Abstract

We demonstrate that nanocrystalline diamond films grown on highly doped silicon substrates can be patterned using a CO2 laser operating at a wavelength of 10.6 μm, where both low doped silicon and diamond exhibit negligible optical absorption. The patterning is initiated by free carrier absorption in the silicon substrate and further enhanced by the thermal runaway effect, which results in surface heating in the silicon substrate and subsequent thermal ablation of the diamond film in an oxygen rich atmosphere. Using this approach, micron-scale grating and dot patterns are patterned in thin film diamond. The localized heating is simulated and analyzed using concurrent optical and thermal finite element modelling. The laser patterning method described here offers a cost effective and rapid solution for micro-structuring diamond films.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser-induced damage threshold at chemical vapor deposition–grown diamond surfaces for 200-ps CO2 laser pulses

A. C. Chiang, Y. Y. Lin, Y. C. Huang, and M. Babzien
Opt. Lett. 27(3) 164-166 (2002)

Characteristics of 2-photon ultraviolet laser etching of diamond

R. P. Mildren, J. E. Downes, J. D. Brown, B. F. Johnston, E. Granados, D. J. Spence, A. Lehmann, L. Weston, and A. Bramble
Opt. Mater. Express 1(4) 576-585 (2011)

On femtosecond micromachining of HPHT single-crystal diamond with direct laser writing using tight focusing

Othman H. Y. Zalloum, Matthew Parrish, Alexander Terekhov, and William Hofmeister
Opt. Express 18(12) 13122-13135 (2010)

References

  • View by:
  • |
  • |
  • |

  1. I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5(7), 397–405 (2011).
    [Crossref]
  2. P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi., A Appl. Mater. Sci. 212(11), 2385–2399 (2015).
    [Crossref]
  3. A. V. Sumant, O. Auciello, M. Liao, and O. A. Williams, “MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films,” MRS Bull. 39(06), 511–516 (2014).
    [Crossref]
  4. A. Aleksov, M. Kubovic, M. Kasu, P. Schmid, D. Grobe, S. Ertl, M. Schreck, B. Stritzker, and E. Kohn, “Diamond-based electronics for RF applications,” Diamond Related Materials 13(2), 233–240 (2004).
    [Crossref]
  5. M. P. Hiscocks, C. J. Kaalund, F. Ladouceur, S. T. Huntington, B. C. Gibson, S. Trpkovski, D. Simpson, E. Ampem-Lassen, S. Prawer, and J. E. Butler, “Reactive ion etching of waveguide structures in diamond,” Diamond Related Materials 17(11), 1831–1834 (2008).
    [Crossref]
  6. A. Masood, M. Aslam, M. Tamor, and T. Potter, “Techniques for Patterning of CVD Diamond Films on Non-Diamond Substrates,” J. Electrochem. Soc. 138(11), L67–L68 (1991).
    [Crossref]
  7. V. I. Konov, T. V. Kononenko, and V. V. Kononenko, “Laser Micro- and Nanoprocessing of Diamond Materials,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Wiley-VCH, 2013), pp. 385–443.
  8. S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time‐resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
    [Crossref]
  9. T. V. Kononenko, V. G. Ralchenko, I. I. Vlasov, S. V. Garnov, and V. I. Konov, “Ablation of CVD diamond with nanosecond laser pulses of UV–IR range,” Diamond Related Materials 7(11-12), 1623–1627 (1998).
    [Crossref]
  10. S. Albin, A. D. Cropper, L. C. Watkins, C. E. Buvik, and A. M. Buoncristiani, “Laser Damage Threshold Of Diamond Films,” Opt. Eng. 28(3), 283281 (1989).
    [Crossref]
  11. V. V. Migulin, V. G. Ralchenko, and Y. J. Baik, “Oxygen-assisted laser cutting and drilling of CVD diamond,” in Lasers in Synthesis, Characterization, and Processing of Diamond, V. I. Konov and V. G. Ralchenko, eds. (SPIE, 1997), Vol. 3484, pp. 175–179.
  12. M. Rothschild, C. Arnone, and D. J. Ehrlich, “Excimer‐laser etching of diamond and hard carbon films by direct writing and optical projection,” J. Vac. Sci. Technol. B 4(1), 310–314 (1986).
    [Crossref]
  13. V. G. Ral’chenko, K. G. Korotushenko, A. A. Smolin, and E. N. Loubnin, “Fine patterning of diamond films by laser-assisted chemical etching in oxygen,” Diamond Related Materials 4(7), 893–896 (1995).
    [Crossref]
  14. R. P. Mildren, “Intrinsic Optical Properties of Diamond,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Wiley-VCH, 2013), pp. 1–34.
  15. B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated Diamond Networks for Quantum Nanophotonics,” Nano Lett. 12(3), 1578–1582 (2012).
    [Crossref] [PubMed]
  16. P. Rath, N. Gruhler, S. Khasminskaya, C. Nebel, C. Wild, and W. H. P. Pernice, “Waferscale nanophotonic circuits made from diamond-on-insulator substrates,” Opt. Express 21(9), 11031–11036 (2013).
    [Crossref] [PubMed]
  17. M. Blomberg, K. Naukkarinen, T. Tuomi, V.-M. Airaksinen, M. Luomajärvi, and E. Rauhala, “Substrate heating effects in CO2 laser annealing of ion‐implanted silicon,” J. Appl. Phys. 54(5), 2327–2328 (1983).
    [Crossref]
  18. I. W. Boyd, T. D. Binnie, J. I. B. Wilson, and M. J. Colles, “Absorption of infrared radiation in silicon,” J. Appl. Phys. 55(8), 3061–3063 (1984).
    [Crossref]
  19. A. Yariv and A. Yariv, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007).
  20. E. L. H. Thomas, G. W. Nelson, S. Mandal, J. S. Foord, and O. A. Williams, “Chemical mechanical polishing of thin film diamond,” Carbon 68, 473–479 (2014).
    [Crossref]
  21. O. A. Williams, “Nanocrystalline diamond,” Diamond Related Materials 20(5-6), 621–640 (2011).
    [Crossref]
  22. R. K. Endo, Y. Fujihara, and M. Susa, “Calculation of the density and heat capacity of silicon by molecular dynamics simulation,” High Temp. High Press. 35-36(5), 505–511 (2003).
    [Crossref]
  23. J. R. Meyer, M. R. Kruer, and F. J. Bartoli, “Optical heating in semiconductors: Laser damage in Ge, Si, InSb, and GaAs,” J. Appl. Phys. 51(10), 5513–5522 (1980).
    [Crossref]
  24. N. M. Ravindra, B. Sopori, O. H. Gokce, S. X. Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen, and Y. Zhang, “Emissivity Measurements and Modeling of Silicon-Related Materials: An Overview,” Int. J. Thermophys. 22(5), 1593–1611 (2001).
    [Crossref]
  25. D. C. Harris, Development of Chemical-Vapor-Deposited Diamond for Infrared Optical Applications. Status Report and Summary of Properties (Naval Air Warfare Center Weapons Div China Lake CA, 1994).

