Abstract

Doping photorefractive single crystals of Sn2P2S6 with antimony introduces both electron and hole traps. In as-grown crystals, Sb3+ (5s2) ions replace Sn2+ ions. These Sb3+ ions are either isolated (with no nearby perturbing defects) or they have a charge-compensating Sn2+ vacancy at a nearest-neighbor Sn site. When illuminated with 633 nm laser light, isolated Sb3+ ions trap electrons and become Sb2+ (5s25p1) ions. In contrast, Sb3+ ions with an adjacent Sn vacancy trap holes during illumination. The hole is primarily localized on the (P2S6)4− anionic unit next to the Sb3+ ion and Sn2+ vacancy. These trapped electrons and holes are thermally stable below ∼200 K, and they are observed with electron paramagnetic resonance (EPR) at temperatures below 150 K. Resolved hyperfine interactions with 31P, 121Sb, and 123Sb nuclei are used to establish the defect models.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temporal dynamics of two-beam coupling and the origin of compensation photorefractive gratings in Sn2P2S6:Sb

Yaroslav Skrypka, Alexandr Shumelyuk, Serguey Odoulov, Sergey Basun, and Dean R. Evans
Opt. Mater. Express 7(4) 1414-1423 (2017)

Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping

Tobias Bach, Mojca Jazbinšek, Germano Montemezzani, Peter Günter, Alexander A. Grabar, and Yulian M. Vysochanskii
J. Opt. Soc. Am. B 24(7) 1535-1541 (2007)

Photorefractive waveguides in He+ implanted pure and Te-doped Sn2P2S6

Roger Mosimann, Flurin Juvalta, Mojca Jazbinsek, Peter Günter, and Alexander A. Grabar
J. Opt. Soc. Am. B 26(3) 444-449 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoyka, “Photorefraction in tin hypothiodiphosphate in the near infrared,” J. Opt. Soc. Am. B 13(10), 2352–2360 (1996).
    [Crossref]
  2. A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1–4), 187–194 (2001).
    [Crossref]
  3. M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Wavelength dependence of visible and near-infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. 22(11), 2459–2467 (2005).
    [Crossref]
  4. M. Imlau, V. Dieckmann, H. Badorreck, and A. Shumelyuk, “Tin hypothiodiphosphate: nonlinear response in the sub-100 fs time domain,” Opt. Mater. Express 1(5), 953–961 (2011).
    [Crossref]
  5. Y. Skrypka, A. Shumelyuk, S. Odoulov, S. Basun, and D. Evans, “Light-induced absorption and optical sensitizing of Sn2P2S6:Sb,” Opt. Commun. 356, 208–211 (2015).
    [Crossref]
  6. A. Grabar, P. Mathey, and G. Gadret, “Manipulation of fast light using photorefractive beam fanning,” J. Opt. Soc. Am. B 31(5), 980–986 (2014).
    [Crossref]
  7. P. Mathey, G. Gadret, A. Grabar, I. Stoika, and Y. Vysochanskii, “Photorefractive and photochromic effects in Sn2P2S6 at various temperatures,” Opt. Commun. 300, 90–95 (2013).
    [Crossref]
  8. A. Grabar, P. Mathey, and R. Iegorov, “Coherent semilinear oscillator with Sn2P2S6:Sb crystals,” Appl. Phys. B 105(4), 813–819 (2011).
    [Crossref]
  9. D. R. Evans, A. Shuymelyuk, G. Cook, and S. Odoulov, “Secondary photorefractive centers in Sn2P2S6:Sb crystals,” Opt. Lett. 36(4), 454–456 (2011).
    [Crossref] [PubMed]
  10. I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Y. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
    [Crossref]
  11. T. Bach, M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24(7), 1535–1541 (2007).
    [Crossref]
  12. A. T. Brant, L. E. Halliburton, S. A. Basun, A. A. Grabar, S. G. Odoulov, A. Shumelyuk, N. C. Giles, and D. R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86(13), 134109 (2012).
    [Crossref]
  13. S. A. Basun, L. E. Halliburton, and D. R. Evans are preparing a manuscript entitled “Hyperbolic decay of photo-generated Sb2+ ions in Sn2P2S6 crystals detected with a novel electron paramagnetic resonance technique.”
  14. E. M. Golden, S. A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoica, N. C. Giles, and L. E. Halliburton, “Sn vacancies in photorefractive Sn2P2S6 crystals: An electron paramagnetic resonance study of an optically active hole trap,” J. Appl. Phys. 120(13), 133101 (2016).
    [Crossref]
  15. E. M. Golden, S. A. Basun, A. A. Grabar, I. M. Stoika, N. C. Giles, D. R. Evans, and L. E. Halliburton, “Sulfur vacancies in photorefractive Sn2P2S6 crystals,” J. Appl. Phys. 116(24), 244107 (2014).
    [Crossref]
  16. A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals,” J. Phys. Condens. Matter 25(20), 205501 (2013).
    [Crossref] [PubMed]
  17. G. Dittmar and H. Schäfer, “Crystal structure of Sn2P2S6,” Z. Naturforsch. C 29b(5–6), 312–317 (1974).
  18. K. Kuepper, B. Schneider, V. Caciuc, M. Neumann, A. V. Postnikov, A. Ruediger, A. A. Grabar, and Y. M. Vysochanskii, “Electronic structure of Sn2P2S6,” Phys. Rev. B 67(11), 115101 (2003).
    [Crossref]
  19. K. Glukhov, K. Fedyo, J. Banys, and Y. Vysochanskii, “Electronic structure and phase transition in ferroelectic Sn2P2S6 crystal,” Int. J. Mol. Sci. 13(12), 14356–14384 (2012).
    [Crossref] [PubMed]

