Abstract

Er3+- and Pr3+-doped Ga-Sb-S chalcogenide glasses were prepared by the traditional melt-quenching method, and their optical properties in the infrared range were investigated. In order to enhance the mid infrared emissions at 2740 nm of Er3+, Pr3+ was introduced into the glass system. Under 808 nm excitation, the emission of 2740 nm was significantly enhanced in the co-doped sample while the emission of 1550 nm was oppositely reduced. Fluorescence decay results indicated that the lifetime of Er3+: 4I13/2 at 1550 nm was evidently decreased in the co-doped sample. The mechanism of the energy transfer process between Er3+ and Pr3+ ions were investigated in this work.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared emission properties of Pr3+-doped Ge-Sb-Se-Ga-I chalcogenide glasses

Mingming Li, Yinsheng Xu, Xiaomeng Jia, Lei Yang, Nengbing Long, Zijun Liu, and Shixun Dai
Opt. Mater. Express 8(4) 992-1000 (2018)

Ultra-broadband mid-infrared emission from a Pr3+/Dy3+ co-doped selenide-chalcogenide glass fiber spectrally shaped by varying the pumping arrangement [Invited]

Lukasz Sojka, Zhuoqi Tang, Dinuka Jayasuriya, Meili Shen, David Furniss, Emma Barney, Trevor M. Benson, Angela B. Seddon, and Slawomir Sujecki
Opt. Mater. Express 9(5) 2291-2306 (2019)

Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+and Tb3+

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki
Opt. Mater. Express 2(11) 1632-1640 (2012)

References

  • View by:
  • |
  • |
  • |

  1. F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy, ” in Solid-State Mid-Infrared Laser Sources, Dr. Claus, E. Ascheron. (Springer, 2003).
  2. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
    [Crossref]
  3. R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
    [Crossref] [PubMed]
  4. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
    [Crossref] [PubMed]
  5. I. T. Sorokina and K. L. Vodopyanov, Solid-state Mid-Infrared Laser Sources (Springer Science & Business Media, 2003).
  6. H. Guo, L. U. Min, G. Tao, L. Feng, and B. Peng, “Research progress of rare earth ions doped chalcogenide glasses for mid-infrared luminescence,” J. Chin. Ceram. Soc. 37(12), 2151–2156 (2009).
  7. Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
    [Crossref]
  8. R. Reisfeld, “Chalcogenide glasses doped by rare-earths-structure and optical-properties,” in Annales de chimie-science des materiaux, (masson editeur, 1982).
  9. S. Dai, B. Peng, X. Wang, X. Shen, Q. Nie, and T. Xu, “Research development of chalcogenide glass materials emitting 3–5 m fluorescence,” Guangzi Xuebao 37(SUPPL), 239–243 (2008).
  10. Ł. Sojka, Z. Tang, H. Sakr, D. Furniss, T. Benson, A. Seddon, E. Barney, E. Beres–Pawlik, and S. Sujecki, “Spectroscopy of mid-infrared (4.8µm) photoluminescence in Tb3+ doped chalcogenide glass and fibre,” in 2015 17th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2015), pp. 1–3.
  11. Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
    [Crossref]
  12. T. H. Lee, S. I. Simdyankin, J. Hegedus, J. Heo, and S. R. Elliott, “Spatial distribution of rare-earth ions and GaS4 tetrahedra in chalcogenide glasses studied via laser spectroscopy and ab initio molecular dynamics simulation,” Phys. Rev. B 81(10), 104204 (2010).
    [Crossref]
  13. J. Heo, J. M. Yoon, and S. Y. Ryou, “Raman Spectroscopic Analysis on the Solubility Mechanism of La3+ in GeS2–Ga2S3 Glasses,” J. Non-Cryst. Solids 238(1-2), 115–123 (1998).
    [Crossref]
  14. R. Golovchak, Y. Shpotyuk, V. Nazabal, C. Boussard-Pledel, B. Bureau, J. Cebulski, and H. Jain, “Study of Ga incorporation in glassy arsenic selenides by high-resolution XPS and EXAFS,” J. Chem. Phys. 142(18), 184501 (2015).
    [Crossref] [PubMed]
  15. M. E. Pollard, K. J. Knight, G. J. Parker, D. W. Hewak, and M. D. B. Charlton, “Fabrication of photonic crystals in rare earth doped chalcogenide glass films for enhanced upconversion,” Proc. SPIE 8257, 223–239 (2012).
    [Crossref]
  16. A. Yang, M. Zhang, L. Lei, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–Sb–S Chalcogenide Glasses for Mid–Infrared Applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
    [Crossref]
  17. H. Guo, X. Zheng, X. Zhao, G. Gao, Y. Gong, and S. Gu, “Composition dependence of thermally induced second-harmonic generation in chalcohalide glasses,” J. Mater. Sci. 42(16), 6549–6554 (2007).
    [Crossref]
  18. S. Barnier, M. Guittard, C. Julien, and A. Chilouet, “Etude de l’environnement de l’antimoine dans les verres gallium-antimoine-soufre en liaison avec le diagramme de Phase et les spectres d’absorption infrarouge,” Mater. Res. Bull. 28(5), 399–405 (1993).
    [Crossref]
  19. M. Zhang, A. Yang, Y. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. Zhai, Y. Wang, Z. Yang, and D. Tang, “Dy3+ -doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
    [Crossref]
  20. G. Li, T. Xu, S. Dai, T. Zhang, Q. Zhang, and Q. Jiao, “Optical Properties and Thermal Stability of Infrared Chalcogenide Glass Ga2S3–Sb2S3,” J. Chin. Ceram. Soc. 44(6), 832–837 (2016).
  21. T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4(25), 6060 (2014).
    [Crossref] [PubMed]
  22. S. L. Kang, D. D. Chen, Q. W. Pan, J. R. Qiu, and G. P. Dong, “2.7 μm emission in Er3+–doped transparent tellurite glass ceramics,” Opt. Mater. Express 6(6), 1861–1870 (2016).
    [Crossref]
  23. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
    [Crossref]
  24. D. E. McCumber, “Theory of Phonon Terminated Optical Masers,” Phys. Rev. 134(2A), A299–A306 (1964).
    [Crossref]
  25. D. F. D. Sousa, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Energy transfer and the 2.8 μm emission of Er3+- and Yb3+-doped low silica content calcium aluminate glasses,” Phys. Rev. B 62(5), 3176–3180 (2000).
    [Crossref]
  26. E. Pecoraro, D. F. D. Sousa, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Evaluation of the energy transfer rate for the Yb3+: Pr3+ system in lead fluoroindogallate glasses,” J. Appl. Phys. 86(6), 3144–3148 (1999).
    [Crossref]
  27. S. H. Park, D. C. Lee, J. Heo, and D. W. Shin, “Energy transfer between Er3+ and Pr3+ in chalcogenide glasses for dual-wavelength fiber-optic amplifiers,” J. Appl. Phys. 91(11), 9072–9077 (2002).
    [Crossref]
  28. V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+ -doped gegasbs glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
    [Crossref]
  29. X. Li, X. Liu, L. Zhang, L. Hu, and J. Zhang, “Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7–mm lasermaterial,” Chin. Opt. Lett. 11(12), 121601 (2013).
    [Crossref]
  30. T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys–berlin. 437(1-2), 55–75 (1948).
    [Crossref]
  31. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [Crossref]
  32. J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+ -doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212(s2–3), 151–156 (1997).
  33. Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Ra 113(1), 87–95 (2012).
    [Crossref]
  34. P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+ -doped and Er3+, Pr3+ -codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
    [Crossref]
  35. G. X. Bai, J. Ding, L. L. Tao, K. F. Li, L. L. Hu, and Y. H. Tsang, “Efficient 2.7 micron emission from Er3+/Pr3+ codoped oxyfluorotellurite glass,” J. Non-Cryst. Solids 358(23), 3403–3406 (2012).
    [Crossref]

