Abstract

The previously developed high-performance method of the atomistic simulation of thin film deposition is applied to the investigation of effects connected with SiO2 films annealing. It is found that the film density is reduced for about 0.15 g/cm3 under annealing with the temperature of 1300 K. This corresponds to the reduction of the refractive index for approximately 0.03. Concentrations of the non-bridging and threefold coordinated oxygen atoms are reduced up to four times after annealing. The stress value essentially reduces after annealing at 1300 K and the film thickness increases for 3 nm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Computational experiments on atomistic modeling of thin-film deposition

F. Grigoriev, A. Sulimov, I. Kochikov, O. Kondakova, V. Sulimov, and A. Tikhonravov
Appl. Opt. 56(4) C87-C90 (2017)

Post deposition annealing of IBS mixture coatings for compensation of film induced stress

Simonas Kičas, Ugnius Gimževskis, and Simas Melnikas
Opt. Mater. Express 6(7) 2236-2243 (2016)

Characteristics of ion-beam-sputtered high-refractive-index TiO2-SiO2 mixed films

Shiuh Chao, Wen-Hsiang Wang, Min-Yu Hsu, and Liang-Chu Wang
J. Opt. Soc. Am. A 16(6) 1477-1483 (1999)

References

  • View by:
  • |
  • |
  • |

  1. Y. Jiang, Y. Ji, H. Liu, D. Liu, L. Wang, C. Jiang, Y. Yang, and D. Chen, “Insights into effects of thermal annealing on optical properties of SiO2 films,” Proc. SPIE 8416, 84160F (2012).
    [Crossref]
  2. Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, X. Cheng, Y. Yang, and Y. Ji, “Optical and interfacial layer properties of SiO2 films deposited on different substrates,” Appl. Opt. 53(4), A83–A87 (2014).
    [Crossref] [PubMed]
  3. K. Taniguchi, M. Tanaka, C. Hamaguchi, and K. Imai, “Density relaxation of silicon dioxide on (100) silicon during thermal annealing,” J. Appl. Phys. 67(5), 2195–2198 (1990).
    [Crossref]
  4. C. E. Viana, N. I. Morimoto, and O. Bonnaud, “Annealing effects in the PECVD SiO2 thin films deposited using TEOS, Ar and O2 mixture,” Microelectron. Reliab. 40(4-5), 613–616 (2000).
    [Crossref]
  5. F. V. Grigoriev, A. V. Sulimov, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “High performance atomistic modeling of optical thin films deposited by energetic processes,” Int. J. High Perform. Comput. Appl. 29(2), 184–192 (2015).
    [Crossref]
  6. F. V. Grigoriev, A. V. Sulimov, E. V. Katkova, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “Full-atomistic nanoscale modeling of the ion beam sputtering deposition of SiO2 thin films,” J. of Non-C Sol. 448, 1–5 (2016).
  7. J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. T. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010).
    [Crossref] [PubMed]
  8. A. Lefèvre, L. J. Lewis, L. Martinu, and M. R. Wertheimer, “Structural properties of silicon dioxide thin films densified by medium-energy particles,” Phys. Rev. B 64(11), 115429 (2001).
    [Crossref]
  9. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular-Dynamics with Coupling to an External Bath,” J. Chem. Phys. 81(8), 3684–3690 (1984).
    [Crossref]
  10. T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems,” J. Chem. Phys. 98(12), 10089–10092 (1993).
    [Crossref]
  11. Manual of GROMACS, Available at: ftp://ftp.gromacs.org/pub/manual/manual-4.5.6.pdf
  12. M. J Abraham, T. Murtola, R Schulz, S Páll, J. C Smith, B Hess, and E Lindahl, “GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers,” SoftwareX 1–2, 19–25 (2015).
  13. H. Zheng, “Molecular Dynamic Simulation of Thin Film Growth Stress Evolution” (2011). Theses and Dissertations. Paper 1256.
  14. S. V. King, “Ring Configurations in a Random Network Model of Vitreous Silica,” Nature 213(5081), 1112–1113 (1967).
    [Crossref]
  15. X. Yuan and A. N. Cormack, “Efficient algorithm for primitive ring statistics in topological networks,” Comput. Mater. Sci. 24(3), 343–360 (2002).
    [Crossref]
  16. E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, “Roughness parameters,” J. Mater. Process. Technol. 123(1), 133–145 (2002).
    [Crossref]
  17. V. Sadovnichy, A. Tikhonravov, V. l. Voevodin, and V. Opanasenko, “Lomonosov”: Supercomputing at Moscow State University. In Contemporary High Performance Computing: From Petascale toward Exascale, (CRC Press, 2013), pp.283–307.
  18. K. Vedam and P. Limsuwan, “Piezo- and elasto-optic properties of liquids under high pressure. II. Refractive index vs density,” J. Chem. Phys. 69(11), 4772–4778 (1978).
    [Crossref]
  19. M. Bischoff, T. Nowitzki, O. Voß, S. Wilbrandt, and O. Stenzel, “Postdeposition treatment of IBS coatings for UV applications with optimized thin-film stress properties,” Appl. Opt. 53(4), A212–A220 (2014).
    [Crossref] [PubMed]
  20. X. Yuan and A. N. Cormack, “Efficient algorithm for primitive ring statistics in topological networks,” Comput. Mater. Sci. 24(3), 343–360 (2002).
    [Crossref]
  21. W. Fang, “Determination of the elastic modulus of thin film materials using self-deformed micromachined cantilevers,” J. Micromech. Microeng. 9(3), 230–235 (1999).
    [Crossref]

