Abstract

Arsenic doped ZnO films are prepared using a pre-deposited GaAs finite surface source on sapphire substrates by a MOCVD method. Their conductivity and optical properties are closely related to the annealing process. The as-grown ZnO film shows n-type conductivity with weak FA emission. The in situ annealed sample shows p-type conductivity. The AsZn–2VZn acceptor level is confirmed by low-temperature photoluminescence measurement. The post annealed ZnO film appears to be n-type, which is attributed to the arsenic surface enrichment and the compensation of introduced donor like defects. Our method could be widely used in fabricating arsenic doped p-type ZnO related photoelectric devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characteristics of doping controllable ZnO films grown by photo-assisted metal organic chemical vapor deposition

Tian-Hong Feng and Xiao-Chuan Xia
Opt. Mater. Express 7(4) 1281-1288 (2017)

Investigation on the p-type formation mechanism of nitrogen ion implanted ZnO thin films induced by rapid thermal annealing

Zheng Huang, Haibo Ruan, Hong Zhang, Dongping Shi, Wanjun Li, Guoping Qin, Fang Wu, Liang Fang, and Chunyang Kong
Opt. Mater. Express 9(7) 3098-3108 (2019)

Optical fingerprints of donors and acceptors in high-quality NH3-doped ZnO films

Kun Tang, Ran Gu, Shunming Zhu, Zhonghua Xu, Yang Shen, Jiandong Ye, and Shulin Gu
Opt. Mater. Express 7(4) 1169-1179 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Z. P. Yang, Z. H. Xie, C. C. Lin, and Y. J. Lee, “Slanted n-ZnO nanorod arrays/p-GaN light-emitting diodes with strong ultraviolet emissions,” Opt. Mater. Express 5(2), 399–407 (2015).
    [Crossref]
  2. G. Nam, M. S. Kim, J. Kim, S. O. Kim, and J. Y. Leem, “Regrowth method for the enhancement in the photoluminescence, UV photoresponse, and electrical properties of n-ZnO:Sn films,” Opt. Mater. Express 6(1), 220–229 (2016).
  3. S. Lu, Q. Liao, J. Qi, S. Liu, Y. Liu, Q. Liang, G. Zhang, and Y. Zhang, “The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction,” Nano Res. 9(2), 372–379 (2016).
    [Crossref]
  4. Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
    [Crossref]
  5. S. Yin, J. Li, M. M. Shirolkar, M. Li, and H. Wang, “Oxygen interstitial mediated effective doping of Al in ZnO:Al films prepared by magnetron sputtering,” Mater. Lett. 179, 146–149 (2016).
    [Crossref]
  6. S. B. Zhang, S. H. Wei, and A. Zunger, “Intrinsic n -type versus p -type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63(7), 075205 (2001).
    [Crossref]
  7. F. Sun, C. X. Shan, B. H. Li, Z. Z. Zhang, D. Z. Shen, Z. Y. Zhang, and D. Fan, “A reproducible route to p-ZnO films and their application in light-emitting devices,” Opt. Lett. 36(4), 499–501 (2011).
    [Crossref] [PubMed]
  8. X. Chen, Z. Zhang, B. Yao, Y. Zhang, Y. Gu, P. Zhao, B. Li, and D. Shen, “The effect of boron on the doping efficiency of nitrogen in ZnO,” J. Alloys Compd. 672, 260–264 (2016).
    [Crossref]
  9. A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
    [Crossref]
  10. X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
    [Crossref]
  11. W. J. Lee, J. Kang, and K. J. Chang, “Defect properties andp-type doping efficiency in phosphorus-doped ZnO,” Phys. Rev. B 73(2), 024117 (2006).
    [Crossref]
  12. S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
    [Crossref] [PubMed]
  13. H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
    [Crossref]
  14. F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu, “Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy,” Appl. Phys. Lett. 87(25), 252102 (2005).
    [Crossref]
  15. U. Wahl, J. G. Correia, T. Mendonça, and S. Decoster, “Direct evidence for Sb as a Zn site impurity in ZnO,” Appl. Phys. Lett. 94(26), 261901 (2009).
    [Crossref]
  16. J. K. Dangbégnon, K. Talla, and J. R. Botha, “Effect of the annealing environment on the optical properties of ZnO/GaAs grown by MOCVD,” J. Lumin. 131(12), 2457–2462 (2011).
    [Crossref]
  17. P. Biswas, S. Kundu, and P. Banerji, “A study on electrical transport vis-à-vis the effect of thermal annealing on the p-type conductivity in arsenic-doped MOCVD grown ZnO in the temperature range 10–300K,” J. Alloys Compd. 552, 304–309 (2013).
    [Crossref]
  18. W. Lee, M. C. Jeong, and J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation,” Acta Mater. 52(13), 3949–3957 (2004).
    [Crossref]
  19. C. R. Bayliss and D. L. Kirk, “The compositional and structural changes that accompany the thermal annealing of (100) surfaces of GaAs, InP and GaP in vacuum,” J. Phys. D Appl. Phys. 9(2), 233–244 (1976).
    [Crossref]
  20. H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, “Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface,” Appl. Phys. Lett. 85(19), 4385–4387 (2004).
    [Crossref]
  21. P. Biswas, P. Nath, D. Sanyal, and P. Banerji, “An alternative approach to investigate the origin of p-type conductivity in arsenic doped ZnO,” Curr. Appl. Phys. 15(10), 1256–1261 (2015).
    [Crossref]
  22. Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition,” Appl. Phys. Lett. 83(1), 87–89 (2003).
    [Crossref]
  23. D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
    [Crossref]