2016 (3)

A. Yang, M. Zhang, L. Lei, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–Sb–S Chalcogenide Glasses for Mid–Infrared Applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

G. Li, T. Xu, S. Dai, T. Zhang, Q. Zhang, and Q. Jiao, “Optical Properties and Thermal Stability of Infrared Chalcogenide Glass Ga2S3–Sb2S3,” J. Chin. Ceram. Soc. 44(6), 832–837 (2016).

S. L. Kang, D. D. Chen, Q. W. Pan, J. R. Qiu, and G. P. Dong, “2.7 μm emission in Er3+–doped transparent tellurite glass ceramics,” Opt. Mater. Express 6(6), 1861–1870 (2016).
[Crossref]

2015 (3)

R. Golovchak, Y. Shpotyuk, V. Nazabal, C. Boussard-Pledel, B. Bureau, J. Cebulski, and H. Jain, “Study of Ga incorporation in glassy arsenic selenides by high-resolution XPS and EXAFS,” J. Chem. Phys. 142(18), 184501 (2015).
[Crossref] [PubMed]

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
[Crossref]

M. Zhang, A. Yang, Y. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. Zhai, Y. Wang, Z. Yang, and D. Tang, “Dy3+ -doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

2014 (1)

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4(25), 6060 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (4)

Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Ra 113(1), 87–95 (2012).
[Crossref]

G. X. Bai, J. Ding, L. L. Tao, K. F. Li, L. L. Hu, and Y. H. Tsang, “Efficient 2.7 micron emission from Er3+/Pr3+ codoped oxyfluorotellurite glass,” J. Non-Cryst. Solids 358(23), 3403–3406 (2012).
[Crossref]

M. E. Pollard, K. J. Knight, G. J. Parker, D. W. Hewak, and M. D. B. Charlton, “Fabrication of photonic crystals in rare earth doped chalcogenide glass films for enhanced upconversion,” Proc. SPIE 8257, 223–239 (2012).
[Crossref]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

2010 (2)

T. H. Lee, S. I. Simdyankin, J. Hegedus, J. Heo, and S. R. Elliott, “Spatial distribution of rare-earth ions and GaS4 tetrahedra in chalcogenide glasses studied via laser spectroscopy and ab initio molecular dynamics simulation,” Phys. Rev. B 81(10), 104204 (2010).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

2009 (1)

H. Guo, L. U. Min, G. Tao, L. Feng, and B. Peng, “Research progress of rare earth ions doped chalcogenide glasses for mid-infrared luminescence,” J. Chin. Ceram. Soc. 37(12), 2151–2156 (2009).

2008 (2)

S. Dai, B. Peng, X. Wang, X. Shen, Q. Nie, and T. Xu, “Research development of chalcogenide glass materials emitting 3–5 m fluorescence,” Guangzi Xuebao 37(SUPPL), 239–243 (2008).

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+ -doped gegasbs glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

2007 (1)

H. Guo, X. Zheng, X. Zhao, G. Gao, Y. Gong, and S. Gu, “Composition dependence of thermally induced second-harmonic generation in chalcohalide glasses,” J. Mater. Sci. 42(16), 6549–6554 (2007).
[Crossref]

2002 (2)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

S. H. Park, D. C. Lee, J. Heo, and D. W. Shin, “Energy transfer between Er3+ and Pr3+ in chalcogenide glasses for dual-wavelength fiber-optic amplifiers,” J. Appl. Phys. 91(11), 9072–9077 (2002).
[Crossref]

2000 (2)

D. F. D. Sousa, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Energy transfer and the 2.8 μm emission of Er3+- and Yb3+-doped low silica content calcium aluminate glasses,” Phys. Rev. B 62(5), 3176–3180 (2000).
[Crossref]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+ -doped and Er3+, Pr3+ -codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
[Crossref]

1999 (1)

E. Pecoraro, D. F. D. Sousa, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Evaluation of the energy transfer rate for the Yb3+: Pr3+ system in lead fluoroindogallate glasses,” J. Appl. Phys. 86(6), 3144–3148 (1999).
[Crossref]

1998 (1)

J. Heo, J. M. Yoon, and S. Y. Ryou, “Raman Spectroscopic Analysis on the Solubility Mechanism of La3+ in GeS2–Ga2S3 Glasses,” J. Non-Cryst. Solids 238(1-2), 115–123 (1998).
[Crossref]

1997 (1)

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+ -doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212(s2–3), 151–156 (1997).

