Abstract

Near-field subwavelength imaging has been realized at visible and mid-infrared frequencies, but it has not been achieved at near-infrared (NIR). In this work, the transparent conducting oxides (TCO)-based near-field superlenses working at NIR frequencies were proposed. As one of easily available TCO materials, Al-doped ZnO (AZO) was considered in both stratified ZnO-AZO-ZnO and single-layered AZO structures, which had the subwavelength resolution of better than λ/25 at a wavelength of 2.57μm andλ/20 at 2.01μm, respectively. These findings reveal that the TCO can find the applications not only in liquid-crystal displays, photovoltaic devices, and electromagnetic interface shielding, but also in superresolution and subsurface imaging at NIR frequencies.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. H. Perry, and S. Sridhar
Opt. Lett. 34(13) 1994-1996 (2009)

Cascaded plasmonic superlens for far-field imaging with magnification at visible wavelength

Huiyu Li, Liwei Fu, Karsten Frenner, and Wolfgang Osten
Opt. Express 26(8) 10888-10897 (2018)

Mode properties in metallic and non-metallic plasmonic waveguides

Wanwan Liu, Yifu Chen, Xin Hu, Long Wen, Lin Jin, Qiang Su, and Qin Chen
Appl. Opt. 56(16) 4861-4867 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  2. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
    [Crossref] [PubMed]
  3. D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in midinfrared using metamaterials,” J. Opt. Soc. Am. B 23(3), 468–478 (2006).
    [Crossref]
  4. D. Melville and R. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
    [Crossref] [PubMed]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  6. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  7. P. Cao, L. Cheng, X. Zhang, X. Huang, and H. Jiang, “Near-infrared plasmonic far-field nanofocusing effects with elongated depth of focus based on hybrid Au–dielectric–Ag subwavelength structures,” Plasmonics 11(5), 1219–1231 (2016).
    [Crossref]
  8. A. Bisht, W. He, X. Wang, L. Y. L. Wu, X. Chen, and S. Li, “Hyperlensing at NIR frequencies using a hemispherical metallic nanowire lens in a sea-urchin geometry,” Nanoscale 8(20), 10669–10676 (2016).
    [Crossref] [PubMed]
  9. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  10. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
    [Crossref] [PubMed]
  11. S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249 (2011).
    [Crossref] [PubMed]
  12. S. C. Kehr, P. Yu, Y. Liu, M. Parzefall, A. I. Khan, R. Jacob, M. T. Wenzel, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Microspectroscopy on perovskite-based superlens,” Opt. Mater. Express 1(5), 1051–1060 (2011).
    [Crossref]
  13. M. Fehrenbacher, S. Winnerl, H. Schneider, J. Döring, S. C. Kehr, L. M. Eng, Y. Huo, O. G. Schmidt, K. Yao, Y. Liu, and M. Helm, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
    [Crossref] [PubMed]
  14. L. Jung, B. Hauer, P. Li, M. Bornhöfft, J. Mayer, and T. Taubner, “Exploring the detection limits of infrared near-field microscopy regarding small buried structures and pushing them by exploiting superlens-related effects,” Opt. Express 24(5), 4431–4441 (2016).
    [Crossref]
  15. P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano 6(11), 10107–10114 (2012).
    [Crossref] [PubMed]
  16. P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
    [Crossref] [PubMed]
  17. J. T. Shen and P. M. Platzman, “Near field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80(18), 3286–3288 (2002).
    [Crossref]
  18. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  19. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
    [Crossref]
  20. G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
    [Crossref]
  21. J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
    [Crossref] [PubMed]
  22. F. Liu, L. Cui, G. Lu, Y. Li, T. Yang, C. Xue, J. Xu, and G. Du, “Multiple and broadband near-perfect absorption in heterostructures containing transparent conducting oxides,” J. Appl. Phys. 119(8), 083106 (2016).
    [Crossref]
  23. Y. Zhang, T. Wei, W. Dong, C. Huang, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Near-perfect infrared absorption from dielectric multilayer of plasmonic aluminum-doped zinc oxide,” Appl. Phys. Lett. 102(21), 213117 (2013).
    [Crossref] [PubMed]
  24. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
    [Crossref] [PubMed]
  25. M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
    [Crossref] [PubMed]
  26. S. C. Kehr, R. G. P. McQuaid, L. Ortmann, T. Kämpfe, F. Kuschewski, D. Lang, J. Döring, J. M. Gregg, and L. M. Eng, “A local superlens,” ACS Photonics 3(1), 20–26 (2016).
    [Crossref]
  27. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  28. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  29. Z. Szabó, Y. Kiasat, and E. P. Li, “Subwavelength imaging with composite metamaterials,” J. Opt. Soc. Am. B 31(6), 1298–1307 (2014).
    [Crossref]
  30. M. Liu and C. Jin, “Image quality deterioration due to phase fluctuation in layered superlens,” Optik (Stuttg.) 121(21), 1966–1975 (2010).
    [Crossref]
  31. W. J. Lee, J. E. Kim, H. Y. Park, and M. H. Lee, “Silver superlens using antisymmetric surface plasmon modes,” Opt. Express 18(6), 5459–5465 (2010).
    [Crossref] [PubMed]
  32. Y. C. Liu, J. H. Hsieh, and S. K. Tung, “Extraction of optical constants of zinc oxide thin films by ellipsometry with various models,” Thin Solid Films 510(1–2), 32–38 (2006).
    [Crossref]
  33. E. N. Cho, S. Park, and I. Yun, “Spectroscopic ellipsometry modeling of ZnO thin films with various O2 partial pressures,” Curr. Appl. Phys. 12(6), 1606–1610 (2012).
    [Crossref]
  34. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  35. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University Press, 2009).