2016 (1)

E. M. Golden, S. A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoica, N. C. Giles, and L. E. Halliburton, “Sn vacancies in photorefractive Sn2P2S6 crystals: An electron paramagnetic resonance study of an optically active hole trap,” J. Appl. Phys. 120(13), 133101 (2016).
[Crossref]

2015 (1)

Y. Skrypka, A. Shumelyuk, S. Odoulov, S. Basun, and D. Evans, “Light-induced absorption and optical sensitizing of Sn2P2S6:Sb,” Opt. Commun. 356, 208–211 (2015).
[Crossref]

2014 (2)

E. M. Golden, S. A. Basun, A. A. Grabar, I. M. Stoika, N. C. Giles, D. R. Evans, and L. E. Halliburton, “Sulfur vacancies in photorefractive Sn2P2S6 crystals,” J. Appl. Phys. 116(24), 244107 (2014).
[Crossref]

A. Grabar, P. Mathey, and G. Gadret, “Manipulation of fast light using photorefractive beam fanning,” J. Opt. Soc. Am. B 31(5), 980–986 (2014).
[Crossref]

2013 (2)

A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals,” J. Phys. Condens. Matter 25(20), 205501 (2013).
[Crossref] [PubMed]

P. Mathey, G. Gadret, A. Grabar, I. Stoika, and Y. Vysochanskii, “Photorefractive and photochromic effects in Sn2P2S6 at various temperatures,” Opt. Commun. 300, 90–95 (2013).
[Crossref]

2012 (2)

A. T. Brant, L. E. Halliburton, S. A. Basun, A. A. Grabar, S. G. Odoulov, A. Shumelyuk, N. C. Giles, and D. R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86(13), 134109 (2012).
[Crossref]

K. Glukhov, K. Fedyo, J. Banys, and Y. Vysochanskii, “Electronic structure and phase transition in ferroelectic Sn2P2S6 crystal,” Int. J. Mol. Sci. 13(12), 14356–14384 (2012).
[Crossref] [PubMed]

2011 (3)

2008 (1)

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Y. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

2007 (1)

2005 (1)

M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Wavelength dependence of visible and near-infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. 22(11), 2459–2467 (2005).
[Crossref]

2003 (1)

K. Kuepper, B. Schneider, V. Caciuc, M. Neumann, A. V. Postnikov, A. Ruediger, A. A. Grabar, and Y. M. Vysochanskii, “Electronic structure of Sn2P2S6,” Phys. Rev. B 67(11), 115101 (2003).
[Crossref]

2001 (1)

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1–4), 187–194 (2001).
[Crossref]

1996 (1)

1974 (1)

G. Dittmar and H. Schäfer, “Crystal structure of Sn2P2S6,” Z. Naturforsch. C 29b(5–6), 312–317 (1974).

Bach, T.