1994 (1)

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

1993 (1)

S. Barnier, M. Guittard, C. Julien, and A. Chilouet, “Etude de l’environnement de l’antimoine dans les verres gallium-antimoine-soufre en liaison avec le diagramme de Phase et les spectres d’absorption infrarouge,” Mater. Res. Bull. 28(5), 399–405 (1993).
[Crossref]

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

1964 (1)

D. E. McCumber, “Theory of Phonon Terminated Optical Masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[Crossref]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

1948 (1)

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys–berlin. 437(1-2), 55–75 (1948).
[Crossref]

Adam, J. L.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+ -doped gegasbs glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Baesso, M. L.

D. F. D. Sousa, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Energy transfer and the 2.8 μm emission of Er3+- and Yb3+-doped low silica content calcium aluminate glasses,” Phys. Rev. B 62(5), 3176–3180 (2000).
[Crossref]

Bai, G. X.

G. X. Bai, J. Ding, L. L. Tao, K. F. Li, L. L. Hu, and Y. H. Tsang, “Efficient 2.7 micron emission from Er3+/Pr3+ codoped oxyfluorotellurite glass,” J. Non-Cryst. Solids 358(23), 3403–3406 (2012).
[Crossref]

Barnier, S.

S. Barnier, M. Guittard, C. Julien, and A. Chilouet, “Etude de l’environnement de l’antimoine dans les verres gallium-antimoine-soufre en liaison avec le diagramme de Phase et les spectres d’absorption infrarouge,” Mater. Res. Bull. 28(5), 399–405 (1993).
[Crossref]

Benson, T. M.

Bento, A. C.

D. F. D. Sousa, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Energy transfer and the 2.8 μm emission of Er3+- and Yb3+-doped low silica content calcium aluminate glasses,” Phys. Rev. B 62(5), 3176–3180 (2000).
[Crossref]

Beres-Pawlik, E.

Boussard-Pledel, C.

R. Golovchak, Y. Shpotyuk, V. Nazabal, C. Boussard-Pledel, B. Bureau, J. Cebulski, and H. Jain, “Study of Ga incorporation in glassy arsenic selenides by high-resolution XPS and EXAFS,” J. Chem. Phys. 142(18), 184501 (2015).
[Crossref] [PubMed]

Bureau, B.

R. Golovchak, Y. Shpotyuk, V. Nazabal, C. Boussard-Pledel, B. Bureau, J. Cebulski, and H. Jain, “Study of Ga incorporation in glassy arsenic selenides by high-resolution XPS and EXAFS,” J. Chem. Phys. 142(18), 184501 (2015).
[Crossref] [PubMed]

Cai, M.

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4(25), 6060 (2014).
[Crossref] [PubMed]

Canat, G.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+ -doped gegasbs glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

Cebulski, J.

R. Golovchak, Y. Shpotyuk, V. Nazabal, C. Boussard-Pledel, B. Bureau, J. Cebulski, and H. Jain, “Study of Ga incorporation in glassy arsenic selenides by high-resolution XPS and EXAFS,” J. Chem. Phys. 142(18), 184501 (2015).
[Crossref] [PubMed]

Charlton, M. D. B.

M. E. Pollard, K. J. Knight, G. J. Parker, D. W. Hewak, and M. D. B. Charlton, “Fabrication of photonic crystals in rare earth doped chalcogenide glass films for enhanced upconversion,” Proc. SPIE 8257, 223–239 (2012).
[Crossref]

Chen, D. D.

Chen, F.

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4(25), 6060 (2014).
[Crossref] [PubMed]

Chilouet, A.

S. Barnier, M. Guittard, C. Julien, and A. Chilouet, “Etude de l’environnement de l’antimoine dans les verres gallium-antimoine-soufre en liaison avec le diagramme de Phase et les spectres d’absorption infrarouge,” Mater. Res. Bull. 28(5), 399–405 (1993).
[Crossref]

Cho, W. Y.

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+ -doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212(s2–3), 151–156 (1997).

Chung, W. J.

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+ -doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212(s2–3), 151–156 (1997).

Dai, S.

G. Li, T. Xu, S. Dai, T. Zhang, Q. Zhang, and Q. Jiao, “Optical Properties and Thermal Stability of Infrared Chalcogenide Glass Ga2S3–Sb2S3,” J. Chin. Ceram. Soc. 44(6), 832–837 (2016).

S. Dai, B. Peng, X. Wang, X. Shen, Q. Nie, and T. Xu, “Research development of chalcogenide glass materials emitting 3–5 m fluorescence,” Guangzi Xuebao 37(SUPPL), 239–243 (2008).

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Ding, J.

G. X. Bai, J. Ding, L. L. Tao, K. F. Li, L. L. Hu, and Y. H. Tsang, “Efficient 2.7 micron emission from Er3+/Pr3+ codoped oxyfluorotellurite glass,” J. Non-Cryst. Solids 358(23), 3403–3406 (2012).
[Crossref]

Dong, G. P.

Doualan, J. L.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+ -doped gegasbs glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Elliott, S. R.

T. H. Lee, S. I. Simdyankin, J. Hegedus, J. Heo, and S. R. Elliott, “Spatial distribution of rare-earth ions and GaS4 tetrahedra in chalcogenide glasses studied via laser spectroscopy and ab initio molecular dynamics simulation,” Phys. Rev. B 81(10), 104204 (2010).
[Crossref]

Fay, M.