2015 (1)

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi., A Appl. Mater. Sci. 212(11), 2385–2399 (2015).
[Crossref]

2014 (2)

A. V. Sumant, O. Auciello, M. Liao, and O. A. Williams, “MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films,” MRS Bull. 39(06), 511–516 (2014).
[Crossref]

E. L. H. Thomas, G. W. Nelson, S. Mandal, J. S. Foord, and O. A. Williams, “Chemical mechanical polishing of thin film diamond,” Carbon 68, 473–479 (2014).
[Crossref]

2013 (1)

2012 (1)

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated Diamond Networks for Quantum Nanophotonics,” Nano Lett. 12(3), 1578–1582 (2012).
[Crossref] [PubMed]

2011 (2)

O. A. Williams, “Nanocrystalline diamond,” Diamond Related Materials 20(5-6), 621–640 (2011).
[Crossref]

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

2008 (1)

M. P. Hiscocks, C. J. Kaalund, F. Ladouceur, S. T. Huntington, B. C. Gibson, S. Trpkovski, D. Simpson, E. Ampem-Lassen, S. Prawer, and J. E. Butler, “Reactive ion etching of waveguide structures in diamond,” Diamond Related Materials 17(11), 1831–1834 (2008).
[Crossref]

2004 (1)

A. Aleksov, M. Kubovic, M. Kasu, P. Schmid, D. Grobe, S. Ertl, M. Schreck, B. Stritzker, and E. Kohn, “Diamond-based electronics for RF applications,” Diamond Related Materials 13(2), 233–240 (2004).
[Crossref]

2003 (1)

R. K. Endo, Y. Fujihara, and M. Susa, “Calculation of the density and heat capacity of silicon by molecular dynamics simulation,” High Temp. High Press. 35-36(5), 505–511 (2003).
[Crossref]

2001 (1)

N. M. Ravindra, B. Sopori, O. H. Gokce, S. X. Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen, and Y. Zhang, “Emissivity Measurements and Modeling of Silicon-Related Materials: An Overview,” Int. J. Thermophys. 22(5), 1593–1611 (2001).
[Crossref]

1998 (1)

T. V. Kononenko, V. G. Ralchenko, I. I. Vlasov, S. V. Garnov, and V. I. Konov, “Ablation of CVD diamond with nanosecond laser pulses of UV–IR range,” Diamond Related Materials 7(11-12), 1623–1627 (1998).
[Crossref]

1995 (2)

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time‐resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
[Crossref]

V. G. Ral’chenko, K. G. Korotushenko, A. A. Smolin, and E. N. Loubnin, “Fine patterning of diamond films by laser-assisted chemical etching in oxygen,” Diamond Related Materials 4(7), 893–896 (1995).
[Crossref]

1991 (1)

A. Masood, M. Aslam, M. Tamor, and T. Potter, “Techniques for Patterning of CVD Diamond Films on Non-Diamond Substrates,” J. Electrochem. Soc. 138(11), L67–L68 (1991).
[Crossref]

1989 (1)

S. Albin, A. D. Cropper, L. C. Watkins, C. E. Buvik, and A. M. Buoncristiani, “Laser Damage Threshold Of Diamond Films,” Opt. Eng. 28(3), 283281 (1989).
[Crossref]

1986 (1)

M. Rothschild, C. Arnone, and D. J. Ehrlich, “Excimer‐laser etching of diamond and hard carbon films by direct writing and optical projection,” J. Vac. Sci. Technol. B 4(1), 310–314 (1986).
[Crossref]

1984 (1)

I. W. Boyd, T. D. Binnie, J. I. B. Wilson, and M. J. Colles, “Absorption of infrared radiation in silicon,” J. Appl. Phys. 55(8), 3061–3063 (1984).
[Crossref]

1983 (1)

M. Blomberg, K. Naukkarinen, T. Tuomi, V.-M. Airaksinen, M. Luomajärvi, and E. Rauhala, “Substrate heating effects in CO2 laser annealing of ion‐implanted silicon,” J. Appl. Phys. 54(5), 2327–2328 (1983).
[Crossref]

1980 (1)

J. R. Meyer, M. R. Kruer, and F. J. Bartoli, “Optical heating in semiconductors: Laser damage in Ge, Si, InSb, and GaAs,” J. Appl. Phys. 51(10), 5513–5522 (1980).
[Crossref]

Abedrabbo, S.