2016 (6)

P. Cao, L. Cheng, X. Zhang, X. Huang, and H. Jiang, “Near-infrared plasmonic far-field nanofocusing effects with elongated depth of focus based on hybrid Au–dielectric–Ag subwavelength structures,” Plasmonics 11(5), 1219–1231 (2016).
[Crossref]

A. Bisht, W. He, X. Wang, L. Y. L. Wu, X. Chen, and S. Li, “Hyperlensing at NIR frequencies using a hemispherical metallic nanowire lens in a sea-urchin geometry,” Nanoscale 8(20), 10669–10676 (2016).
[Crossref] [PubMed]

F. Liu, L. Cui, G. Lu, Y. Li, T. Yang, C. Xue, J. Xu, and G. Du, “Multiple and broadband near-perfect absorption in heterostructures containing transparent conducting oxides,” J. Appl. Phys. 119(8), 083106 (2016).
[Crossref]

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

S. C. Kehr, R. G. P. McQuaid, L. Ortmann, T. Kämpfe, F. Kuschewski, D. Lang, J. Döring, J. M. Gregg, and L. M. Eng, “A local superlens,” ACS Photonics 3(1), 20–26 (2016).
[Crossref]

L. Jung, B. Hauer, P. Li, M. Bornhöfft, J. Mayer, and T. Taubner, “Exploring the detection limits of infrared near-field microscopy regarding small buried structures and pushing them by exploiting superlens-related effects,” Opt. Express 24(5), 4431–4441 (2016).
[Crossref]

2015 (2)

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

M. Fehrenbacher, S. Winnerl, H. Schneider, J. Döring, S. C. Kehr, L. M. Eng, Y. Huo, O. G. Schmidt, K. Yao, Y. Liu, and M. Helm, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

2014 (2)

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

Z. Szabó, Y. Kiasat, and E. P. Li, “Subwavelength imaging with composite metamaterials,” J. Opt. Soc. Am. B 31(6), 1298–1307 (2014).
[Crossref]

2013 (2)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Y. Zhang, T. Wei, W. Dong, C. Huang, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Near-perfect infrared absorption from dielectric multilayer of plasmonic aluminum-doped zinc oxide,” Appl. Phys. Lett. 102(21), 213117 (2013).
[Crossref] [PubMed]

2012 (3)

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano 6(11), 10107–10114 (2012).
[Crossref] [PubMed]

E. N. Cho, S. Park, and I. Yun, “Spectroscopic ellipsometry modeling of ZnO thin films with various O2 partial pressures,” Curr. Appl. Phys. 12(6), 1606–1610 (2012).
[Crossref]

2011 (4)

S. C. Kehr, P. Yu, Y. Liu, M. Parzefall, A. I. Khan, R. Jacob, M. T. Wenzel, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Microspectroscopy on perovskite-based superlens,” Opt. Mater. Express 1(5), 1051–1060 (2011).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249 (2011).
[Crossref] [PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

2010 (4)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
[Crossref]

W. J. Lee, J. E. Kim, H. Y. Park, and M. H. Lee, “Silver superlens using antisymmetric surface plasmon modes,” Opt. Express 18(6), 5459–5465 (2010).
[Crossref] [PubMed]