2016 (1)

F. V. Grigoriev, A. V. Sulimov, E. V. Katkova, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “Full-atomistic nanoscale modeling of the ion beam sputtering deposition of SiO2 thin films,” J. of Non-C Sol. 448, 1–5 (2016).

2015 (2)

F. V. Grigoriev, A. V. Sulimov, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “High performance atomistic modeling of optical thin films deposited by energetic processes,” Int. J. High Perform. Comput. Appl. 29(2), 184–192 (2015).
[Crossref]

M. J Abraham, T. Murtola, R Schulz, S Páll, J. C Smith, B Hess, and E Lindahl, “GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers,” SoftwareX 1–2, 19–25 (2015).

2014 (2)

2012 (1)

Y. Jiang, Y. Ji, H. Liu, D. Liu, L. Wang, C. Jiang, Y. Yang, and D. Chen, “Insights into effects of thermal annealing on optical properties of SiO2 films,” Proc. SPIE 8416, 84160F (2012).
[Crossref]

2010 (1)

J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. T. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010).
[Crossref] [PubMed]

2002 (3)

X. Yuan and A. N. Cormack, “Efficient algorithm for primitive ring statistics in topological networks,” Comput. Mater. Sci. 24(3), 343–360 (2002).
[Crossref]

X. Yuan and A. N. Cormack, “Efficient algorithm for primitive ring statistics in topological networks,” Comput. Mater. Sci. 24(3), 343–360 (2002).
[Crossref]

E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, “Roughness parameters,” J. Mater. Process. Technol. 123(1), 133–145 (2002).
[Crossref]

2001 (1)

A. Lefèvre, L. J. Lewis, L. Martinu, and M. R. Wertheimer, “Structural properties of silicon dioxide thin films densified by medium-energy particles,” Phys. Rev. B 64(11), 115429 (2001).
[Crossref]

2000 (1)

C. E. Viana, N. I. Morimoto, and O. Bonnaud, “Annealing effects in the PECVD SiO2 thin films deposited using TEOS, Ar and O2 mixture,” Microelectron. Reliab. 40(4-5), 613–616 (2000).
[Crossref]

1999 (1)

W. Fang, “Determination of the elastic modulus of thin film materials using self-deformed micromachined cantilevers,” J. Micromech. Microeng. 9(3), 230–235 (1999).
[Crossref]

1993 (1)

T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems,” J. Chem. Phys. 98(12), 10089–10092 (1993).
[Crossref]

1990 (1)

K. Taniguchi, M. Tanaka, C. Hamaguchi, and K. Imai, “Density relaxation of silicon dioxide on (100) silicon during thermal annealing,” J. Appl. Phys. 67(5), 2195–2198 (1990).
[Crossref]

1984 (1)

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular-Dynamics with Coupling to an External Bath,” J. Chem. Phys. 81(8), 3684–3690 (1984).
[Crossref]

1978 (1)

K. Vedam and P. Limsuwan, “Piezo- and elasto-optic properties of liquids under high pressure. II. Refractive index vs density,” J. Chem. Phys. 69(11), 4772–4778 (1978).
[Crossref]

1967 (1)

S. V. King, “Ring Configurations in a Random Network Model of Vitreous Silica,” Nature 213(5081), 1112–1113 (1967).
[Crossref]

Abraham, M. J

M. J Abraham, T. Murtola, R Schulz, S Páll, J. C Smith, B Hess, and E Lindahl, “GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers,” SoftwareX 1–2, 19–25 (2015).