N. M. Ravindra, B. Sopori, O. H. Gokce, S. X. Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen, and Y. Zhang, “Emissivity Measurements and Modeling of Silicon-Related Materials: An Overview,” Int. J. Thermophys. 22(5), 1593–1611 (2001).
[Crossref]

Aharonovich, I.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

Airaksinen, V.-M.

M. Blomberg, K. Naukkarinen, T. Tuomi, V.-M. Airaksinen, M. Luomajärvi, and E. Rauhala, “Substrate heating effects in CO2 laser annealing of ion‐implanted silicon,” J. Appl. Phys. 54(5), 2327–2328 (1983).
[Crossref]

Albin, S.

S. Albin, A. D. Cropper, L. C. Watkins, C. E. Buvik, and A. M. Buoncristiani, “Laser Damage Threshold Of Diamond Films,” Opt. Eng. 28(3), 283281 (1989).
[Crossref]

Aleksov, A.

A. Aleksov, M. Kubovic, M. Kasu, P. Schmid, D. Grobe, S. Ertl, M. Schreck, B. Stritzker, and E. Kohn, “Diamond-based electronics for RF applications,” Diamond Related Materials 13(2), 233–240 (2004).
[Crossref]

Ampem-Lassen, E.

M. P. Hiscocks, C. J. Kaalund, F. Ladouceur, S. T. Huntington, B. C. Gibson, S. Trpkovski, D. Simpson, E. Ampem-Lassen, S. Prawer, and J. E. Butler, “Reactive ion etching of waveguide structures in diamond,” Diamond Related Materials 17(11), 1831–1834 (2008).
[Crossref]

Arnone, C.

M. Rothschild, C. Arnone, and D. J. Ehrlich, “Excimer‐laser etching of diamond and hard carbon films by direct writing and optical projection,” J. Vac. Sci. Technol. B 4(1), 310–314 (1986).
[Crossref]

Aslam, M.

A. Masood, M. Aslam, M. Tamor, and T. Potter, “Techniques for Patterning of CVD Diamond Films on Non-Diamond Substrates,” J. Electrochem. Soc. 138(11), L67–L68 (1991).
[Crossref]

Auciello, O.

A. V. Sumant, O. Auciello, M. Liao, and O. A. Williams, “MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films,” MRS Bull. 39(06), 511–516 (2014).
[Crossref]

Babinec, T. M.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated Diamond Networks for Quantum Nanophotonics,” Nano Lett. 12(3), 1578–1582 (2012).
[Crossref] [PubMed]

Bartoli, F. J.

J. R. Meyer, M. R. Kruer, and F. J. Bartoli, “Optical heating in semiconductors: Laser damage in Ge, Si, InSb, and GaAs,” J. Appl. Phys. 51(10), 5513–5522 (1980).
[Crossref]

Binnie, T. D.

I. W. Boyd, T. D. Binnie, J. I. B. Wilson, and M. J. Colles, “Absorption of infrared radiation in silicon,” J. Appl. Phys. 55(8), 3061–3063 (1984).
[Crossref]

Blomberg, M.

M. Blomberg, K. Naukkarinen, T. Tuomi, V.-M. Airaksinen, M. Luomajärvi, and E. Rauhala, “Substrate heating effects in CO2 laser annealing of ion‐implanted silicon,” J. Appl. Phys. 54(5), 2327–2328 (1983).
[Crossref]

Boyd, I. W.

I. W. Boyd, T. D. Binnie, J. I. B. Wilson, and M. J. Colles, “Absorption of infrared radiation in silicon,” J. Appl. Phys. 55(8), 3061–3063 (1984).
[Crossref]

Buoncristiani, A. M.

S. Albin, A. D. Cropper, L. C. Watkins, C. E. Buvik, and A. M. Buoncristiani, “Laser Damage Threshold Of Diamond Films,” Opt. Eng. 28(3), 283281 (1989).
[Crossref]

Butler, J. E.

M. P. Hiscocks, C. J. Kaalund, F. Ladouceur, S. T. Huntington, B. C. Gibson, S. Trpkovski, D. Simpson, E. Ampem-Lassen, S. Prawer, and J. E. Butler, “Reactive ion etching of waveguide structures in diamond,” Diamond Related Materials 17(11), 1831–1834 (2008).
[Crossref]

Buvik, C. E.

S. Albin, A. D. Cropper, L. C. Watkins, C. E. Buvik, and A. M. Buoncristiani, “Laser Damage Threshold Of Diamond Films,” Opt. Eng. 28(3), 283281 (1989).
[Crossref]

Chen, W.

N. M. Ravindra, B. Sopori, O. H. Gokce, S. X. Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen, and Y. Zhang, “Emissivity Measurements and Modeling of Silicon-Related Materials: An Overview,” Int. J. Thermophys. 22(5), 1593–1611 (2001).
[Crossref]

Cheng, S. X.