2016 (6)

G. Nam, M. S. Kim, J. Kim, S. O. Kim, and J. Y. Leem, “Regrowth method for the enhancement in the photoluminescence, UV photoresponse, and electrical properties of n-ZnO:Sn films,” Opt. Mater. Express 6(1), 220–229 (2016).

S. Lu, Q. Liao, J. Qi, S. Liu, Y. Liu, Q. Liang, G. Zhang, and Y. Zhang, “The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction,” Nano Res. 9(2), 372–379 (2016).
[Crossref]

Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
[Crossref]

S. Yin, J. Li, M. M. Shirolkar, M. Li, and H. Wang, “Oxygen interstitial mediated effective doping of Al in ZnO:Al films prepared by magnetron sputtering,” Mater. Lett. 179, 146–149 (2016).
[Crossref]

X. Chen, Z. Zhang, B. Yao, Y. Zhang, Y. Gu, P. Zhao, B. Li, and D. Shen, “The effect of boron on the doping efficiency of nitrogen in ZnO,” J. Alloys Compd. 672, 260–264 (2016).
[Crossref]

A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
[Crossref]

2015 (2)

Z. P. Yang, Z. H. Xie, C. C. Lin, and Y. J. Lee, “Slanted n-ZnO nanorod arrays/p-GaN light-emitting diodes with strong ultraviolet emissions,” Opt. Mater. Express 5(2), 399–407 (2015).
[Crossref]

P. Biswas, P. Nath, D. Sanyal, and P. Banerji, “An alternative approach to investigate the origin of p-type conductivity in arsenic doped ZnO,” Curr. Appl. Phys. 15(10), 1256–1261 (2015).
[Crossref]

2013 (1)

P. Biswas, S. Kundu, and P. Banerji, “A study on electrical transport vis-à-vis the effect of thermal annealing on the p-type conductivity in arsenic-doped MOCVD grown ZnO in the temperature range 10–300K,” J. Alloys Compd. 552, 304–309 (2013).
[Crossref]

2011 (2)

J. K. Dangbégnon, K. Talla, and J. R. Botha, “Effect of the annealing environment on the optical properties of ZnO/GaAs grown by MOCVD,” J. Lumin. 131(12), 2457–2462 (2011).
[Crossref]

F. Sun, C. X. Shan, B. H. Li, Z. Z. Zhang, D. Z. Shen, Z. Y. Zhang, and D. Fan, “A reproducible route to p-ZnO films and their application in light-emitting devices,” Opt. Lett. 36(4), 499–501 (2011).
[Crossref] [PubMed]

2009 (1)

U. Wahl, J. G. Correia, T. Mendonça, and S. Decoster, “Direct evidence for Sb as a Zn site impurity in ZnO,” Appl. Phys. Lett. 94(26), 261901 (2009).
[Crossref]