Aktulga, H. M.

J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. T. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010).
[Crossref] [PubMed]

Berendsen, H. J. C.

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular-Dynamics with Coupling to an External Bath,” J. Chem. Phys. 81(8), 3684–3690 (1984).
[Crossref]

Bischoff, M.

Bonnaud, O.

C. E. Viana, N. I. Morimoto, and O. Bonnaud, “Annealing effects in the PECVD SiO2 thin films deposited using TEOS, Ar and O2 mixture,” Microelectron. Reliab. 40(4-5), 613–616 (2000).
[Crossref]

Chen, D.

Y. Jiang, Y. Ji, H. Liu, D. Liu, L. Wang, C. Jiang, Y. Yang, and D. Chen, “Insights into effects of thermal annealing on optical properties of SiO2 films,” Proc. SPIE 8416, 84160F (2012).
[Crossref]

Cheng, X.

Cormack, A. N.

X. Yuan and A. N. Cormack, “Efficient algorithm for primitive ring statistics in topological networks,” Comput. Mater. Sci. 24(3), 343–360 (2002).
[Crossref]

X. Yuan and A. N. Cormack, “Efficient algorithm for primitive ring statistics in topological networks,” Comput. Mater. Sci. 24(3), 343–360 (2002).
[Crossref]

Darden, T.

T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems,” J. Chem. Phys. 98(12), 10089–10092 (1993).
[Crossref]

DiNola, A.

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular-Dynamics with Coupling to an External Bath,” J. Chem. Phys. 81(8), 3684–3690 (1984).
[Crossref]

Elewa, I. M.

E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, “Roughness parameters,” J. Mater. Process. Technol. 123(1), 133–145 (2002).
[Crossref]

Fang, W.

W. Fang, “Determination of the elastic modulus of thin film materials using self-deformed micromachined cantilevers,” J. Micromech. Microeng. 9(3), 230–235 (1999).
[Crossref]

Fogarty, J. C.

J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. T. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010).
[Crossref] [PubMed]

Gadelmawla, E. S.

E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, “Roughness parameters,” J. Mater. Process. Technol. 123(1), 133–145 (2002).
[Crossref]

Grama, A. Y.

J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. T. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010).
[Crossref] [PubMed]

Grigoriev, F. V.

F. V. Grigoriev, A. V. Sulimov, E. V. Katkova, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “Full-atomistic nanoscale modeling of the ion beam sputtering deposition of SiO2 thin films,” J. of Non-C Sol. 448, 1–5 (2016).

F. V. Grigoriev, A. V. Sulimov, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “High performance atomistic modeling of optical thin films deposited by energetic processes,” Int. J. High Perform. Comput. Appl. 29(2), 184–192 (2015).
[Crossref]

Haak, J. R.

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular-Dynamics with Coupling to an External Bath,” J. Chem. Phys. 81(8), 3684–3690 (1984).
[Crossref]

Hamaguchi, C.

K. Taniguchi, M. Tanaka, C. Hamaguchi, and K. Imai, “Density relaxation of silicon dioxide on (100) silicon during thermal annealing,” J. Appl. Phys. 67(5), 2195–2198 (1990).
[Crossref]

Hess, B

M. J Abraham, T. Murtola, R Schulz, S Páll, J. C Smith, B Hess, and E Lindahl, “GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers,” SoftwareX 1–2, 19–25 (2015).

Imai, K.

K. Taniguchi, M. Tanaka, C. Hamaguchi, and K. Imai, “Density relaxation of silicon dioxide on (100) silicon during thermal annealing,” J. Appl. Phys. 67(5), 2195–2198 (1990).
[Crossref]

Ji, Y.

Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, X. Cheng, Y. Yang, and Y. Ji, “Optical and interfacial layer properties of SiO2 films deposited on different substrates,” Appl. Opt. 53(4), A83–A87 (2014).
[Crossref] [PubMed]

Y. Jiang, Y. Ji, H. Liu, D. Liu, L. Wang, C. Jiang, Y. Yang, and D. Chen, “Insights into effects of thermal annealing on optical properties of SiO2 films,” Proc. SPIE 8416, 84160F (2012).
[Crossref]

Jiang, C.

Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, X. Cheng, Y. Yang, and Y. Ji, “Optical and interfacial layer properties of SiO2 films deposited on different substrates,” Appl. Opt. 53(4), A83–A87 (2014).
[Crossref] [PubMed]

Y. Jiang, Y. Ji, H. Liu, D. Liu, L. Wang, C. Jiang, Y. Yang, and D. Chen, “Insights into effects of thermal annealing on optical properties of SiO2 films,” Proc. SPIE 8416, 84160F (2012).
[Crossref]

Jiang, Y.

Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, X. Cheng, Y. Yang, and Y. Ji, “Optical and interfacial layer properties of SiO2 films deposited on different substrates,” Appl. Opt. 53(4), A83–A87 (2014).
[Crossref] [PubMed]

Y. Jiang, Y. Ji, H. Liu, D. Liu, L. Wang, C. Jiang, Y. Yang, and D. Chen, “Insights into effects of thermal annealing on optical properties of SiO2 films,” Proc. SPIE 8416, 84160F (2012).
[Crossref]

Katkova, E. V.

F. V. Grigoriev, A. V. Sulimov, E. V. Katkova, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “Full-atomistic nanoscale modeling of the ion beam sputtering deposition of SiO2 thin films,” J. of Non-C Sol. 448, 1–5 (2016).

King, S. V.

S. V. King, “Ring Configurations in a Random Network Model of Vitreous Silica,” Nature 213(5081), 1112–1113 (1967).
[Crossref]

Kochikov, I. V.

F. V. Grigoriev, A. V. Sulimov, E. V. Katkova, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “Full-atomistic nanoscale modeling of the ion beam sputtering deposition of SiO2 thin films,” J. of Non-C Sol. 448, 1–5 (2016).

F. V. Grigoriev, A. V. Sulimov, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “High performance atomistic modeling of optical thin films deposited by energetic processes,” Int. J. High Perform. Comput. Appl. 29(2), 184–192 (2015).
[Crossref]

Kondakova, O. A.

F. V. Grigoriev, A. V. Sulimov, E. V. Katkova, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “Full-atomistic nanoscale modeling of the ion beam sputtering deposition of SiO2 thin films,” J. of Non-C Sol. 448, 1–5 (2016).

F. V. Grigoriev, A. V. Sulimov, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “High performance atomistic modeling of optical thin films deposited by energetic processes,” Int. J. High Perform. Comput. Appl. 29(2), 184–192 (2015).
[Crossref]

Koura, M. M.

E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, “Roughness parameters,” J. Mater. Process. Technol. 123(1), 133–145 (2002).
[Crossref]

Lefèvre, A.

A. Lefèvre, L. J. Lewis, L. Martinu, and M. R. Wertheimer, “Structural properties of silicon dioxide thin films densified by medium-energy particles,” Phys. Rev. B 64(11), 115429 (2001).
[Crossref]

Lewis, L. J.

A. Lefèvre, L. J. Lewis, L. Martinu, and M. R. Wertheimer, “Structural properties of silicon dioxide thin films densified by medium-energy particles,” Phys. Rev. B 64(11), 115429 (2001).
[Crossref]

Limsuwan, P.

K. Vedam and P. Limsuwan, “Piezo- and elasto-optic properties of liquids under high pressure. II. Refractive index vs density,” J. Chem. Phys. 69(11), 4772–4778 (1978).
[Crossref]

Lindahl, E

M. J Abraham, T. Murtola, R Schulz, S Páll, J. C Smith, B Hess, and E Lindahl, “GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers,” SoftwareX 1–2, 19–25 (2015).

Liu, D.

Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, X. Cheng, Y. Yang, and Y. Ji, “Optical and interfacial layer properties of SiO2 films deposited on different substrates,” Appl. Opt. 53(4), A83–A87 (2014).
[Crossref] [PubMed]

Y. Jiang, Y. Ji, H. Liu, D. Liu, L. Wang, C. Jiang, Y. Yang, and D. Chen, “Insights into effects of thermal annealing on optical properties of SiO2 films,” Proc. SPIE 8416, 84160F (2012).
[Crossref]

Liu, H.

Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, X. Cheng, Y. Yang, and Y. Ji, “Optical and interfacial layer properties of SiO2 films deposited on different substrates,” Appl. Opt. 53(4), A83–A87 (2014).
[Crossref] [PubMed]

Y. Jiang, Y. Ji, H. Liu, D. Liu, L. Wang, C. Jiang, Y. Yang, and D. Chen, “Insights into effects of thermal annealing on optical properties of SiO2 films,” Proc. SPIE 8416, 84160F (2012).
[Crossref]

Maksoud, T. M. A.

E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, “Roughness parameters,” J. Mater. Process. Technol. 123(1), 133–145 (2002).
[Crossref]

Martinu, L.

A. Lefèvre, L. J. Lewis, L. Martinu, and M. R. Wertheimer, “Structural properties of silicon dioxide thin films densified by medium-energy particles,” Phys. Rev. B 64(11), 115429 (2001).
[Crossref]

Morimoto, N. I.

C. E. Viana, N. I. Morimoto, and O. Bonnaud, “Annealing effects in the PECVD SiO2 thin films deposited using TEOS, Ar and O2 mixture,” Microelectron. Reliab. 40(4-5), 613–616 (2000).
[Crossref]

Murtola, T.

M. J Abraham, T. Murtola, R Schulz, S Páll, J. C Smith, B Hess, and E Lindahl, “GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers,” SoftwareX 1–2, 19–25 (2015).

Nowitzki, T.

Páll, S

M. J Abraham, T. Murtola, R Schulz, S Páll, J. C Smith, B Hess, and E Lindahl, “GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers,” SoftwareX 1–2, 19–25 (2015).

Pandit, S. A.

J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. T. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010).
[Crossref] [PubMed]

Pedersen, L.

T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems,” J. Chem. Phys. 98(12), 10089–10092 (1993).
[Crossref]

Postma, J. P. M.

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular-Dynamics with Coupling to an External Bath,” J. Chem. Phys. 81(8), 3684–3690 (1984).
[Crossref]

Schulz, R

M. J Abraham, T. Murtola, R Schulz, S Páll, J. C Smith, B Hess, and E Lindahl, “GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers,” SoftwareX 1–2, 19–25 (2015).

Smith, J. C

M. J Abraham, T. Murtola, R Schulz, S Páll, J. C Smith, B Hess, and E Lindahl, “GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers,” SoftwareX 1–2, 19–25 (2015).

Soliman, H. H.

E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, “Roughness parameters,” J. Mater. Process. Technol. 123(1), 133–145 (2002).
[Crossref]

Stenzel, O.

Sulimov, A. V.

F. V. Grigoriev, A. V. Sulimov, E. V. Katkova, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “Full-atomistic nanoscale modeling of the ion beam sputtering deposition of SiO2 thin films,” J. of Non-C Sol. 448, 1–5 (2016).

F. V. Grigoriev, A. V. Sulimov, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “High performance atomistic modeling of optical thin films deposited by energetic processes,” Int. J. High Perform. Comput. Appl. 29(2), 184–192 (2015).
[Crossref]

Sulimov, V. B.

F. V. Grigoriev, A. V. Sulimov, E. V. Katkova, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “Full-atomistic nanoscale modeling of the ion beam sputtering deposition of SiO2 thin films,” J. of Non-C Sol. 448, 1–5 (2016).

F. V. Grigoriev, A. V. Sulimov, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “High performance atomistic modeling of optical thin films deposited by energetic processes,” Int. J. High Perform. Comput. Appl. 29(2), 184–192 (2015).
[Crossref]

Tanaka, M.

K. Taniguchi, M. Tanaka, C. Hamaguchi, and K. Imai, “Density relaxation of silicon dioxide on (100) silicon during thermal annealing,” J. Appl. Phys. 67(5), 2195–2198 (1990).
[Crossref]

Taniguchi, K.

K. Taniguchi, M. Tanaka, C. Hamaguchi, and K. Imai, “Density relaxation of silicon dioxide on (100) silicon during thermal annealing,” J. Appl. Phys. 67(5), 2195–2198 (1990).
[Crossref]

Tikhonravov, A. V.