N. M. Ravindra, B. Sopori, O. H. Gokce, S. X. Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen, and Y. Zhang, “Emissivity Measurements and Modeling of Silicon-Related Materials: An Overview,” Int. J. Thermophys. 22(5), 1593–1611 (2001).
[Crossref]

Choy, J. T.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated Diamond Networks for Quantum Nanophotonics,” Nano Lett. 12(3), 1578–1582 (2012).
[Crossref] [PubMed]

Colles, M. J.

I. W. Boyd, T. D. Binnie, J. I. B. Wilson, and M. J. Colles, “Absorption of infrared radiation in silicon,” J. Appl. Phys. 55(8), 3061–3063 (1984).
[Crossref]

Cropper, A. D.

S. Albin, A. D. Cropper, L. C. Watkins, C. E. Buvik, and A. M. Buoncristiani, “Laser Damage Threshold Of Diamond Films,” Opt. Eng. 28(3), 283281 (1989).
[Crossref]

Ehrlich, D. J.

M. Rothschild, C. Arnone, and D. J. Ehrlich, “Excimer‐laser etching of diamond and hard carbon films by direct writing and optical projection,” J. Vac. Sci. Technol. B 4(1), 310–314 (1986).
[Crossref]

Endo, R. K.

R. K. Endo, Y. Fujihara, and M. Susa, “Calculation of the density and heat capacity of silicon by molecular dynamics simulation,” High Temp. High Press. 35-36(5), 505–511 (2003).
[Crossref]

Ertl, S.

A. Aleksov, M. Kubovic, M. Kasu, P. Schmid, D. Grobe, S. Ertl, M. Schreck, B. Stritzker, and E. Kohn, “Diamond-based electronics for RF applications,” Diamond Related Materials 13(2), 233–240 (2004).
[Crossref]

Foord, J. S.

E. L. H. Thomas, G. W. Nelson, S. Mandal, J. S. Foord, and O. A. Williams, “Chemical mechanical polishing of thin film diamond,” Carbon 68, 473–479 (2014).
[Crossref]

Fujihara, Y.

R. K. Endo, Y. Fujihara, and M. Susa, “Calculation of the density and heat capacity of silicon by molecular dynamics simulation,” High Temp. High Press. 35-36(5), 505–511 (2003).
[Crossref]

Garnov, S. V.

T. V. Kononenko, V. G. Ralchenko, I. I. Vlasov, S. V. Garnov, and V. I. Konov, “Ablation of CVD diamond with nanosecond laser pulses of UV–IR range,” Diamond Related Materials 7(11-12), 1623–1627 (1998).
[Crossref]

Gibson, B. C.

M. P. Hiscocks, C. J. Kaalund, F. Ladouceur, S. T. Huntington, B. C. Gibson, S. Trpkovski, D. Simpson, E. Ampem-Lassen, S. Prawer, and J. E. Butler, “Reactive ion etching of waveguide structures in diamond,” Diamond Related Materials 17(11), 1831–1834 (2008).
[Crossref]

Gokce, O. H.

N. M. Ravindra, B. Sopori, O. H. Gokce, S. X. Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen, and Y. Zhang, “Emissivity Measurements and Modeling of Silicon-Related Materials: An Overview,” Int. J. Thermophys. 22(5), 1593–1611 (2001).
[Crossref]

Greentree, A. D.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

Grobe, D.

A. Aleksov, M. Kubovic, M. Kasu, P. Schmid, D. Grobe, S. Ertl, M. Schreck, B. Stritzker, and E. Kohn, “Diamond-based electronics for RF applications,” Diamond Related Materials 13(2), 233–240 (2004).
[Crossref]

Gruhler, N.

Hausmann, B. J. M.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated Diamond Networks for Quantum Nanophotonics,” Nano Lett. 12(3), 1578–1582 (2012).
[Crossref] [PubMed]

Hiscocks, M. P.

M. P. Hiscocks, C. J. Kaalund, F. Ladouceur, S. T. Huntington, B. C. Gibson, S. Trpkovski, D. Simpson, E. Ampem-Lassen, S. Prawer, and J. E. Butler, “Reactive ion etching of waveguide structures in diamond,” Diamond Related Materials 17(11), 1831–1834 (2008).
[Crossref]

Huntington, S. T.

M. P. Hiscocks, C. J. Kaalund, F. Ladouceur, S. T. Huntington, B. C. Gibson, S. Trpkovski, D. Simpson, E. Ampem-Lassen, S. Prawer, and J. E. Butler, “Reactive ion etching of waveguide structures in diamond,” Diamond Related Materials 17(11), 1831–1834 (2008).
[Crossref]

Jin, L.

N. M. Ravindra, B. Sopori, O. H. Gokce, S. X. Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen, and Y. Zhang, “Emissivity Measurements and Modeling of Silicon-Related Materials: An Overview,” Int. J. Thermophys. 22(5), 1593–1611 (2001).
[Crossref]

Kaalund, C. J.

M. P. Hiscocks, C. J. Kaalund, F. Ladouceur, S. T. Huntington, B. C. Gibson, S. Trpkovski, D. Simpson, E. Ampem-Lassen, S. Prawer, and J. E. Butler, “Reactive ion etching of waveguide structures in diamond,” Diamond Related Materials 17(11), 1831–1834 (2008).
[Crossref]

Kasu, M.

A. Aleksov, M. Kubovic, M. Kasu, P. Schmid, D. Grobe, S. Ertl, M. Schreck, B. Stritzker, and E. Kohn, “Diamond-based electronics for RF applications,” Diamond Related Materials 13(2), 233–240 (2004).
[Crossref]

Khasminskaya, S.