Feng, L.

H. Guo, L. U. Min, G. Tao, L. Feng, and B. Peng, “Research progress of rare earth ions doped chalcogenide glasses for mid-infrared luminescence,” J. Chin. Ceram. Soc. 37(12), 2151–2156 (2009).

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

Förster, T.

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys–berlin. 437(1-2), 55–75 (1948).
[Crossref]

Furniss, D.

Gadret, G.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+ -doped gegasbs glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Gao, G.

H. Guo, X. Zheng, X. Zhao, G. Gao, Y. Gong, and S. Gu, “Composition dependence of thermally induced second-harmonic generation in chalcohalide glasses,” J. Mater. Sci. 42(16), 6549–6554 (2007).
[Crossref]

Golding, P. S.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+ -doped and Er3+, Pr3+ -codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
[Crossref]

Golovchak, R.

R. Golovchak, Y. Shpotyuk, V. Nazabal, C. Boussard-Pledel, B. Bureau, J. Cebulski, and H. Jain, “Study of Ga incorporation in glassy arsenic selenides by high-resolution XPS and EXAFS,” J. Chem. Phys. 142(18), 184501 (2015).
[Crossref] [PubMed]

Gong, Y.

H. Guo, X. Zheng, X. Zhao, G. Gao, Y. Gong, and S. Gu, “Composition dependence of thermally induced second-harmonic generation in chalcohalide glasses,” J. Mater. Sci. 42(16), 6549–6554 (2007).
[Crossref]

Gu, S.

H. Guo, X. Zheng, X. Zhao, G. Gao, Y. Gong, and S. Gu, “Composition dependence of thermally induced second-harmonic generation in chalcohalide glasses,” J. Mater. Sci. 42(16), 6549–6554 (2007).
[Crossref]

Guittard, M.

S. Barnier, M. Guittard, C. Julien, and A. Chilouet, “Etude de l’environnement de l’antimoine dans les verres gallium-antimoine-soufre en liaison avec le diagramme de Phase et les spectres d’absorption infrarouge,” Mater. Res. Bull. 28(5), 399–405 (1993).
[Crossref]

Guo, H.

H. Guo, L. U. Min, G. Tao, L. Feng, and B. Peng, “Research progress of rare earth ions doped chalcogenide glasses for mid-infrared luminescence,” J. Chin. Ceram. Soc. 37(12), 2151–2156 (2009).

H. Guo, X. Zheng, X. Zhao, G. Gao, Y. Gong, and S. Gu, “Composition dependence of thermally induced second-harmonic generation in chalcohalide glasses,” J. Mater. Sci. 42(16), 6549–6554 (2007).
[Crossref]

Guo, W.

M. Zhang, A. Yang, Y. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. Zhai, Y. Wang, Z. Yang, and D. Tang, “Dy3+ -doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Hartmann, A.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

Hegedus, J.

T. H. Lee, S. I. Simdyankin, J. Hegedus, J. Heo, and S. R. Elliott, “Spatial distribution of rare-earth ions and GaS4 tetrahedra in chalcogenide glasses studied via laser spectroscopy and ab initio molecular dynamics simulation,” Phys. Rev. B 81(10), 104204 (2010).
[Crossref]

Heo, J.

T. H. Lee, S. I. Simdyankin, J. Hegedus, J. Heo, and S. R. Elliott, “Spatial distribution of rare-earth ions and GaS4 tetrahedra in chalcogenide glasses studied via laser spectroscopy and ab initio molecular dynamics simulation,” Phys. Rev. B 81(10), 104204 (2010).
[Crossref]

S. H. Park, D. C. Lee, J. Heo, and D. W. Shin, “Energy transfer between Er3+ and Pr3+ in chalcogenide glasses for dual-wavelength fiber-optic amplifiers,” J. Appl. Phys. 91(11), 9072–9077 (2002).
[Crossref]

J. Heo, J. M. Yoon, and S. Y. Ryou, “Raman Spectroscopic Analysis on the Solubility Mechanism of La3+ in GeS2–Ga2S3 Glasses,” J. Non-Cryst. Solids 238(1-2), 115–123 (1998).
[Crossref]

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+ -doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212(s2–3), 151–156 (1997).

Hernandes, A. C.

E. Pecoraro, D. F. D. Sousa, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Evaluation of the energy transfer rate for the Yb3+: Pr3+ system in lead fluoroindogallate glasses,” J. Appl. Phys. 86(6), 3144–3148 (1999).
[Crossref]

Hewak, D. W.

M. E. Pollard, K. J. Knight, G. J. Parker, D. W. Hewak, and M. D. B. Charlton, “Fabrication of photonic crystals in rare earth doped chalcogenide glass films for enhanced upconversion,” Proc. SPIE 8257, 223–239 (2012).
[Crossref]

Hibst, R.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

Houizot, P.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+ -doped gegasbs glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Hu, L.

X. Li, X. Liu, L. Zhang, L. Hu, and J. Zhang, “Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7–mm lasermaterial,” Chin. Opt. Lett. 11(12), 121601 (2013).
[Crossref]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Ra 113(1), 87–95 (2012).
[Crossref]

Hu, L. L.

G. X. Bai, J. Ding, L. L. Tao, K. F. Li, L. L. Hu, and Y. H. Tsang, “Efficient 2.7 micron emission from Er3+/Pr3+ codoped oxyfluorotellurite glass,” J. Non-Cryst. Solids 358(23), 3403–3406 (2012).
[Crossref]

Jackson, S. D.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+ -doped and Er3+, Pr3+ -codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
[Crossref]

Jain, H.