M. Liu and C. Jin, “Image quality deterioration due to phase fluctuation in layered superlens,” Optik (Stuttg.) 121(21), 1966–1975 (2010).
[Crossref]

2007 (1)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

2006 (3)

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Y. C. Liu, J. H. Hsieh, and S. K. Tung, “Extraction of optical constants of zinc oxide thin films by ellipsometry with various models,” Thin Solid Films 510(1–2), 32–38 (2006).
[Crossref]

D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in midinfrared using metamaterials,” J. Opt. Soc. Am. B 23(3), 468–478 (2006).
[Crossref]

2005 (2)

D. Melville and R. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

2002 (1)

J. T. Shen and P. M. Platzman, “Near field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80(18), 3286–3288 (2002).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Alam, M. Z.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Badsha, M. A.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Bisht, A.

A. Bisht, W. He, X. Wang, L. Y. L. Wu, X. Chen, and S. Li, “Hyperlensing at NIR frequencies using a hemispherical metallic nanowire lens in a sea-urchin geometry,” Nanoscale 8(20), 10669–10676 (2016).
[Crossref] [PubMed]

Blaikie, R.

Böckmann, H.

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
[Crossref]

Bornhöfft, M.

Boyd, R. W.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Cao, P.

P. Cao, L. Cheng, X. Zhang, X. Huang, and H. Jiang, “Near-infrared plasmonic far-field nanofocusing effects with elongated depth of focus based on hybrid Au–dielectric–Ag subwavelength structures,” Plasmonics 11(5), 1219–1231 (2016).
[Crossref]

Chen, X.

A. Bisht, W. He, X. Wang, L. Y. L. Wu, X. Chen, and S. Li, “Hyperlensing at NIR frequencies using a hemispherical metallic nanowire lens in a sea-urchin geometry,” Nanoscale 8(20), 10669–10676 (2016).
[Crossref] [PubMed]

Y. Zhang, T. Wei, W. Dong, C. Huang, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Near-perfect infrared absorption from dielectric multilayer of plasmonic aluminum-doped zinc oxide,” Appl. Phys. Lett. 102(21), 213117 (2013).
[Crossref] [PubMed]

Cheng, L.

P. Cao, L. Cheng, X. Zhang, X. Huang, and H. Jiang, “Near-infrared plasmonic far-field nanofocusing effects with elongated depth of focus based on hybrid Au–dielectric–Ag subwavelength structures,” Plasmonics 11(5), 1219–1231 (2016).
[Crossref]

Cho, E. N.

E. N. Cho, S. Park, and I. Yun, “Spectroscopic ellipsometry modeling of ZnO thin films with various O2 partial pressures,” Curr. Appl. Phys. 12(6), 1606–1610 (2012).
[Crossref]

Choi, M.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Cui, L.

F. Liu, L. Cui, G. Lu, Y. Li, T. Yang, C. Xue, J. Xu, and G. Du, “Multiple and broadband near-perfect absorption in heterostructures containing transparent conducting oxides,” J. Appl. Phys. 119(8), 083106 (2016).
[Crossref]

Dai, N.

Y. Zhang, T. Wei, W. Dong, C. Huang, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Near-perfect infrared absorption from dielectric multilayer of plasmonic aluminum-doped zinc oxide,” Appl. Phys. Lett. 102(21), 213117 (2013).
[Crossref] [PubMed]

De Leon, I.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Dong, W.

Y. Zhang, T. Wei, W. Dong, C. Huang, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Near-perfect infrared absorption from dielectric multilayer of plasmonic aluminum-doped zinc oxide,” Appl. Phys. Lett. 102(21), 213117 (2013).
[Crossref] [PubMed]

Döring, J.

S. C. Kehr, R. G. P. McQuaid, L. Ortmann, T. Kämpfe, F. Kuschewski, D. Lang, J. Döring, J. M. Gregg, and L. M. Eng, “A local superlens,” ACS Photonics 3(1), 20–26 (2016).
[Crossref]

M. Fehrenbacher, S. Winnerl, H. Schneider, J. Döring, S. C. Kehr, L. M. Eng, Y. Huo, O. G. Schmidt, K. Yao, Y. Liu, and M. Helm, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

Du, G.

F. Liu, L. Cui, G. Lu, Y. Li, T. Yang, C. Xue, J. Xu, and G. Du, “Multiple and broadband near-perfect absorption in heterostructures containing transparent conducting oxides,” J. Appl. Phys. 119(8), 083106 (2016).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Eng, L. M.