Kohn, E.

A. Aleksov, M. Kubovic, M. Kasu, P. Schmid, D. Grobe, S. Ertl, M. Schreck, B. Stritzker, and E. Kohn, “Diamond-based electronics for RF applications,” Diamond Related Materials 13(2), 233–240 (2004).
[Crossref]

Kononenko, T. V.

T. V. Kononenko, V. G. Ralchenko, I. I. Vlasov, S. V. Garnov, and V. I. Konov, “Ablation of CVD diamond with nanosecond laser pulses of UV–IR range,” Diamond Related Materials 7(11-12), 1623–1627 (1998).
[Crossref]

Konov, V. I.

T. V. Kononenko, V. G. Ralchenko, I. I. Vlasov, S. V. Garnov, and V. I. Konov, “Ablation of CVD diamond with nanosecond laser pulses of UV–IR range,” Diamond Related Materials 7(11-12), 1623–1627 (1998).
[Crossref]

Korotushenko, K. G.

V. G. Ral’chenko, K. G. Korotushenko, A. A. Smolin, and E. N. Loubnin, “Fine patterning of diamond films by laser-assisted chemical etching in oxygen,” Diamond Related Materials 4(7), 893–896 (1995).
[Crossref]

Kruer, M. R.

J. R. Meyer, M. R. Kruer, and F. J. Bartoli, “Optical heating in semiconductors: Laser damage in Ge, Si, InSb, and GaAs,” J. Appl. Phys. 51(10), 5513–5522 (1980).
[Crossref]

Kubanek, A.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated Diamond Networks for Quantum Nanophotonics,” Nano Lett. 12(3), 1578–1582 (2012).
[Crossref] [PubMed]

Kubovic, M.

A. Aleksov, M. Kubovic, M. Kasu, P. Schmid, D. Grobe, S. Ertl, M. Schreck, B. Stritzker, and E. Kohn, “Diamond-based electronics for RF applications,” Diamond Related Materials 13(2), 233–240 (2004).
[Crossref]

Ladouceur, F.

M. P. Hiscocks, C. J. Kaalund, F. Ladouceur, S. T. Huntington, B. C. Gibson, S. Trpkovski, D. Simpson, E. Ampem-Lassen, S. Prawer, and J. E. Butler, “Reactive ion etching of waveguide structures in diamond,” Diamond Related Materials 17(11), 1831–1834 (2008).
[Crossref]

Liao, M.

A. V. Sumant, O. Auciello, M. Liao, and O. A. Williams, “MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films,” MRS Bull. 39(06), 511–516 (2014).
[Crossref]

Loncar, M.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated Diamond Networks for Quantum Nanophotonics,” Nano Lett. 12(3), 1578–1582 (2012).
[Crossref] [PubMed]

Loubnin, E. N.

V. G. Ral’chenko, K. G. Korotushenko, A. A. Smolin, and E. N. Loubnin, “Fine patterning of diamond films by laser-assisted chemical etching in oxygen,” Diamond Related Materials 4(7), 893–896 (1995).
[Crossref]

Lukin, M. D.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated Diamond Networks for Quantum Nanophotonics,” Nano Lett. 12(3), 1578–1582 (2012).
[Crossref] [PubMed]

Luomajärvi, M.

M. Blomberg, K. Naukkarinen, T. Tuomi, V.-M. Airaksinen, M. Luomajärvi, and E. Rauhala, “Substrate heating effects in CO2 laser annealing of ion‐implanted silicon,” J. Appl. Phys. 54(5), 2327–2328 (1983).
[Crossref]

Maletinsky, P.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated Diamond Networks for Quantum Nanophotonics,” Nano Lett. 12(3), 1578–1582 (2012).
[Crossref] [PubMed]

Mandal, S.

E. L. H. Thomas, G. W. Nelson, S. Mandal, J. S. Foord, and O. A. Williams, “Chemical mechanical polishing of thin film diamond,” Carbon 68, 473–479 (2014).
[Crossref]

Masood, A.

A. Masood, M. Aslam, M. Tamor, and T. Potter, “Techniques for Patterning of CVD Diamond Films on Non-Diamond Substrates,” J. Electrochem. Soc. 138(11), L67–L68 (1991).
[Crossref]

McCutcheon, M.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated Diamond Networks for Quantum Nanophotonics,” Nano Lett. 12(3), 1578–1582 (2012).
[Crossref] [PubMed]

Meyer, J. R.

J. R. Meyer, M. R. Kruer, and F. J. Bartoli, “Optical heating in semiconductors: Laser damage in Ge, Si, InSb, and GaAs,” J. Appl. Phys. 51(10), 5513–5522 (1980).
[Crossref]

Naukkarinen, K.

M. Blomberg, K. Naukkarinen, T. Tuomi, V.-M. Airaksinen, M. Luomajärvi, and E. Rauhala, “Substrate heating effects in CO2 laser annealing of ion‐implanted silicon,” J. Appl. Phys. 54(5), 2327–2328 (1983).
[Crossref]

Nebel, C.

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi., A Appl. Mater. Sci. 212(11), 2385–2399 (2015).
[Crossref]

P. Rath, N. Gruhler, S. Khasminskaya, C. Nebel, C. Wild, and W. H. P. Pernice, “Waferscale nanophotonic circuits made from diamond-on-insulator substrates,” Opt. Express 21(9), 11031–11036 (2013).
[Crossref] [PubMed]

Nelson, G. W.