R. Golovchak, Y. Shpotyuk, V. Nazabal, C. Boussard-Pledel, B. Bureau, J. Cebulski, and H. Jain, “Study of Ga incorporation in glassy arsenic selenides by high-resolution XPS and EXAFS,” J. Chem. Phys. 142(18), 184501 (2015).
[Crossref] [PubMed]

Jänker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

Jiao, Q.

G. Li, T. Xu, S. Dai, T. Zhang, Q. Zhang, and Q. Jiao, “Optical Properties and Thermal Stability of Infrared Chalcogenide Glass Ga2S3–Sb2S3,” J. Chin. Ceram. Soc. 44(6), 832–837 (2016).

Jing, X.

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4(25), 6060 (2014).
[Crossref] [PubMed]

Julien, C.

S. Barnier, M. Guittard, C. Julien, and A. Chilouet, “Etude de l’environnement de l’antimoine dans les verres gallium-antimoine-soufre en liaison avec le diagramme de Phase et les spectres d’absorption infrarouge,” Mater. Res. Bull. 28(5), 399–405 (1993).
[Crossref]

Kang, S. L.

Kaufmann, R.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

King, T. A.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+ -doped and Er3+, Pr3+ -codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
[Crossref]

Knight, K. J.

M. E. Pollard, K. J. Knight, G. J. Parker, D. W. Hewak, and M. D. B. Charlton, “Fabrication of photonic crystals in rare earth doped chalcogenide glass films for enhanced upconversion,” Proc. SPIE 8257, 223–239 (2012).
[Crossref]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

Lebullenger, R.

E. Pecoraro, D. F. D. Sousa, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Evaluation of the energy transfer rate for the Yb3+: Pr3+ system in lead fluoroindogallate glasses,” J. Appl. Phys. 86(6), 3144–3148 (1999).
[Crossref]

Lee, D. C.

S. H. Park, D. C. Lee, J. Heo, and D. W. Shin, “Energy transfer between Er3+ and Pr3+ in chalcogenide glasses for dual-wavelength fiber-optic amplifiers,” J. Appl. Phys. 91(11), 9072–9077 (2002).
[Crossref]

Lee, T. H.

T. H. Lee, S. I. Simdyankin, J. Hegedus, J. Heo, and S. R. Elliott, “Spatial distribution of rare-earth ions and GaS4 tetrahedra in chalcogenide glasses studied via laser spectroscopy and ab initio molecular dynamics simulation,” Phys. Rev. B 81(10), 104204 (2010).
[Crossref]

Lei, L.

A. Yang, M. Zhang, L. Lei, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–Sb–S Chalcogenide Glasses for Mid–Infrared Applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Li, G.

G. Li, T. Xu, S. Dai, T. Zhang, Q. Zhang, and Q. Jiao, “Optical Properties and Thermal Stability of Infrared Chalcogenide Glass Ga2S3–Sb2S3,” J. Chin. Ceram. Soc. 44(6), 832–837 (2016).

Li, K. F.

G. X. Bai, J. Ding, L. L. Tao, K. F. Li, L. L. Hu, and Y. H. Tsang, “Efficient 2.7 micron emission from Er3+/Pr3+ codoped oxyfluorotellurite glass,” J. Non-Cryst. Solids 358(23), 3403–3406 (2012).
[Crossref]

Li, X.

Liu, X.

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

McCumber, D. E.

D. E. McCumber, “Theory of Phonon Terminated Optical Masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[Crossref]

Min, L. U.

H. Guo, L. U. Min, G. Tao, L. Feng, and B. Peng, “Research progress of rare earth ions doped chalcogenide glasses for mid-infrared luminescence,” J. Chin. Ceram. Soc. 37(12), 2151–2156 (2009).

Miranda, L. C. M.

D. F. D. Sousa, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Energy transfer and the 2.8 μm emission of Er3+- and Yb3+-doped low silica content calcium aluminate glasses,” Phys. Rev. B 62(5), 3176–3180 (2000).
[Crossref]

Moizan, V.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+ -doped gegasbs glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Moncorgé, R.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+ -doped gegasbs glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Mücke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

Nazabal, V.

R. Golovchak, Y. Shpotyuk, V. Nazabal, C. Boussard-Pledel, B. Bureau, J. Cebulski, and H. Jain, “Study of Ga incorporation in glassy arsenic selenides by high-resolution XPS and EXAFS,” J. Chem. Phys. 142(18), 184501 (2015).
[Crossref] [PubMed]

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+ -doped gegasbs glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Neate, N.

Nie, Q.

S. Dai, B. Peng, X. Wang, X. Shen, Q. Nie, and T. Xu, “Research development of chalcogenide glass materials emitting 3–5 m fluorescence,” Guangzi Xuebao 37(SUPPL), 239–243 (2008).

Nunes, L. A. O.

D. F. D. Sousa, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Energy transfer and the 2.8 μm emission of Er3+- and Yb3+-doped low silica content calcium aluminate glasses,” Phys. Rev. B 62(5), 3176–3180 (2000).
[Crossref]

E. Pecoraro, D. F. D. Sousa, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Evaluation of the energy transfer rate for the Yb3+: Pr3+ system in lead fluoroindogallate glasses,” J. Appl. Phys. 86(6), 3144–3148 (1999).
[Crossref]

Pan, Q. W.

Park, S. H.

S. H. Park, D. C. Lee, J. Heo, and D. W. Shin, “Energy transfer between Er3+ and Pr3+ in chalcogenide glasses for dual-wavelength fiber-optic amplifiers,” J. Appl. Phys. 91(11), 9072–9077 (2002).
[Crossref]

Parker, G. J.

M. E. Pollard, K. J. Knight, G. J. Parker, D. W. Hewak, and M. D. B. Charlton, “Fabrication of photonic crystals in rare earth doped chalcogenide glass films for enhanced upconversion,” Proc. SPIE 8257, 223–239 (2012).
[Crossref]

Pecoraro, E.