2008 (1)

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

2006 (2)

W. J. Lee, J. Kang, and K. J. Chang, “Defect properties andp-type doping efficiency in phosphorus-doped ZnO,” Phys. Rev. B 73(2), 024117 (2006).
[Crossref]

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

2005 (2)

F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu, “Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy,” Appl. Phys. Lett. 87(25), 252102 (2005).
[Crossref]

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

2004 (3)

H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, “Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface,” Appl. Phys. Lett. 85(19), 4385–4387 (2004).
[Crossref]

W. Lee, M. C. Jeong, and J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation,” Acta Mater. 52(13), 3949–3957 (2004).
[Crossref]

S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

2003 (1)

Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition,” Appl. Phys. Lett. 83(1), 87–89 (2003).
[Crossref]

2001 (1)

S. B. Zhang, S. H. Wei, and A. Zunger, “Intrinsic n -type versus p -type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63(7), 075205 (2001).
[Crossref]

1976 (1)

C. R. Bayliss and D. L. Kirk, “The compositional and structural changes that accompany the thermal annealing of (100) surfaces of GaAs, InP and GaP in vacuum,” J. Phys. D Appl. Phys. 9(2), 233–244 (1976).
[Crossref]

Ahn, B. D.

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

Baji, Z.

Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
[Crossref]

Banerji, P.

P. Biswas, P. Nath, D. Sanyal, and P. Banerji, “An alternative approach to investigate the origin of p-type conductivity in arsenic doped ZnO,” Curr. Appl. Phys. 15(10), 1256–1261 (2015).
[Crossref]

P. Biswas, S. Kundu, and P. Banerji, “A study on electrical transport vis-à-vis the effect of thermal annealing on the p-type conductivity in arsenic-doped MOCVD grown ZnO in the temperature range 10–300K,” J. Alloys Compd. 552, 304–309 (2013).
[Crossref]

Bársony, I.

Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
[Crossref]

Basa, P.

Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
[Crossref]

Bayliss, C. R.

C. R. Bayliss and D. L. Kirk, “The compositional and structural changes that accompany the thermal annealing of (100) surfaces of GaAs, InP and GaP in vacuum,” J. Phys. D Appl. Phys. 9(2), 233–244 (1976).
[Crossref]

Biswas, P.

P. Biswas, P. Nath, D. Sanyal, and P. Banerji, “An alternative approach to investigate the origin of p-type conductivity in arsenic doped ZnO,” Curr. Appl. Phys. 15(10), 1256–1261 (2015).
[Crossref]

P. Biswas, S. Kundu, and P. Banerji, “A study on electrical transport vis-à-vis the effect of thermal annealing on the p-type conductivity in arsenic-doped MOCVD grown ZnO in the temperature range 10–300K,” J. Alloys Compd. 552, 304–309 (2013).
[Crossref]

Botha, J. R.

J. K. Dangbégnon, K. Talla, and J. R. Botha, “Effect of the annealing environment on the optical properties of ZnO/GaAs grown by MOCVD,” J. Lumin. 131(12), 2457–2462 (2011).
[Crossref]

Chang, H. W.

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

Chang, K. J.

W. J. Lee, J. Kang, and K. J. Chang, “Defect properties andp-type doping efficiency in phosphorus-doped ZnO,” Phys. Rev. B 73(2), 024117 (2006).
[Crossref]

Chen, A.

A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
[Crossref]

Chen, M.

A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
[Crossref]

Chen, X.

X. Chen, Z. Zhang, B. Yao, Y. Zhang, Y. Gu, P. Zhao, B. Li, and D. Shen, “The effect of boron on the doping efficiency of nitrogen in ZnO,” J. Alloys Compd. 672, 260–264 (2016).
[Crossref]

Correia, J. G.

U. Wahl, J. G. Correia, T. Mendonça, and S. Decoster, “Direct evidence for Sb as a Zn site impurity in ZnO,” Appl. Phys. Lett. 94(26), 261901 (2009).
[Crossref]

Czigány, Z.

Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
[Crossref]

Dangbégnon, J. K.