E. L. H. Thomas, G. W. Nelson, S. Mandal, J. S. Foord, and O. A. Williams, “Chemical mechanical polishing of thin film diamond,” Carbon 68, 473–479 (2014).
[Crossref]

Pernice, W. H. P.

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi., A Appl. Mater. Sci. 212(11), 2385–2399 (2015).
[Crossref]

P. Rath, N. Gruhler, S. Khasminskaya, C. Nebel, C. Wild, and W. H. P. Pernice, “Waferscale nanophotonic circuits made from diamond-on-insulator substrates,” Opt. Express 21(9), 11031–11036 (2013).
[Crossref] [PubMed]

Potter, T.

A. Masood, M. Aslam, M. Tamor, and T. Potter, “Techniques for Patterning of CVD Diamond Films on Non-Diamond Substrates,” J. Electrochem. Soc. 138(11), L67–L68 (1991).
[Crossref]

Prawer, S.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

M. P. Hiscocks, C. J. Kaalund, F. Ladouceur, S. T. Huntington, B. C. Gibson, S. Trpkovski, D. Simpson, E. Ampem-Lassen, S. Prawer, and J. E. Butler, “Reactive ion etching of waveguide structures in diamond,” Diamond Related Materials 17(11), 1831–1834 (2008).
[Crossref]

Preuss, S.

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time‐resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
[Crossref]

Quan, Q.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated Diamond Networks for Quantum Nanophotonics,” Nano Lett. 12(3), 1578–1582 (2012).
[Crossref] [PubMed]

Ral’chenko, V. G.

V. G. Ral’chenko, K. G. Korotushenko, A. A. Smolin, and E. N. Loubnin, “Fine patterning of diamond films by laser-assisted chemical etching in oxygen,” Diamond Related Materials 4(7), 893–896 (1995).
[Crossref]

Ralchenko, V. G.

T. V. Kononenko, V. G. Ralchenko, I. I. Vlasov, S. V. Garnov, and V. I. Konov, “Ablation of CVD diamond with nanosecond laser pulses of UV–IR range,” Diamond Related Materials 7(11-12), 1623–1627 (1998).
[Crossref]

Rath, P.

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi., A Appl. Mater. Sci. 212(11), 2385–2399 (2015).
[Crossref]

P. Rath, N. Gruhler, S. Khasminskaya, C. Nebel, C. Wild, and W. H. P. Pernice, “Waferscale nanophotonic circuits made from diamond-on-insulator substrates,” Opt. Express 21(9), 11031–11036 (2013).
[Crossref] [PubMed]

Rauhala, E.

M. Blomberg, K. Naukkarinen, T. Tuomi, V.-M. Airaksinen, M. Luomajärvi, and E. Rauhala, “Substrate heating effects in CO2 laser annealing of ion‐implanted silicon,” J. Appl. Phys. 54(5), 2327–2328 (1983).
[Crossref]

Ravindra, N. M.

N. M. Ravindra, B. Sopori, O. H. Gokce, S. X. Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen, and Y. Zhang, “Emissivity Measurements and Modeling of Silicon-Related Materials: An Overview,” Int. J. Thermophys. 22(5), 1593–1611 (2001).
[Crossref]

Rothschild, M.

M. Rothschild, C. Arnone, and D. J. Ehrlich, “Excimer‐laser etching of diamond and hard carbon films by direct writing and optical projection,” J. Vac. Sci. Technol. B 4(1), 310–314 (1986).
[Crossref]

Schmid, P.

A. Aleksov, M. Kubovic, M. Kasu, P. Schmid, D. Grobe, S. Ertl, M. Schreck, B. Stritzker, and E. Kohn, “Diamond-based electronics for RF applications,” Diamond Related Materials 13(2), 233–240 (2004).
[Crossref]

Schreck, M.

A. Aleksov, M. Kubovic, M. Kasu, P. Schmid, D. Grobe, S. Ertl, M. Schreck, B. Stritzker, and E. Kohn, “Diamond-based electronics for RF applications,” Diamond Related Materials 13(2), 233–240 (2004).
[Crossref]

Shenoy, A.

N. M. Ravindra, B. Sopori, O. H. Gokce, S. X. Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen, and Y. Zhang, “Emissivity Measurements and Modeling of Silicon-Related Materials: An Overview,” Int. J. Thermophys. 22(5), 1593–1611 (2001).
[Crossref]

Shields, B.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated Diamond Networks for Quantum Nanophotonics,” Nano Lett. 12(3), 1578–1582 (2012).
[Crossref] [PubMed]

Simpson, D.

M. P. Hiscocks, C. J. Kaalund, F. Ladouceur, S. T. Huntington, B. C. Gibson, S. Trpkovski, D. Simpson, E. Ampem-Lassen, S. Prawer, and J. E. Butler, “Reactive ion etching of waveguide structures in diamond,” Diamond Related Materials 17(11), 1831–1834 (2008).
[Crossref]

Smolin, A. A.

V. G. Ral’chenko, K. G. Korotushenko, A. A. Smolin, and E. N. Loubnin, “Fine patterning of diamond films by laser-assisted chemical etching in oxygen,” Diamond Related Materials 4(7), 893–896 (1995).
[Crossref]

Sopori, B.

N. M. Ravindra, B. Sopori, O. H. Gokce, S. X. Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen, and Y. Zhang, “Emissivity Measurements and Modeling of Silicon-Related Materials: An Overview,” Int. J. Thermophys. 22(5), 1593–1611 (2001).
[Crossref]

Stritzker, B.