S. C. Kehr, R. G. P. McQuaid, L. Ortmann, T. Kämpfe, F. Kuschewski, D. Lang, J. Döring, J. M. Gregg, and L. M. Eng, “A local superlens,” ACS Photonics 3(1), 20–26 (2016).
[Crossref]

M. Fehrenbacher, S. Winnerl, H. Schneider, J. Döring, S. C. Kehr, L. M. Eng, Y. Huo, O. G. Schmidt, K. Yao, Y. Liu, and M. Helm, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249 (2011).
[Crossref] [PubMed]

S. C. Kehr, P. Yu, Y. Liu, M. Parzefall, A. I. Khan, R. Jacob, M. T. Wenzel, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Microspectroscopy on perovskite-based superlens,” Opt. Mater. Express 1(5), 1051–1060 (2011).
[Crossref]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Fehrenbacher, M.

M. Fehrenbacher, S. Winnerl, H. Schneider, J. Döring, S. C. Kehr, L. M. Eng, Y. Huo, O. G. Schmidt, K. Yao, Y. Liu, and M. Helm, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

Gajek, M.

S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249 (2011).
[Crossref] [PubMed]

Gregg, J. M.

S. C. Kehr, R. G. P. McQuaid, L. Ortmann, T. Kämpfe, F. Kuschewski, D. Lang, J. Döring, J. M. Gregg, and L. M. Eng, “A local superlens,” ACS Photonics 3(1), 20–26 (2016).
[Crossref]

Hauer, B.

He, W.

A. Bisht, W. He, X. Wang, L. Y. L. Wu, X. Chen, and S. Li, “Hyperlensing at NIR frequencies using a hemispherical metallic nanowire lens in a sea-urchin geometry,” Nanoscale 8(20), 10669–10676 (2016).
[Crossref] [PubMed]

Helm, M.

M. Fehrenbacher, S. Winnerl, H. Schneider, J. Döring, S. C. Kehr, L. M. Eng, Y. Huo, O. G. Schmidt, K. Yao, Y. Liu, and M. Helm, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249 (2011).
[Crossref] [PubMed]

S. C. Kehr, P. Yu, Y. Liu, M. Parzefall, A. I. Khan, R. Jacob, M. T. Wenzel, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Microspectroscopy on perovskite-based superlens,” Opt. Mater. Express 1(5), 1051–1060 (2011).
[Crossref]

Hillenbrand, R.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Hsieh, J. H.

Y. C. Liu, J. H. Hsieh, and S. K. Tung, “Extraction of optical constants of zinc oxide thin films by ellipsometry with various models,” Thin Solid Films 510(1–2), 32–38 (2006).
[Crossref]

Huang, C.

Y. Zhang, T. Wei, W. Dong, C. Huang, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Near-perfect infrared absorption from dielectric multilayer of plasmonic aluminum-doped zinc oxide,” Appl. Phys. Lett. 102(21), 213117 (2013).
[Crossref] [PubMed]

Huang, X.

P. Cao, L. Cheng, X. Zhang, X. Huang, and H. Jiang, “Near-infrared plasmonic far-field nanofocusing effects with elongated depth of focus based on hybrid Au–dielectric–Ag subwavelength structures,” Plasmonics 11(5), 1219–1231 (2016).
[Crossref]

Huo, Y.

M. Fehrenbacher, S. Winnerl, H. Schneider, J. Döring, S. C. Kehr, L. M. Eng, Y. Huo, O. G. Schmidt, K. Yao, Y. Liu, and M. Helm, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

Hwangbo, C. K.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Jacob, R.

S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249 (2011).
[Crossref] [PubMed]

S. C. Kehr, P. Yu, Y. Liu, M. Parzefall, A. I. Khan, R. Jacob, M. T. Wenzel, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Microspectroscopy on perovskite-based superlens,” Opt. Mater. Express 1(5), 1051–1060 (2011).
[Crossref]

Jiang, H.

P. Cao, L. Cheng, X. Zhang, X. Huang, and H. Jiang, “Near-infrared plasmonic far-field nanofocusing effects with elongated depth of focus based on hybrid Au–dielectric–Ag subwavelength structures,” Plasmonics 11(5), 1219–1231 (2016).
[Crossref]

Jin, C.