E. Pecoraro, D. F. D. Sousa, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Evaluation of the energy transfer rate for the Yb3+: Pr3+ system in lead fluoroindogallate glasses,” J. Appl. Phys. 86(6), 3144–3148 (1999).
[Crossref]

Peng, B.

H. Guo, L. U. Min, G. Tao, L. Feng, and B. Peng, “Research progress of rare earth ions doped chalcogenide glasses for mid-infrared luminescence,” J. Chin. Ceram. Soc. 37(12), 2151–2156 (2009).

S. Dai, B. Peng, X. Wang, X. Shen, Q. Nie, and T. Xu, “Research development of chalcogenide glass materials emitting 3–5 m fluorescence,” Guangzi Xuebao 37(SUPPL), 239–243 (2008).

Peng, Y.

M. Zhang, A. Yang, Y. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. Zhai, Y. Wang, Z. Yang, and D. Tang, “Dy3+ -doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Pitois, S.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+ -doped gegasbs glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Pollard, M. E.

M. E. Pollard, K. J. Knight, G. J. Parker, D. W. Hewak, and M. D. B. Charlton, “Fabrication of photonic crystals in rare earth doped chalcogenide glass films for enhanced upconversion,” Proc. SPIE 8257, 223–239 (2012).
[Crossref]

Pollnau, M.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+ -doped and Er3+, Pr3+ -codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
[Crossref]

Qiu, J. R.

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

Ren, H.

M. Zhang, A. Yang, Y. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. Zhai, Y. Wang, Z. Yang, and D. Tang, “Dy3+ -doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Ryou, S. Y.

J. Heo, J. M. Yoon, and S. Y. Ryou, “Raman Spectroscopic Analysis on the Solubility Mechanism of La3+ in GeS2–Ga2S3 Glasses,” J. Non-Cryst. Solids 238(1-2), 115–123 (1998).
[Crossref]

Sakr, H.

Sampaio, J. A.

D. F. D. Sousa, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Energy transfer and the 2.8 μm emission of Er3+- and Yb3+-doped low silica content calcium aluminate glasses,” Phys. Rev. B 62(5), 3176–3180 (2000).
[Crossref]

Seddon, A. B.

Shen, X.

S. Dai, B. Peng, X. Wang, X. Shen, Q. Nie, and T. Xu, “Research development of chalcogenide glass materials emitting 3–5 m fluorescence,” Guangzi Xuebao 37(SUPPL), 239–243 (2008).

Shin, D. W.

S. H. Park, D. C. Lee, J. Heo, and D. W. Shin, “Energy transfer between Er3+ and Pr3+ in chalcogenide glasses for dual-wavelength fiber-optic amplifiers,” J. Appl. Phys. 91(11), 9072–9077 (2002).
[Crossref]

Shpotyuk, Y.

R. Golovchak, Y. Shpotyuk, V. Nazabal, C. Boussard-Pledel, B. Bureau, J. Cebulski, and H. Jain, “Study of Ga incorporation in glassy arsenic selenides by high-resolution XPS and EXAFS,” J. Chem. Phys. 142(18), 184501 (2015).
[Crossref] [PubMed]

Simdyankin, S. I.

T. H. Lee, S. I. Simdyankin, J. Hegedus, J. Heo, and S. R. Elliott, “Spatial distribution of rare-earth ions and GaS4 tetrahedra in chalcogenide glasses studied via laser spectroscopy and ab initio molecular dynamics simulation,” Phys. Rev. B 81(10), 104204 (2010).
[Crossref]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

Smektala, F.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+ -doped gegasbs glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Sójka, L.

Sousa, D. F. D.

D. F. D. Sousa, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Energy transfer and the 2.8 μm emission of Er3+- and Yb3+-doped low silica content calcium aluminate glasses,” Phys. Rev. B 62(5), 3176–3180 (2000).
[Crossref]

E. Pecoraro, D. F. D. Sousa, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Evaluation of the energy transfer rate for the Yb3+: Pr3+ system in lead fluoroindogallate glasses,” J. Appl. Phys. 86(6), 3144–3148 (1999).
[Crossref]

Sujecki, S.

Tang, D.

A. Yang, M. Zhang, L. Lei, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–Sb–S Chalcogenide Glasses for Mid–Infrared Applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

M. Zhang, A. Yang, Y. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. Zhai, Y. Wang, Z. Yang, and D. Tang, “Dy3+ -doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Tang, Z.

Tao, G.

H. Guo, L. U. Min, G. Tao, L. Feng, and B. Peng, “Research progress of rare earth ions doped chalcogenide glasses for mid-infrared luminescence,” J. Chin. Ceram. Soc. 37(12), 2151–2156 (2009).

Tao, L. L.

G. X. Bai, J. Ding, L. L. Tao, K. F. Li, L. L. Hu, and Y. H. Tsang, “Efficient 2.7 micron emission from Er3+/Pr3+ codoped oxyfluorotellurite glass,” J. Non-Cryst. Solids 358(23), 3403–3406 (2012).
[Crossref]

Tian, Y.

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4(25), 6060 (2014).
[Crossref] [PubMed]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Ra 113(1), 87–95 (2012).
[Crossref]

Troles, J.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+ -doped gegasbs glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Tsang, Y. H.

G. X. Bai, J. Ding, L. L. Tao, K. F. Li, L. L. Hu, and Y. H. Tsang, “Efficient 2.7 micron emission from Er3+/Pr3+ codoped oxyfluorotellurite glass,” J. Non-Cryst. Solids 358(23), 3403–3406 (2012).
[Crossref]

Wang, F.

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4(25), 6060 (2014).
[Crossref] [PubMed]

Wang, X.

S. Dai, B. Peng, X. Wang, X. Shen, Q. Nie, and T. Xu, “Research development of chalcogenide glass materials emitting 3–5 m fluorescence,” Guangzi Xuebao 37(SUPPL), 239–243 (2008).

Wang, Y.