A. Aleksov, M. Kubovic, M. Kasu, P. Schmid, D. Grobe, S. Ertl, M. Schreck, B. Stritzker, and E. Kohn, “Diamond-based electronics for RF applications,” Diamond Related Materials 13(2), 233–240 (2004).
[Crossref]

Stuke, M.

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time‐resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
[Crossref]

Sumant, A. V.

A. V. Sumant, O. Auciello, M. Liao, and O. A. Williams, “MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films,” MRS Bull. 39(06), 511–516 (2014).
[Crossref]

Susa, M.

R. K. Endo, Y. Fujihara, and M. Susa, “Calculation of the density and heat capacity of silicon by molecular dynamics simulation,” High Temp. High Press. 35-36(5), 505–511 (2003).
[Crossref]

Tamor, M.

A. Masood, M. Aslam, M. Tamor, and T. Potter, “Techniques for Patterning of CVD Diamond Films on Non-Diamond Substrates,” J. Electrochem. Soc. 138(11), L67–L68 (1991).
[Crossref]

Thomas, E. L. H.

E. L. H. Thomas, G. W. Nelson, S. Mandal, J. S. Foord, and O. A. Williams, “Chemical mechanical polishing of thin film diamond,” Carbon 68, 473–479 (2014).
[Crossref]

Trpkovski, S.

M. P. Hiscocks, C. J. Kaalund, F. Ladouceur, S. T. Huntington, B. C. Gibson, S. Trpkovski, D. Simpson, E. Ampem-Lassen, S. Prawer, and J. E. Butler, “Reactive ion etching of waveguide structures in diamond,” Diamond Related Materials 17(11), 1831–1834 (2008).
[Crossref]

Tuomi, T.

M. Blomberg, K. Naukkarinen, T. Tuomi, V.-M. Airaksinen, M. Luomajärvi, and E. Rauhala, “Substrate heating effects in CO2 laser annealing of ion‐implanted silicon,” J. Appl. Phys. 54(5), 2327–2328 (1983).
[Crossref]

Ummethala, S.

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi., A Appl. Mater. Sci. 212(11), 2385–2399 (2015).
[Crossref]

Vlasov, I. I.

T. V. Kononenko, V. G. Ralchenko, I. I. Vlasov, S. V. Garnov, and V. I. Konov, “Ablation of CVD diamond with nanosecond laser pulses of UV–IR range,” Diamond Related Materials 7(11-12), 1623–1627 (1998).
[Crossref]

Watkins, L. C.

S. Albin, A. D. Cropper, L. C. Watkins, C. E. Buvik, and A. M. Buoncristiani, “Laser Damage Threshold Of Diamond Films,” Opt. Eng. 28(3), 283281 (1989).
[Crossref]

Wild, C.

Williams, O. A.

E. L. H. Thomas, G. W. Nelson, S. Mandal, J. S. Foord, and O. A. Williams, “Chemical mechanical polishing of thin film diamond,” Carbon 68, 473–479 (2014).
[Crossref]

A. V. Sumant, O. Auciello, M. Liao, and O. A. Williams, “MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films,” MRS Bull. 39(06), 511–516 (2014).
[Crossref]

O. A. Williams, “Nanocrystalline diamond,” Diamond Related Materials 20(5-6), 621–640 (2011).
[Crossref]

Wilson, J. I. B.

I. W. Boyd, T. D. Binnie, J. I. B. Wilson, and M. J. Colles, “Absorption of infrared radiation in silicon,” J. Appl. Phys. 55(8), 3061–3063 (1984).
[Crossref]

Yacoby, A.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated Diamond Networks for Quantum Nanophotonics,” Nano Lett. 12(3), 1578–1582 (2012).
[Crossref] [PubMed]

Zhang, Y.

N. M. Ravindra, B. Sopori, O. H. Gokce, S. X. Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen, and Y. Zhang, “Emissivity Measurements and Modeling of Silicon-Related Materials: An Overview,” Int. J. Thermophys. 22(5), 1593–1611 (2001).
[Crossref]

Appl. Phys. Lett. (1)

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time‐resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
[Crossref]

Carbon (1)

E. L. H. Thomas, G. W. Nelson, S. Mandal, J. S. Foord, and O. A. Williams, “Chemical mechanical polishing of thin film diamond,” Carbon 68, 473–479 (2014).
[Crossref]

Diamond Related Materials (5)

O. A. Williams, “Nanocrystalline diamond,” Diamond Related Materials 20(5-6), 621–640 (2011).
[Crossref]

T. V. Kononenko, V. G. Ralchenko, I. I. Vlasov, S. V. Garnov, and V. I. Konov, “Ablation of CVD diamond with nanosecond laser pulses of UV–IR range,” Diamond Related Materials 7(11-12), 1623–1627 (1998).
[Crossref]

A. Aleksov, M. Kubovic, M. Kasu, P. Schmid, D. Grobe, S. Ertl, M. Schreck, B. Stritzker, and E. Kohn, “Diamond-based electronics for RF applications,” Diamond Related Materials 13(2), 233–240 (2004).
[Crossref]

M. P. Hiscocks, C. J. Kaalund, F. Ladouceur, S. T. Huntington, B. C. Gibson, S. Trpkovski, D. Simpson, E. Ampem-Lassen, S. Prawer, and J. E. Butler, “Reactive ion etching of waveguide structures in diamond,” Diamond Related Materials 17(11), 1831–1834 (2008).
[Crossref]