M. Liu and C. Jin, “Image quality deterioration due to phase fluctuation in layered superlens,” Optik (Stuttg.) 121(21), 1966–1975 (2010).
[Crossref]

Jun, Y. C.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Jung, L.

Kämpfe, T.

S. C. Kehr, R. G. P. McQuaid, L. Ortmann, T. Kämpfe, F. Kuschewski, D. Lang, J. Döring, J. M. Gregg, and L. M. Eng, “A local superlens,” ACS Photonics 3(1), 20–26 (2016).
[Crossref]

Kang, K. Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Kang, S. B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Kehr, S. C.

S. C. Kehr, R. G. P. McQuaid, L. Ortmann, T. Kämpfe, F. Kuschewski, D. Lang, J. Döring, J. M. Gregg, and L. M. Eng, “A local superlens,” ACS Photonics 3(1), 20–26 (2016).
[Crossref]

M. Fehrenbacher, S. Winnerl, H. Schneider, J. Döring, S. C. Kehr, L. M. Eng, Y. Huo, O. G. Schmidt, K. Yao, Y. Liu, and M. Helm, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249 (2011).
[Crossref] [PubMed]

S. C. Kehr, P. Yu, Y. Liu, M. Parzefall, A. I. Khan, R. Jacob, M. T. Wenzel, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Microspectroscopy on perovskite-based superlens,” Opt. Mater. Express 1(5), 1051–1060 (2011).
[Crossref]

Khan, A. I.

Kiasat, Y.

Kildishev, A. V.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Kim, J.

Kim, J. E.

Kim, T. Y.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Kim, Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Korobkin, D.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in midinfrared using metamaterials,” J. Opt. Soc. Am. B 23(3), 468–478 (2006).
[Crossref]

Kuschewski, F.

S. C. Kehr, R. G. P. McQuaid, L. Ortmann, T. Kämpfe, F. Kuschewski, D. Lang, J. Döring, J. M. Gregg, and L. M. Eng, “A local superlens,” ACS Photonics 3(1), 20–26 (2016).
[Crossref]

Kwak, M. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Lang, D.

S. C. Kehr, R. G. P. McQuaid, L. Ortmann, T. Kämpfe, F. Kuschewski, D. Lang, J. Döring, J. M. Gregg, and L. M. Eng, “A local superlens,” ACS Photonics 3(1), 20–26 (2016).
[Crossref]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Lee, M. H.

Lee, S. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Lee, W. J.

Lee, Y. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Li, E. P.

Li, P.

L. Jung, B. Hauer, P. Li, M. Bornhöfft, J. Mayer, and T. Taubner, “Exploring the detection limits of infrared near-field microscopy regarding small buried structures and pushing them by exploiting superlens-related effects,” Opt. Express 24(5), 4431–4441 (2016).
[Crossref]

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano 6(11), 10107–10114 (2012).
[Crossref] [PubMed]

Li, S.

A. Bisht, W. He, X. Wang, L. Y. L. Wu, X. Chen, and S. Li, “Hyperlensing at NIR frequencies using a hemispherical metallic nanowire lens in a sea-urchin geometry,” Nanoscale 8(20), 10669–10676 (2016).
[Crossref] [PubMed]

Li, Y.

F. Liu, L. Cui, G. Lu, Y. Li, T. Yang, C. Xue, J. Xu, and G. Du, “Multiple and broadband near-perfect absorption in heterostructures containing transparent conducting oxides,” J. Appl. Phys. 119(8), 083106 (2016).
[Crossref]

Liu, F.

F. Liu, L. Cui, G. Lu, Y. Li, T. Yang, C. Xue, J. Xu, and G. Du, “Multiple and broadband near-perfect absorption in heterostructures containing transparent conducting oxides,” J. Appl. Phys. 119(8), 083106 (2016).
[Crossref]

Liu, J.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Liu, M.

M. Liu and C. Jin, “Image quality deterioration due to phase fluctuation in layered superlens,” Optik (Stuttg.) 121(21), 1966–1975 (2010).
[Crossref]

Liu, Y.

M. Fehrenbacher, S. Winnerl, H. Schneider, J. Döring, S. C. Kehr, L. M. Eng, Y. Huo, O. G. Schmidt, K. Yao, Y. Liu, and M. Helm, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

S. C. Kehr, P. Yu, Y. Liu, M. Parzefall, A. I. Khan, R. Jacob, M. T. Wenzel, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Microspectroscopy on perovskite-based superlens,” Opt. Mater. Express 1(5), 1051–1060 (2011).
[Crossref]

Liu, Y. C.