J. K. Dangbégnon, K. Talla, and J. R. Botha, “Effect of the annealing environment on the optical properties of ZnO/GaAs grown by MOCVD,” J. Lumin. 131(12), 2457–2462 (2011).
[Crossref]

Decoster, S.

U. Wahl, J. G. Correia, T. Mendonça, and S. Decoster, “Direct evidence for Sb as a Zn site impurity in ZnO,” Appl. Phys. Lett. 94(26), 261901 (2009).
[Crossref]

Du, X. L.

H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, “Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface,” Appl. Phys. Lett. 85(19), 4385–4387 (2004).
[Crossref]

Fan, D.

Gu, Y.

X. Chen, Z. Zhang, B. Yao, Y. Zhang, Y. Gu, P. Zhao, B. Li, and D. Shen, “The effect of boron on the doping efficiency of nitrogen in ZnO,” J. Alloys Compd. 672, 260–264 (2016).
[Crossref]

Gui, X.

A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
[Crossref]

He, H. P.

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

Hwang, D. K.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Jeong, M. C.

W. Lee, M. C. Jeong, and J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation,” Acta Mater. 52(13), 3949–3957 (2004).
[Crossref]

Jiang, J.

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

Kang, H. S.

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

Kang, J.

W. J. Lee, J. Kang, and K. J. Chang, “Defect properties andp-type doping efficiency in phosphorus-doped ZnO,” Phys. Rev. B 73(2), 024117 (2006).
[Crossref]

Kim, D. L.

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

Kim, G. H.

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

Kim, H. S.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Kim, J.

Kim, K. K.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Kim, M. S.

Kim, S. O.

Kirk, D. L.

C. R. Bayliss and D. L. Kirk, “The compositional and structural changes that accompany the thermal annealing of (100) surfaces of GaAs, InP and GaP in vacuum,” J. Phys. D Appl. Phys. 9(2), 233–244 (1976).
[Crossref]

Kundu, S.

P. Biswas, S. Kundu, and P. Banerji, “A study on electrical transport vis-à-vis the effect of thermal annealing on the p-type conductivity in arsenic-doped MOCVD grown ZnO in the temperature range 10–300K,” J. Alloys Compd. 552, 304–309 (2013).
[Crossref]

Lee, S. Y.

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

Lee, T. S.

Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition,” Appl. Phys. Lett. 83(1), 87–89 (2003).
[Crossref]

Lee, W.

W. Lee, M. C. Jeong, and J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation,” Acta Mater. 52(13), 3949–3957 (2004).
[Crossref]

Lee, W. J.

W. J. Lee, J. Kang, and K. J. Chang, “Defect properties andp-type doping efficiency in phosphorus-doped ZnO,” Phys. Rev. B 73(2), 024117 (2006).
[Crossref]

Lee, Y. J.

Leem, J. Y.

Li, B.

X. Chen, Z. Zhang, B. Yao, Y. Zhang, Y. Gu, P. Zhao, B. Li, and D. Shen, “The effect of boron on the doping efficiency of nitrogen in ZnO,” J. Alloys Compd. 672, 260–264 (2016).
[Crossref]

Li, B. H.

Li, J.

S. Yin, J. Li, M. M. Shirolkar, M. Li, and H. Wang, “Oxygen interstitial mediated effective doping of Al in ZnO:Al films prepared by magnetron sputtering,” Mater. Lett. 179, 146–149 (2016).
[Crossref]

Li, M.

S. Yin, J. Li, M. M. Shirolkar, M. Li, and H. Wang, “Oxygen interstitial mediated effective doping of Al in ZnO:Al films prepared by magnetron sputtering,” Mater. Lett. 179, 146–149 (2016).
[Crossref]

Liang, Q.

S. Lu, Q. Liao, J. Qi, S. Liu, Y. Liu, Q. Liang, G. Zhang, and Y. Zhang, “The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction,” Nano Res. 9(2), 372–379 (2016).
[Crossref]

Liao, Q.

S. Lu, Q. Liao, J. Qi, S. Liu, Y. Liu, Q. Liang, G. Zhang, and Y. Zhang, “The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction,” Nano Res. 9(2), 372–379 (2016).
[Crossref]

Lim, J. H.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Limpijumnong, S.

S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

Lin, C. C.