V. G. Ral’chenko, K. G. Korotushenko, A. A. Smolin, and E. N. Loubnin, “Fine patterning of diamond films by laser-assisted chemical etching in oxygen,” Diamond Related Materials 4(7), 893–896 (1995).
[Crossref]

High Temp. High Press. (1)

R. K. Endo, Y. Fujihara, and M. Susa, “Calculation of the density and heat capacity of silicon by molecular dynamics simulation,” High Temp. High Press. 35-36(5), 505–511 (2003).
[Crossref]

Int. J. Thermophys. (1)

N. M. Ravindra, B. Sopori, O. H. Gokce, S. X. Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen, and Y. Zhang, “Emissivity Measurements and Modeling of Silicon-Related Materials: An Overview,” Int. J. Thermophys. 22(5), 1593–1611 (2001).
[Crossref]

J. Appl. Phys. (3)

J. R. Meyer, M. R. Kruer, and F. J. Bartoli, “Optical heating in semiconductors: Laser damage in Ge, Si, InSb, and GaAs,” J. Appl. Phys. 51(10), 5513–5522 (1980).
[Crossref]

M. Blomberg, K. Naukkarinen, T. Tuomi, V.-M. Airaksinen, M. Luomajärvi, and E. Rauhala, “Substrate heating effects in CO2 laser annealing of ion‐implanted silicon,” J. Appl. Phys. 54(5), 2327–2328 (1983).
[Crossref]

I. W. Boyd, T. D. Binnie, J. I. B. Wilson, and M. J. Colles, “Absorption of infrared radiation in silicon,” J. Appl. Phys. 55(8), 3061–3063 (1984).
[Crossref]

J. Electrochem. Soc. (1)

A. Masood, M. Aslam, M. Tamor, and T. Potter, “Techniques for Patterning of CVD Diamond Films on Non-Diamond Substrates,” J. Electrochem. Soc. 138(11), L67–L68 (1991).
[Crossref]

J. Vac. Sci. Technol. B (1)

M. Rothschild, C. Arnone, and D. J. Ehrlich, “Excimer‐laser etching of diamond and hard carbon films by direct writing and optical projection,” J. Vac. Sci. Technol. B 4(1), 310–314 (1986).
[Crossref]

MRS Bull. (1)

A. V. Sumant, O. Auciello, M. Liao, and O. A. Williams, “MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films,” MRS Bull. 39(06), 511–516 (2014).
[Crossref]

Nano Lett. (1)

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated Diamond Networks for Quantum Nanophotonics,” Nano Lett. 12(3), 1578–1582 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

Opt. Eng. (1)

S. Albin, A. D. Cropper, L. C. Watkins, C. E. Buvik, and A. M. Buoncristiani, “Laser Damage Threshold Of Diamond Films,” Opt. Eng. 28(3), 283281 (1989).
[Crossref]

Opt. Express (1)

Phys. Status Solidi., A Appl. Mater. Sci. (1)

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi., A Appl. Mater. Sci. 212(11), 2385–2399 (2015).
[Crossref]

Other (5)

A. Yariv and A. Yariv, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007).

R. P. Mildren, “Intrinsic Optical Properties of Diamond,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Wiley-VCH, 2013), pp. 1–34.

V. V. Migulin, V. G. Ralchenko, and Y. J. Baik, “Oxygen-assisted laser cutting and drilling of CVD diamond,” in Lasers in Synthesis, Characterization, and Processing of Diamond, V. I. Konov and V. G. Ralchenko, eds. (SPIE, 1997), Vol. 3484, pp. 175–179.

V. I. Konov, T. V. Kononenko, and V. V. Kononenko, “Laser Micro- and Nanoprocessing of Diamond Materials,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Wiley-VCH, 2013), pp. 385–443.

D. C. Harris, Development of Chemical-Vapor-Deposited Diamond for Infrared Optical Applications. Status Report and Summary of Properties (Naval Air Warfare Center Weapons Div China Lake CA, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Calculated optical absorption coefficient of silicon at 10.6μm for different doping levels and temperatures (calculated using the absorption model described in [17]).
Fig. 2
Fig. 2 Simulated laser beam penetration (left) and resulting temperature profiles (right) for silicon substrate doping levels of 1018 cm−3 (a and b) and 1019 cm−3 (c and d).
Fig. 3
Fig. 3 Maximum diamond surface temperature for different substrate doping and beam power combinations, assuming a 500 nm thick diamond layer doping and a 50 μm beam radius. The red line marks the graphitization threshold temperature of 1000 °K. The black area corresponds to temperatures higher than the melting point of silicon.
Fig. 4
Fig. 4 Maximum diamond surface temperature for different diamond thickness and beam power combinations, assuming a substrate doped at 1019 cm−3 and a 50 μm beam radius. The red line marks the graphitization threshold temperature of 1000 °K. The black area corresponds to temperatures higher than the melting point of silicon.
Fig. 5
Fig. 5 (a) Undercut nanocrystalline diamond film on silicon substrate. Lines (b) and dots (c) patterned in diamond. (d) Zoomed-in image of a dot showing interference fringes and debris.

Tables (2)

Tables Icon

Table 1 Silicon parameters

Tables Icon

Table 2 Diamond parameters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α( N,T )= σ( T )[ N+ n i ( T ) ]+ α 0
α( N,T )=( 1.9× 10 20 T 1.5 )( N+3.87× 10 16 T 1.5 e 7020 T )+2

Metrics