F. V. Grigoriev, A. V. Sulimov, E. V. Katkova, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “Full-atomistic nanoscale modeling of the ion beam sputtering deposition of SiO2 thin films,” J. of Non-C Sol. 448, 1–5 (2016).

F. V. Grigoriev, A. V. Sulimov, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “High performance atomistic modeling of optical thin films deposited by energetic processes,” Int. J. High Perform. Comput. Appl. 29(2), 184–192 (2015).
[Crossref]

van Duin, A. C. T.

J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. T. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010).
[Crossref] [PubMed]

van Gunsteren, W. F.

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular-Dynamics with Coupling to an External Bath,” J. Chem. Phys. 81(8), 3684–3690 (1984).
[Crossref]

Vedam, K.

K. Vedam and P. Limsuwan, “Piezo- and elasto-optic properties of liquids under high pressure. II. Refractive index vs density,” J. Chem. Phys. 69(11), 4772–4778 (1978).
[Crossref]

Viana, C. E.

C. E. Viana, N. I. Morimoto, and O. Bonnaud, “Annealing effects in the PECVD SiO2 thin films deposited using TEOS, Ar and O2 mixture,” Microelectron. Reliab. 40(4-5), 613–616 (2000).
[Crossref]

Voß, O.

Wang, L.

Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, X. Cheng, Y. Yang, and Y. Ji, “Optical and interfacial layer properties of SiO2 films deposited on different substrates,” Appl. Opt. 53(4), A83–A87 (2014).
[Crossref] [PubMed]

Y. Jiang, Y. Ji, H. Liu, D. Liu, L. Wang, C. Jiang, Y. Yang, and D. Chen, “Insights into effects of thermal annealing on optical properties of SiO2 films,” Proc. SPIE 8416, 84160F (2012).
[Crossref]

Wertheimer, M. R.

A. Lefèvre, L. J. Lewis, L. Martinu, and M. R. Wertheimer, “Structural properties of silicon dioxide thin films densified by medium-energy particles,” Phys. Rev. B 64(11), 115429 (2001).
[Crossref]

Wilbrandt, S.

Yang, Y.

Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, X. Cheng, Y. Yang, and Y. Ji, “Optical and interfacial layer properties of SiO2 films deposited on different substrates,” Appl. Opt. 53(4), A83–A87 (2014).
[Crossref] [PubMed]

Y. Jiang, Y. Ji, H. Liu, D. Liu, L. Wang, C. Jiang, Y. Yang, and D. Chen, “Insights into effects of thermal annealing on optical properties of SiO2 films,” Proc. SPIE 8416, 84160F (2012).
[Crossref]

York, D.

T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems,” J. Chem. Phys. 98(12), 10089–10092 (1993).
[Crossref]

Yuan, X.

X. Yuan and A. N. Cormack, “Efficient algorithm for primitive ring statistics in topological networks,” Comput. Mater. Sci. 24(3), 343–360 (2002).
[Crossref]

X. Yuan and A. N. Cormack, “Efficient algorithm for primitive ring statistics in topological networks,” Comput. Mater. Sci. 24(3), 343–360 (2002).
[Crossref]

Appl. Opt. (2)

Comput. Mater. Sci. (2)

X. Yuan and A. N. Cormack, “Efficient algorithm for primitive ring statistics in topological networks,” Comput. Mater. Sci. 24(3), 343–360 (2002).
[Crossref]

X. Yuan and A. N. Cormack, “Efficient algorithm for primitive ring statistics in topological networks,” Comput. Mater. Sci. 24(3), 343–360 (2002).
[Crossref]

Int. J. High Perform. Comput. Appl. (1)

F. V. Grigoriev, A. V. Sulimov, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “High performance atomistic modeling of optical thin films deposited by energetic processes,” Int. J. High Perform. Comput. Appl. 29(2), 184–192 (2015).
[Crossref]

J. Appl. Phys. (1)

K. Taniguchi, M. Tanaka, C. Hamaguchi, and K. Imai, “Density relaxation of silicon dioxide on (100) silicon during thermal annealing,” J. Appl. Phys. 67(5), 2195–2198 (1990).
[Crossref]

J. Chem. Phys. (4)

J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. T. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010).
[Crossref] [PubMed]

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular-Dynamics with Coupling to an External Bath,” J. Chem. Phys. 81(8), 3684–3690 (1984).
[Crossref]