A. Yang, M. Zhang, L. Lei, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–Sb–S Chalcogenide Glasses for Mid–Infrared Applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

M. Zhang, A. Yang, Y. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. Zhai, Y. Wang, Z. Yang, and D. Tang, “Dy3+ -doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Wei, T.

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4(25), 6060 (2014).
[Crossref] [PubMed]

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

Weston, N.

Xu, R.

Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Ra 113(1), 87–95 (2012).
[Crossref]

Xu, S.

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4(25), 6060 (2014).
[Crossref] [PubMed]

Xu, T.

G. Li, T. Xu, S. Dai, T. Zhang, Q. Zhang, and Q. Jiao, “Optical Properties and Thermal Stability of Infrared Chalcogenide Glass Ga2S3–Sb2S3,” J. Chin. Ceram. Soc. 44(6), 832–837 (2016).

S. Dai, B. Peng, X. Wang, X. Shen, Q. Nie, and T. Xu, “Research development of chalcogenide glass materials emitting 3–5 m fluorescence,” Guangzi Xuebao 37(SUPPL), 239–243 (2008).

Yang, A.

A. Yang, M. Zhang, L. Lei, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–Sb–S Chalcogenide Glasses for Mid–Infrared Applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

M. Zhang, A. Yang, Y. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. Zhai, Y. Wang, Z. Yang, and D. Tang, “Dy3+ -doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Yang, Y.

M. Zhang, A. Yang, Y. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. Zhai, Y. Wang, Z. Yang, and D. Tang, “Dy3+ -doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Yang, Z.

A. Yang, M. Zhang, L. Lei, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–Sb–S Chalcogenide Glasses for Mid–Infrared Applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

M. Zhang, A. Yang, Y. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. Zhai, Y. Wang, Z. Yang, and D. Tang, “Dy3+ -doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Yoon, J. M.

J. Heo, J. M. Yoon, and S. Y. Ryou, “Raman Spectroscopic Analysis on the Solubility Mechanism of La3+ in GeS2–Ga2S3 Glasses,” J. Non-Cryst. Solids 238(1-2), 115–123 (1998).
[Crossref]

Zhai, C.

M. Zhang, A. Yang, Y. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. Zhai, Y. Wang, Z. Yang, and D. Tang, “Dy3+ -doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Zhang, B.

A. Yang, M. Zhang, L. Lei, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–Sb–S Chalcogenide Glasses for Mid–Infrared Applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

M. Zhang, A. Yang, Y. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. Zhai, Y. Wang, Z. Yang, and D. Tang, “Dy3+ -doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Zhang, J.

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4(25), 6060 (2014).
[Crossref] [PubMed]

X. Li, X. Liu, L. Zhang, L. Hu, and J. Zhang, “Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7–mm lasermaterial,” Chin. Opt. Lett. 11(12), 121601 (2013).
[Crossref]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Ra 113(1), 87–95 (2012).
[Crossref]

Zhang, L.

Zhang, M.

A. Yang, M. Zhang, L. Lei, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–Sb–S Chalcogenide Glasses for Mid–Infrared Applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

M. Zhang, A. Yang, Y. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. Zhai, Y. Wang, Z. Yang, and D. Tang, “Dy3+ -doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Zhang, Q.

G. Li, T. Xu, S. Dai, T. Zhang, Q. Zhang, and Q. Jiao, “Optical Properties and Thermal Stability of Infrared Chalcogenide Glass Ga2S3–Sb2S3,” J. Chin. Ceram. Soc. 44(6), 832–837 (2016).

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4(25), 6060 (2014).
[Crossref] [PubMed]

Zhang, T.

G. Li, T. Xu, S. Dai, T. Zhang, Q. Zhang, and Q. Jiao, “Optical Properties and Thermal Stability of Infrared Chalcogenide Glass Ga2S3–Sb2S3,” J. Chin. Ceram. Soc. 44(6), 832–837 (2016).

Zhao, X.

H. Guo, X. Zheng, X. Zhao, G. Gao, Y. Gong, and S. Gu, “Composition dependence of thermally induced second-harmonic generation in chalcohalide glasses,” J. Mater. Sci. 42(16), 6549–6554 (2007).
[Crossref]

Zheng, X.

H. Guo, X. Zheng, X. Zhao, G. Gao, Y. Gong, and S. Gu, “Composition dependence of thermally induced second-harmonic generation in chalcohalide glasses,” J. Mater. Sci. 42(16), 6549–6554 (2007).
[Crossref]

Zhu, H.

Ann. Phys–berlin. (1)

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys–berlin. 437(1-2), 55–75 (1948).
[Crossref]

Chin. Opt. Lett. (1)

Guangzi Xuebao (1)

S. Dai, B. Peng, X. Wang, X. Shen, Q. Nie, and T. Xu, “Research development of chalcogenide glass materials emitting 3–5 m fluorescence,” Guangzi Xuebao 37(SUPPL), 239–243 (2008).

J. Am. Ceram. Soc. (1)

A. Yang, M. Zhang, L. Lei, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–Sb–S Chalcogenide Glasses for Mid–Infrared Applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

J. Appl. Phys. (2)

E. Pecoraro, D. F. D. Sousa, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Evaluation of the energy transfer rate for the Yb3+: Pr3+ system in lead fluoroindogallate glasses,” J. Appl. Phys. 86(6), 3144–3148 (1999).
[Crossref]

S. H. Park, D. C. Lee, J. Heo, and D. W. Shin, “Energy transfer between Er3+ and Pr3+ in chalcogenide glasses for dual-wavelength fiber-optic amplifiers,” J. Appl. Phys. 91(11), 9072–9077 (2002).
[Crossref]

J. Chem. Phys. (3)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

R. Golovchak, Y. Shpotyuk, V. Nazabal, C. Boussard-Pledel, B. Bureau, J. Cebulski, and H. Jain, “Study of Ga incorporation in glassy arsenic selenides by high-resolution XPS and EXAFS,” J. Chem. Phys. 142(18), 184501 (2015).
[Crossref] [PubMed]

J. Chin. Ceram. Soc. (2)

G. Li, T. Xu, S. Dai, T. Zhang, Q. Zhang, and Q. Jiao, “Optical Properties and Thermal Stability of Infrared Chalcogenide Glass Ga2S3–Sb2S3,” J. Chin. Ceram. Soc. 44(6), 832–837 (2016).