Y. C. Liu, J. H. Hsieh, and S. K. Tung, “Extraction of optical constants of zinc oxide thin films by ellipsometry with various models,” Thin Solid Films 510(1–2), 32–38 (2006).
[Crossref]

Liu, Y. M.

S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249 (2011).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Lu, G.

F. Liu, L. Cui, G. Lu, Y. Li, T. Yang, C. Xue, J. Xu, and G. Du, “Multiple and broadband near-perfect absorption in heterostructures containing transparent conducting oxides,” J. Appl. Phys. 119(8), 083106 (2016).
[Crossref]

Martin, L. W.

S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249 (2011).
[Crossref] [PubMed]

Mayer, J.

McQuaid, R. G. P.

S. C. Kehr, R. G. P. McQuaid, L. Ortmann, T. Kämpfe, F. Kuschewski, D. Lang, J. Döring, J. M. Gregg, and L. M. Eng, “A local superlens,” ACS Photonics 3(1), 20–26 (2016).
[Crossref]

Melville, D.

Min, B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
[Crossref]

Ortmann, L.

S. C. Kehr, R. G. P. McQuaid, L. Ortmann, T. Kämpfe, F. Kuschewski, D. Lang, J. Döring, J. M. Gregg, and L. M. Eng, “A local superlens,” ACS Photonics 3(1), 20–26 (2016).
[Crossref]

Park, H. Y.

Park, N.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Park, S.

E. N. Cho, S. Park, and I. Yun, “Spectroscopic ellipsometry modeling of ZnO thin films with various O2 partial pressures,” Curr. Appl. Phys. 12(6), 1606–1610 (2012).
[Crossref]

Parzefall, M.

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Platzman, P. M.

J. T. Shen and P. M. Platzman, “Near field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80(18), 3286–3288 (2002).
[Crossref]

Ramesh, R.

S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249 (2011).
[Crossref] [PubMed]

S. C. Kehr, P. Yu, Y. Liu, M. Parzefall, A. I. Khan, R. Jacob, M. T. Wenzel, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Microspectroscopy on perovskite-based superlens,” Opt. Mater. Express 1(5), 1051–1060 (2011).
[Crossref]

Schmidt, O. G.

M. Fehrenbacher, S. Winnerl, H. Schneider, J. Döring, S. C. Kehr, L. M. Eng, Y. Huo, O. G. Schmidt, K. Yao, Y. Liu, and M. Helm, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

Schneider, H.

M. Fehrenbacher, S. Winnerl, H. Schneider, J. Döring, S. C. Kehr, L. M. Eng, Y. Huo, O. G. Schmidt, K. Yao, Y. Liu, and M. Helm, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shen, J. T.

J. T. Shen and P. M. Platzman, “Near field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80(18), 3286–3288 (2002).
[Crossref]

Shin, J.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Shvets, G.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in midinfrared using metamaterials,” J. Opt. Soc. Am. B 23(3), 468–478 (2006).
[Crossref]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Sun, Y.

Y. Zhang, T. Wei, W. Dong, C. Huang, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Near-perfect infrared absorption from dielectric multilayer of plasmonic aluminum-doped zinc oxide,” Appl. Phys. Lett. 102(21), 213117 (2013).
[Crossref] [PubMed]

Szabó, Z.

Taubner, T.

L. Jung, B. Hauer, P. Li, M. Bornhöfft, J. Mayer, and T. Taubner, “Exploring the detection limits of infrared near-field microscopy regarding small buried structures and pushing them by exploiting superlens-related effects,” Opt. Express 24(5), 4431–4441 (2016).
[Crossref]

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano 6(11), 10107–10114 (2012).
[Crossref] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Tung, S. K.

Y. C. Liu, J. H. Hsieh, and S. K. Tung, “Extraction of optical constants of zinc oxide thin films by ellipsometry with various models,” Thin Solid Films 510(1–2), 32–38 (2006).
[Crossref]

Urzhumov, Y.

D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in midinfrared using metamaterials,” J. Opt. Soc. Am. B 23(3), 468–478 (2006).
[Crossref]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

von Ribbeck, H.-G.

S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249 (2011).
[Crossref] [PubMed]

S. C. Kehr, P. Yu, Y. Liu, M. Parzefall, A. I. Khan, R. Jacob, M. T. Wenzel, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Microspectroscopy on perovskite-based superlens,” Opt. Mater. Express 1(5), 1051–1060 (2011).
[Crossref]

Wang, T.