Liu, J. L.

F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu, “Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy,” Appl. Phys. Lett. 87(25), 252102 (2005).
[Crossref]

Liu, S.

S. Lu, Q. Liao, J. Qi, S. Liu, Y. Liu, Q. Liang, G. Zhang, and Y. Zhang, “The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction,” Nano Res. 9(2), 372–379 (2016).
[Crossref]

Liu, Y.

S. Lu, Q. Liao, J. Qi, S. Liu, Y. Liu, Q. Liang, G. Zhang, and Y. Zhang, “The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction,” Nano Res. 9(2), 372–379 (2016).
[Crossref]

Look, D. C.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Lu, S.

S. Lu, Q. Liao, J. Qi, S. Liu, Y. Liu, Q. Liang, G. Zhang, and Y. Zhang, “The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction,” Nano Res. 9(2), 372–379 (2016).
[Crossref]

Mandalapu, L. J.

F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu, “Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy,” Appl. Phys. Lett. 87(25), 252102 (2005).
[Crossref]

Mei, Z. X.

H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, “Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface,” Appl. Phys. Lett. 85(19), 4385–4387 (2004).
[Crossref]

Mendonça, T.

U. Wahl, J. G. Correia, T. Mendonça, and S. Decoster, “Direct evidence for Sb as a Zn site impurity in ZnO,” Appl. Phys. Lett. 94(26), 261901 (2009).
[Crossref]

Myoung, J. M.

W. Lee, M. C. Jeong, and J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation,” Acta Mater. 52(13), 3949–3957 (2004).
[Crossref]

Nam, G.

Nath, P.

P. Biswas, P. Nath, D. Sanyal, and P. Banerji, “An alternative approach to investigate the origin of p-type conductivity in arsenic doped ZnO,” Curr. Appl. Phys. 15(10), 1256–1261 (2015).
[Crossref]

Oh, J. Y.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Pan, X. H.

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

Pan, X. Q.

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, “Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface,” Appl. Phys. Lett. 85(19), 4385–4387 (2004).
[Crossref]

Park, C. H.

S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

Park, S. J.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Park, Y. S.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Qi, J.

S. Lu, Q. Liao, J. Qi, S. Liu, Y. Liu, Q. Liang, G. Zhang, and Y. Zhang, “The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction,” Nano Res. 9(2), 372–379 (2016).
[Crossref]

Ryu, Y. R.

Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition,” Appl. Phys. Lett. 83(1), 87–89 (2003).
[Crossref]

Sanyal, D.

P. Biswas, P. Nath, D. Sanyal, and P. Banerji, “An alternative approach to investigate the origin of p-type conductivity in arsenic doped ZnO,” Curr. Appl. Phys. 15(10), 1256–1261 (2015).
[Crossref]

Shan, C. X.

Shen, D.

X. Chen, Z. Zhang, B. Yao, Y. Zhang, Y. Gu, P. Zhao, B. Li, and D. Shen, “The effect of boron on the doping efficiency of nitrogen in ZnO,” J. Alloys Compd. 672, 260–264 (2016).
[Crossref]

Shen, D. Z.

Shirolkar, M. M.

S. Yin, J. Li, M. M. Shirolkar, M. Li, and H. Wang, “Oxygen interstitial mediated effective doping of Al in ZnO:Al films prepared by magnetron sputtering,” Mater. Lett. 179, 146–149 (2016).
[Crossref]

Sun, F.

Sun, H. P.

H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, “Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface,” Appl. Phys. Lett. 85(19), 4385–4387 (2004).
[Crossref]

Szabó, Z.

Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
[Crossref]

Talla, K.

J. K. Dangbégnon, K. Talla, and J. R. Botha, “Effect of the annealing environment on the optical properties of ZnO/GaAs grown by MOCVD,” J. Lumin. 131(12), 2457–2462 (2011).
[Crossref]

Tang, Z.

A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
[Crossref]

Volk, J.

Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
[Crossref]

Wahl, U.

U. Wahl, J. G. Correia, T. Mendonça, and S. Decoster, “Direct evidence for Sb as a Zn site impurity in ZnO,” Appl. Phys. Lett. 94(26), 261901 (2009).
[Crossref]

Wang, H.