T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems,” J. Chem. Phys. 98(12), 10089–10092 (1993).
[Crossref]

K. Vedam and P. Limsuwan, “Piezo- and elasto-optic properties of liquids under high pressure. II. Refractive index vs density,” J. Chem. Phys. 69(11), 4772–4778 (1978).
[Crossref]

J. Mater. Process. Technol. (1)

E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, “Roughness parameters,” J. Mater. Process. Technol. 123(1), 133–145 (2002).
[Crossref]

J. Micromech. Microeng. (1)

W. Fang, “Determination of the elastic modulus of thin film materials using self-deformed micromachined cantilevers,” J. Micromech. Microeng. 9(3), 230–235 (1999).
[Crossref]

J. of Non-C Sol. (1)

F. V. Grigoriev, A. V. Sulimov, E. V. Katkova, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, “Full-atomistic nanoscale modeling of the ion beam sputtering deposition of SiO2 thin films,” J. of Non-C Sol. 448, 1–5 (2016).

Microelectron. Reliab. (1)

C. E. Viana, N. I. Morimoto, and O. Bonnaud, “Annealing effects in the PECVD SiO2 thin films deposited using TEOS, Ar and O2 mixture,” Microelectron. Reliab. 40(4-5), 613–616 (2000).
[Crossref]

Nature (1)

S. V. King, “Ring Configurations in a Random Network Model of Vitreous Silica,” Nature 213(5081), 1112–1113 (1967).
[Crossref]

Phys. Rev. B (1)

A. Lefèvre, L. J. Lewis, L. Martinu, and M. R. Wertheimer, “Structural properties of silicon dioxide thin films densified by medium-energy particles,” Phys. Rev. B 64(11), 115429 (2001).
[Crossref]

Proc. SPIE (1)

Y. Jiang, Y. Ji, H. Liu, D. Liu, L. Wang, C. Jiang, Y. Yang, and D. Chen, “Insights into effects of thermal annealing on optical properties of SiO2 films,” Proc. SPIE 8416, 84160F (2012).
[Crossref]

SoftwareX (1)

M. J Abraham, T. Murtola, R Schulz, S Páll, J. C Smith, B Hess, and E Lindahl, “GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers,” SoftwareX 1–2, 19–25 (2015).

Other (3)

H. Zheng, “Molecular Dynamic Simulation of Thin Film Growth Stress Evolution” (2011). Theses and Dissertations. Paper 1256.

V. Sadovnichy, A. Tikhonravov, V. l. Voevodin, and V. Opanasenko, “Lomonosov”: Supercomputing at Moscow State University. In Contemporary High Performance Computing: From Petascale toward Exascale, (CRC Press, 2013), pp.283–307.

Manual of GROMACS, Available at: ftp://ftp.gromacs.org/pub/manual/manual-4.5.6.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 To the description of the simulation of film growth a), and calculation of stresses in the film-substrate atomistic clusters b). See the text for the details.
Fig. 2
Fig. 2 Possible scheme of the points defects formation in growing SiO2 thin films.
Fig. 3
Fig. 3 Density profiles of deposited and annealed films. Annealing temperature Ta = 1300 K, deposition temperature 300 K, annealing time τ = 4 ns, ρ(g/cm3), H (nm) is the distance from the substrate.

Tables (5)

Tables Icon

Table 1 Structural properties of the deposited and annealed films. E (eV) – energy of the deposited Si atoms, ρ (g/cm3) – density, T- deposition temperature, Ta - annealing temperature (K), RSi-O is the length of the Si-O bonds, RO-O is the distance between nearest oxygen atoms (nm), α1 and α2 are O-Si-O and Si-O-Si angles (grad.), c – concentration (%), lower index indicates the coordination number of atom, τ - time of the deposition and annealing (ns).

Tables Icon

Table 2 Structural properties of the sub-layers of deposited and annealed films, H (nm) is the vertical coordinate of sub-layer. Annealing time is τ = 4 ns. Other notations are as in the Table 1.

Tables Icon

Table 3 Rings statistic of n-membered rings for deposited and annealed films

Tables Icon

Table 4 Surface roughness of deposited and annealed films.

Tables Icon

Table 5 Diagonal components of the stress tensor σxx(yy) (MPa) for deposited and annealed films.

Metrics