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

Wang, X.

A. Bisht, W. He, X. Wang, L. Y. L. Wu, X. Chen, and S. Li, “Hyperlensing at NIR frequencies using a hemispherical metallic nanowire lens in a sea-urchin geometry,” Nanoscale 8(20), 10669–10676 (2016).
[Crossref] [PubMed]

Wei, T.

Y. Zhang, T. Wei, W. Dong, C. Huang, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Near-perfect infrared absorption from dielectric multilayer of plasmonic aluminum-doped zinc oxide,” Appl. Phys. Lett. 102(21), 213117 (2013).
[Crossref] [PubMed]

Wenzel, M. T.

S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249 (2011).
[Crossref] [PubMed]

S. C. Kehr, P. Yu, Y. Liu, M. Parzefall, A. I. Khan, R. Jacob, M. T. Wenzel, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Microspectroscopy on perovskite-based superlens,” Opt. Mater. Express 1(5), 1051–1060 (2011).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Winnerl, S.

M. Fehrenbacher, S. Winnerl, H. Schneider, J. Döring, S. C. Kehr, L. M. Eng, Y. Huo, O. G. Schmidt, K. Yao, Y. Liu, and M. Helm, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

Wu, L. Y. L.

A. Bisht, W. He, X. Wang, L. Y. L. Wu, X. Chen, and S. Li, “Hyperlensing at NIR frequencies using a hemispherical metallic nanowire lens in a sea-urchin geometry,” Nanoscale 8(20), 10669–10676 (2016).
[Crossref] [PubMed]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Xu, J.

F. Liu, L. Cui, G. Lu, Y. Li, T. Yang, C. Xue, J. Xu, and G. Du, “Multiple and broadband near-perfect absorption in heterostructures containing transparent conducting oxides,” J. Appl. Phys. 119(8), 083106 (2016).
[Crossref]

Xue, C.

F. Liu, L. Cui, G. Lu, Y. Li, T. Yang, C. Xue, J. Xu, and G. Du, “Multiple and broadband near-perfect absorption in heterostructures containing transparent conducting oxides,” J. Appl. Phys. 119(8), 083106 (2016).
[Crossref]

Yang, C.-H.

S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249 (2011).
[Crossref] [PubMed]

Yang, S.-Y.

S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249 (2011).
[Crossref] [PubMed]

Yang, T.

F. Liu, L. Cui, G. Lu, Y. Li, T. Yang, C. Xue, J. Xu, and G. Du, “Multiple and broadband near-perfect absorption in heterostructures containing transparent conducting oxides,” J. Appl. Phys. 119(8), 083106 (2016).
[Crossref]

Yao, K.

M. Fehrenbacher, S. Winnerl, H. Schneider, J. Döring, S. C. Kehr, L. M. Eng, Y. Huo, O. G. Schmidt, K. Yao, Y. Liu, and M. Helm, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

Yoon, J.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Yu, P.

S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249 (2011).
[Crossref] [PubMed]

S. C. Kehr, P. Yu, Y. Liu, M. Parzefall, A. I. Khan, R. Jacob, M. T. Wenzel, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Microspectroscopy on perovskite-based superlens,” Opt. Mater. Express 1(5), 1051–1060 (2011).
[Crossref]

Yun, I.

E. N. Cho, S. Park, and I. Yun, “Spectroscopic ellipsometry modeling of ZnO thin films with various O2 partial pressures,” Curr. Appl. Phys. 12(6), 1606–1610 (2012).
[Crossref]

Zhang, K.

Y. Zhang, T. Wei, W. Dong, C. Huang, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Near-perfect infrared absorption from dielectric multilayer of plasmonic aluminum-doped zinc oxide,” Appl. Phys. Lett. 102(21), 213117 (2013).
[Crossref] [PubMed]

Zhang, X.