H. Guo, L. U. Min, G. Tao, L. Feng, and B. Peng, “Research progress of rare earth ions doped chalcogenide glasses for mid-infrared luminescence,” J. Chin. Ceram. Soc. 37(12), 2151–2156 (2009).

J. Dermatol. Surg. Oncol. (1)

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

J. Mater. Sci. (1)

H. Guo, X. Zheng, X. Zhao, G. Gao, Y. Gong, and S. Gu, “Composition dependence of thermally induced second-harmonic generation in chalcohalide glasses,” J. Mater. Sci. 42(16), 6549–6554 (2007).
[Crossref]

J. Non-Cryst. Solids (3)

J. Heo, J. M. Yoon, and S. Y. Ryou, “Raman Spectroscopic Analysis on the Solubility Mechanism of La3+ in GeS2–Ga2S3 Glasses,” J. Non-Cryst. Solids 238(1-2), 115–123 (1998).
[Crossref]

G. X. Bai, J. Ding, L. L. Tao, K. F. Li, L. L. Hu, and Y. H. Tsang, “Efficient 2.7 micron emission from Er3+/Pr3+ codoped oxyfluorotellurite glass,” J. Non-Cryst. Solids 358(23), 3403–3406 (2012).
[Crossref]

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+ -doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212(s2–3), 151–156 (1997).

J. Quant. Spectrosc. Ra (1)

Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Ra 113(1), 87–95 (2012).
[Crossref]

Mater. Res. Bull. (2)

S. Barnier, M. Guittard, C. Julien, and A. Chilouet, “Etude de l’environnement de l’antimoine dans les verres gallium-antimoine-soufre en liaison avec le diagramme de Phase et les spectres d’absorption infrarouge,” Mater. Res. Bull. 28(5), 399–405 (1993).
[Crossref]

M. Zhang, A. Yang, Y. Peng, B. Zhang, H. Ren, W. Guo, Y. Yang, C. Zhai, Y. Wang, Z. Yang, and D. Tang, “Dy3+ -doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers,” Mater. Res. Bull. 70, 55–59 (2015).
[Crossref]

Opt. Express (1)

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

Opt. Mater. (1)

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+ -doped gegasbs glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Opt. Mater. Express (3)

Phys. Rev. (1)

D. E. McCumber, “Theory of Phonon Terminated Optical Masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[Crossref]

Phys. Rev. B (3)

D. F. D. Sousa, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Energy transfer and the 2.8 μm emission of Er3+- and Yb3+-doped low silica content calcium aluminate glasses,” Phys. Rev. B 62(5), 3176–3180 (2000).
[Crossref]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+ -doped and Er3+, Pr3+ -codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
[Crossref]

T. H. Lee, S. I. Simdyankin, J. Hegedus, J. Heo, and S. R. Elliott, “Spatial distribution of rare-earth ions and GaS4 tetrahedra in chalcogenide glasses studied via laser spectroscopy and ab initio molecular dynamics simulation,” Phys. Rev. B 81(10), 104204 (2010).
[Crossref]

Proc. SPIE (1)

M. E. Pollard, K. J. Knight, G. J. Parker, D. W. Hewak, and M. D. B. Charlton, “Fabrication of photonic crystals in rare earth doped chalcogenide glass films for enhanced upconversion,” Proc. SPIE 8257, 223–239 (2012).
[Crossref]

Sci. Rep. (1)

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4(25), 6060 (2014).
[Crossref] [PubMed]

Other (4)

Ł. Sojka, Z. Tang, H. Sakr, D. Furniss, T. Benson, A. Seddon, E. Barney, E. Beres–Pawlik, and S. Sujecki, “Spectroscopy of mid-infrared (4.8µm) photoluminescence in Tb3+ doped chalcogenide glass and fibre,” in 2015 17th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2015), pp. 1–3.

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy, ” in Solid-State Mid-Infrared Laser Sources, Dr. Claus, E. Ascheron. (Springer, 2003).

R. Reisfeld, “Chalcogenide glasses doped by rare-earths-structure and optical-properties,” in Annales de chimie-science des materiaux, (masson editeur, 1982).

I. T. Sorokina and K. L. Vodopyanov, Solid-state Mid-Infrared Laser Sources (Springer Science & Business Media, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 XRD pattern of the obtained Ga–Sb–S glass samples.
Fig. 2
Fig. 2 DSC curves of rare earth doped Ga–Sb–S chalcogenide glasses.
Fig. 3
Fig. 3 Absorption spectra of Er3+-, Pr3+-, and Er3+/Pr3+ -doped glasses.
Fig. 4
Fig. 4 Absorption cross sections of Er3+- and Er3+/Pr3+ co-doped Ga-Sb-S chalcogenide glass.
Fig. 5
Fig. 5 Mid-infrared emission spectra from Er3+- and Er3+/Pr3+-doped Ga-Sb-S chalcogenide glasses excited at 808 nm
Fig. 6
Fig. 6 Energy and energy transfer of Er3+ and Pr3+ ions.
Fig. 7
Fig. 7 Fluorescence decays for 4I13/2-4I15/2 transition of Er3+- and Er3+/Pr3+-doped samples at 808 nm laser excitation.

Tables (1)

Tables Icon

Table 1 Characteristic temperatures of the rare-earth-doped Ga–Sb–S glasses

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ a (λ)= 2.303×lg( I 0 /I) NL
η ET =1 τ Er/Pr τ Er

Metrics