S. Yin, J. Li, M. M. Shirolkar, M. Li, and H. Wang, “Oxygen interstitial mediated effective doping of Al in ZnO:Al films prepared by magnetron sputtering,” Mater. Lett. 179, 146–149 (2016).
[Crossref]

Wang, H. Y.

Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
[Crossref]

Wei, S. H.

S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

S. B. Zhang, S. H. Wei, and A. Zunger, “Intrinsic n -type versus p -type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63(7), 075205 (2001).
[Crossref]

White, H. W.

Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition,” Appl. Phys. Lett. 83(1), 87–89 (2003).
[Crossref]

Wu, Y.

A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
[Crossref]

Xie, Z. H.

Xiu, F. X.

F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu, “Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy,” Appl. Phys. Lett. 87(25), 252102 (2005).
[Crossref]

Xue, Q. K.

H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, “Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface,” Appl. Phys. Lett. 85(19), 4385–4387 (2004).
[Crossref]

Yang, J. H.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Yang, Z.

F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu, “Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy,” Appl. Phys. Lett. 87(25), 252102 (2005).
[Crossref]

Yang, Z. P.

Yao, B.

X. Chen, Z. Zhang, B. Yao, Y. Zhang, Y. Gu, P. Zhao, B. Li, and D. Shen, “The effect of boron on the doping efficiency of nitrogen in ZnO,” J. Alloys Compd. 672, 260–264 (2016).
[Crossref]

Ye, Z. Z.

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

Yin, S.

S. Yin, J. Li, M. M. Shirolkar, M. Li, and H. Wang, “Oxygen interstitial mediated effective doping of Al in ZnO:Al films prepared by magnetron sputtering,” Mater. Lett. 179, 146–149 (2016).
[Crossref]

Zeng, Y. J.

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

Zeng, Z. Q.

H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, “Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface,” Appl. Phys. Lett. 85(19), 4385–4387 (2004).
[Crossref]

Zhang, G.

S. Lu, Q. Liao, J. Qi, S. Liu, Y. Liu, Q. Liang, G. Zhang, and Y. Zhang, “The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction,” Nano Res. 9(2), 372–379 (2016).
[Crossref]

Zhang, S. B.

S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

S. B. Zhang, S. H. Wei, and A. Zunger, “Intrinsic n -type versus p -type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63(7), 075205 (2001).
[Crossref]

Zhang, Y.

S. Lu, Q. Liao, J. Qi, S. Liu, Y. Liu, Q. Liang, G. Zhang, and Y. Zhang, “The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction,” Nano Res. 9(2), 372–379 (2016).
[Crossref]

X. Chen, Z. Zhang, B. Yao, Y. Zhang, Y. Gu, P. Zhao, B. Li, and D. Shen, “The effect of boron on the doping efficiency of nitrogen in ZnO,” J. Alloys Compd. 672, 260–264 (2016).
[Crossref]

Zhang, Z.

X. Chen, Z. Zhang, B. Yao, Y. Zhang, Y. Gu, P. Zhao, B. Li, and D. Shen, “The effect of boron on the doping efficiency of nitrogen in ZnO,” J. Alloys Compd. 672, 260–264 (2016).
[Crossref]

Zhang, Z. Y.

Zhang, Z. Z.

Zhao, B. H.

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

Zhao, D. T.

F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu, “Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy,” Appl. Phys. Lett. 87(25), 252102 (2005).
[Crossref]

Zhao, P.

X. Chen, Z. Zhang, B. Yao, Y. Zhang, Y. Gu, P. Zhao, B. Li, and D. Shen, “The effect of boron on the doping efficiency of nitrogen in ZnO,” J. Alloys Compd. 672, 260–264 (2016).
[Crossref]

Zhu, H.

A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
[Crossref]

Zhu, L. P.

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

Zhu, Y.

A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
[Crossref]

Zunger, A.