P. Cao, L. Cheng, X. Zhang, X. Huang, and H. Jiang, “Near-infrared plasmonic far-field nanofocusing effects with elongated depth of focus based on hybrid Au–dielectric–Ag subwavelength structures,” Plasmonics 11(5), 1219–1231 (2016).
[Crossref]

S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249 (2011).
[Crossref] [PubMed]

S. C. Kehr, P. Yu, Y. Liu, M. Parzefall, A. I. Khan, R. Jacob, M. T. Wenzel, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Microspectroscopy on perovskite-based superlens,” Opt. Mater. Express 1(5), 1051–1060 (2011).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, T. Wei, W. Dong, C. Huang, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Near-perfect infrared absorption from dielectric multilayer of plasmonic aluminum-doped zinc oxide,” Appl. Phys. Lett. 102(21), 213117 (2013).
[Crossref] [PubMed]

Zhou, M.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

ACS Nano (1)

P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano 6(11), 10107–10114 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

S. C. Kehr, R. G. P. McQuaid, L. Ortmann, T. Kämpfe, F. Kuschewski, D. Lang, J. Döring, J. M. Gregg, and L. M. Eng, “A local superlens,” ACS Photonics 3(1), 20–26 (2016).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

Y. Zhang, T. Wei, W. Dong, C. Huang, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Near-perfect infrared absorption from dielectric multilayer of plasmonic aluminum-doped zinc oxide,” Appl. Phys. Lett. 102(21), 213117 (2013).
[Crossref] [PubMed]

J. T. Shen and P. M. Platzman, “Near field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80(18), 3286–3288 (2002).
[Crossref]

Curr. Appl. Phys. (1)

E. N. Cho, S. Park, and I. Yun, “Spectroscopic ellipsometry modeling of ZnO thin films with various O2 partial pressures,” Curr. Appl. Phys. 12(6), 1606–1610 (2012).
[Crossref]

J. Appl. Phys. (1)

F. Liu, L. Cui, G. Lu, Y. Li, T. Yang, C. Xue, J. Xu, and G. Du, “Multiple and broadband near-perfect absorption in heterostructures containing transparent conducting oxides,” J. Appl. Phys. 119(8), 083106 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nano Lett. (2)

M. Fehrenbacher, S. Winnerl, H. Schneider, J. Döring, S. C. Kehr, L. M. Eng, Y. Huo, O. G. Schmidt, K. Yao, Y. Liu, and M. Helm, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

Nanoscale (1)

A. Bisht, W. He, X. Wang, L. Y. L. Wu, X. Chen, and S. Li, “Hyperlensing at NIR frequencies using a hemispherical metallic nanowire lens in a sea-urchin geometry,” Nanoscale 8(20), 10669–10676 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249 (2011).
[Crossref] [PubMed]

Nature (1)

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Mater. Express (2)

Optik (Stuttg.) (1)

M. Liu and C. Jin, “Image quality deterioration due to phase fluctuation in layered superlens,” Optik (Stuttg.) 121(21), 1966–1975 (2010).
[Crossref]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Phys. Status Solidi Rapid Res. Lett. (1)

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
[Crossref]

Plasmonics (1)

P. Cao, L. Cheng, X. Zhang, X. Huang, and H. Jiang, “Near-infrared plasmonic far-field nanofocusing effects with elongated depth of focus based on hybrid Au–dielectric–Ag subwavelength structures,” Plasmonics 11(5), 1219–1231 (2016).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Science (5)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Thin Solid Films (1)

Y. C. Liu, J. H. Hsieh, and S. K. Tung, “Extraction of optical constants of zinc oxide thin films by ellipsometry with various models,” Thin Solid Films 510(1–2), 32–38 (2006).
[Crossref]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University Press, 2009).

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic illustration of two types of superlenses: (a) the ZnO-AZO-ZnO stratified superlens and (b) the single-layered AZO superlens. The gold double slits with various widths (w = 50 and 100 nm) and a fixed thickness of h = 10 nm were considered.
Fig. 2
Fig. 2 (a) Calculated real and imaginary parts of the permittivity of AZO and (b) real part of the permittivity of ZnO. (c) OTF of AZO without surrounding media as a function of the thickness d and the transverse wave vector k x at a wavelength of 2.57  μm . (d) OTF for two types of superlens structures at the resonant wavelengths, together with that in free space.
Fig. 3
Fig. 3 Amplitude distribution of x-component of electric field of the ZnO-AZO-ZnO stratified superlens imaging for the gold double silts with a width of (a) w = 100 nm and (b) w = 50 nm, and (c) their line profiles of energy density at image planes. In the case of the single-layered AZO superlens, the electric field distribution for (d) w = 100 nm, (e) w = 50 nm, and (f) the corresponding line profiles.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

M j =[ cos δ j isin δ j / η j i η j sin δ j cos δ j ],
k jz = ε j ω 2 c 2 k x 2 ,
T= 2 η 0 A η 0 +B η 0 η N+1 +C+D η N+1 ,

Metrics