119(1), 307–315 (1990).
[Crossref]

Proc. Koninkl. Akad. Wet. (1)

H. A. Kramers, “Théorie générale de la rotation paramagnétique dans les cristaux,” Proc. Koninkl. Akad. Wet. 33, 959–972 (1930).

Sci. Rep. (2)

D. Pan, X. Xue, H. Shang, B. Luo, J. Chen, and H. Guo, “Hollow cathode lamp based Faraday anomalous dispersion optical filter,” Sci. Rep. 6, 29882 (2016).
[Crossref] [PubMed]

W. Kiefer, R. Löw, J. Wrachtrup, and I. Gerhardt, “Na-Faraday filter: The optimum point,” Sci. Rep. 4, 6552 (2014).
[Crossref]

Solid State Commun. (1)

Z. Chen, Y. Hang, X. Wang, and J. Hong, “Fabrication and characterization of TGG crystals containing paramagnetic rare-earth ions,” Solid State Commun. 241, 38–42 (2016).
[Crossref]

Usp. Fiziol. Nauk (1)

G. S. Krinchik and M. V. Chetkin, “Transparent ferromagnets,” Usp. Fiziol. Nauk 98(5), 3–25 (1969).
[Crossref]

Other (4)

M. J. Weber, “Faraday Rotator Materials for Laser Systems,”, Proc. SPIE: Laser and Nonlinear Optical Materials, 0681, 75 (1987)
[Crossref]

A. K. Zvezdin and V. A. Kotov, eds., Modern Magnetooptics and Magnetooptical Materials (Condensed Matter Physics), 1st ed. (CRC Press, 1997)

C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc. 2004).

U. V. Valiev, J. B. Gruber, and G. W. Burdick, Magnetooptical Spectroscopy of the Rare-Earth Compounds: Deveopment and Application (Scientific Research Publishing, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup for Verdet constant temperature-wavelength dependence.
Fig. 2
Fig. 2 Axial magnetic field magnitude of the permanent magnet.
Fig. 3
Fig. 3 Angular resolution of the measurement system.
Fig. 4
Fig. 4 Measurement of the phase shift of squared cosine function for the crystal without (N) and with (B) magnetic field.
Fig. 5
Fig. 5 Verdet constant as a function of wavelength and temperature of six different TGG and TGG ceramics samples. Left group of the graphs shows Verdet constant values in the range 0.5 – 1.1 μm and 5 – 300 K, while the right group shows the relative measurement error.
Fig. 6
Fig. 6 Comparison of Verdet constant wavelength dependence of all six samples at three different temperatures of 300 K, 150 K, and 50 K.
Fig. 7
Fig. 7 Comparison of Verdet constant temperature dependence of all six samples at three different wavelengths of 532 nm, 632.8 nm, and 1064 nm.
Fig. 8
Fig. 8 Comparation of obtained fitting parameters with literature at fixed temperature or wavelength.
Fig. 9
Fig. 9 E, λ0, F, G Tw, and H fitting parameters as a functions of temperature and wavelength.

Tables (2)

Tables Icon

Table 1 Characteristics of the investigated TGG samples

Tables Icon

Table 2 Fitting parameters obtained from 3D fitting function Eq. (2)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V= V dm + V mix + V pm + V gm ,
V( λ,T )= B λ 0 2 λ 2 λ 0 2 C λ 0 2 ( T T w )( λ 2 λ 0 2 ) + D T T w ,
V( λ )= E λ 0 2 λ 2 λ 0 2 +F,V( T )= G T T w +H,

Metrics