S. B. Zhang, S. H. Wei, and A. Zunger, “Intrinsic n -type versus p -type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63(7), 075205 (2001).
[Crossref]

Acta Mater. (1)

W. Lee, M. C. Jeong, and J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation,” Acta Mater. 52(13), 3949–3957 (2004).
[Crossref]

Adv. Funct. Mater. (1)

A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
[Crossref]

Appl. Phys. Lett. (6)

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu, “Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy,” Appl. Phys. Lett. 87(25), 252102 (2005).
[Crossref]

U. Wahl, J. G. Correia, T. Mendonça, and S. Decoster, “Direct evidence for Sb as a Zn site impurity in ZnO,” Appl. Phys. Lett. 94(26), 261901 (2009).
[Crossref]

H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, “Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface,” Appl. Phys. Lett. 85(19), 4385–4387 (2004).
[Crossref]

Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition,” Appl. Phys. Lett. 83(1), 87–89 (2003).
[Crossref]

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Appl. Surf. Sci. (1)

Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
[Crossref]

Curr. Appl. Phys. (1)

P. Biswas, P. Nath, D. Sanyal, and P. Banerji, “An alternative approach to investigate the origin of p-type conductivity in arsenic doped ZnO,” Curr. Appl. Phys. 15(10), 1256–1261 (2015).
[Crossref]

J. Alloys Compd. (2)

X. Chen, Z. Zhang, B. Yao, Y. Zhang, Y. Gu, P. Zhao, B. Li, and D. Shen, “The effect of boron on the doping efficiency of nitrogen in ZnO,” J. Alloys Compd. 672, 260–264 (2016).
[Crossref]

P. Biswas, S. Kundu, and P. Banerji, “A study on electrical transport vis-à-vis the effect of thermal annealing on the p-type conductivity in arsenic-doped MOCVD grown ZnO in the temperature range 10–300K,” J. Alloys Compd. 552, 304–309 (2013).
[Crossref]

J. Appl. Phys. (1)

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

J. Lumin. (1)

J. K. Dangbégnon, K. Talla, and J. R. Botha, “Effect of the annealing environment on the optical properties of ZnO/GaAs grown by MOCVD,” J. Lumin. 131(12), 2457–2462 (2011).
[Crossref]

J. Phys. D Appl. Phys. (1)

C. R. Bayliss and D. L. Kirk, “The compositional and structural changes that accompany the thermal annealing of (100) surfaces of GaAs, InP and GaP in vacuum,” J. Phys. D Appl. Phys. 9(2), 233–244 (1976).
[Crossref]

Mater. Lett. (1)

S. Yin, J. Li, M. M. Shirolkar, M. Li, and H. Wang, “Oxygen interstitial mediated effective doping of Al in ZnO:Al films prepared by magnetron sputtering,” Mater. Lett. 179, 146–149 (2016).
[Crossref]

Nano Res. (1)

S. Lu, Q. Liao, J. Qi, S. Liu, Y. Liu, Q. Liang, G. Zhang, and Y. Zhang, “The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction,” Nano Res. 9(2), 372–379 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Rev. B (2)

S. B. Zhang, S. H. Wei, and A. Zunger, “Intrinsic n -type versus p -type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63(7), 075205 (2001).
[Crossref]

W. J. Lee, J. Kang, and K. J. Chang, “Defect properties andp-type doping efficiency in phosphorus-doped ZnO,” Phys. Rev. B 73(2), 024117 (2006).
[Crossref]

Phys. Rev. Lett. (1)

S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 XPS spectrum of As-3d core level of in situ annealed ZnO film versus Ar + -etching time.
Fig. 2
Fig. 2 XPS spectrum of As-3d core level of post annealed ZnO film versus Ar + -etching time.
Fig. 3
Fig. 3 XRD patterns of as-grown (Sample A), in situ annealed (Sample B) and post annealed (Sample C) ZnO films.
Fig. 4
Fig. 4 PL spectra of the as-grown (Sample A), in situ annealed (Sample B) and post annealed (Sample C) ZnO films.
Fig. 5
Fig. 5 Temperature-dependent PL spectra of as-grown ZnO film from 300K to 10K.
Fig. 6
Fig. 6 Temperature-dependent PL spectra of in situ annealed ZnO film from 300K to 10K.
Fig. 7
Fig. 7 Temperature-dependent PL spectra of post annealed ZnO film from 300K to 10K.

Tables (1)

Tables Icon

Table 1 Electrical properties of the as grown and annealed ZnO films

Metrics