Badorreck, H.

Banys, J.

K. Glukhov, K. Fedyo, J. Banys, and Y. Vysochanskii, “Electronic structure and phase transition in ferroelectic Sn2P2S6 crystal,” Int. J. Mol. Sci. 13(12), 14356–14384 (2012).
[Crossref] [PubMed]

Basun, S.

Y. Skrypka, A. Shumelyuk, S. Odoulov, S. Basun, and D. Evans, “Light-induced absorption and optical sensitizing of Sn2P2S6:Sb,” Opt. Commun. 356, 208–211 (2015).
[Crossref]

Basun, S. A.

E. M. Golden, S. A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoica, N. C. Giles, and L. E. Halliburton, “Sn vacancies in photorefractive Sn2P2S6 crystals: An electron paramagnetic resonance study of an optically active hole trap,” J. Appl. Phys. 120(13), 133101 (2016).
[Crossref]

E. M. Golden, S. A. Basun, A. A. Grabar, I. M. Stoika, N. C. Giles, D. R. Evans, and L. E. Halliburton, “Sulfur vacancies in photorefractive Sn2P2S6 crystals,” J. Appl. Phys. 116(24), 244107 (2014).
[Crossref]

A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals,” J. Phys. Condens. Matter 25(20), 205501 (2013).
[Crossref] [PubMed]

A. T. Brant, L. E. Halliburton, S. A. Basun, A. A. Grabar, S. G. Odoulov, A. Shumelyuk, N. C. Giles, and D. R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86(13), 134109 (2012).
[Crossref]

Brant, A. T.

A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals,” J. Phys. Condens. Matter 25(20), 205501 (2013).
[Crossref] [PubMed]

A. T. Brant, L. E. Halliburton, S. A. Basun, A. A. Grabar, S. G. Odoulov, A. Shumelyuk, N. C. Giles, and D. R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86(13), 134109 (2012).
[Crossref]

Caciuc, V.

K. Kuepper, B. Schneider, V. Caciuc, M. Neumann, A. V. Postnikov, A. Ruediger, A. A. Grabar, and Y. M. Vysochanskii, “Electronic structure of Sn2P2S6,” Phys. Rev. B 67(11), 115101 (2003).
[Crossref]

Cook, G.

Dieckmann, V.

Dittmar, G.

G. Dittmar and H. Schäfer, “Crystal structure of Sn2P2S6,” Z. Naturforsch. C 29b(5–6), 312–317 (1974).

Evans, D.

Y. Skrypka, A. Shumelyuk, S. Odoulov, S. Basun, and D. Evans, “Light-induced absorption and optical sensitizing of Sn2P2S6:Sb,” Opt. Commun. 356, 208–211 (2015).
[Crossref]

Evans, D. R.

E. M. Golden, S. A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoica, N. C. Giles, and L. E. Halliburton, “Sn vacancies in photorefractive Sn2P2S6 crystals: An electron paramagnetic resonance study of an optically active hole trap,” J. Appl. Phys. 120(13), 133101 (2016).
[Crossref]

E. M. Golden, S. A. Basun, A. A. Grabar, I. M. Stoika, N. C. Giles, D. R. Evans, and L. E. Halliburton, “Sulfur vacancies in photorefractive Sn2P2S6 crystals,” J. Appl. Phys. 116(24), 244107 (2014).
[Crossref]

A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals,” J. Phys. Condens. Matter 25(20), 205501 (2013).
[Crossref] [PubMed]

A. T. Brant, L. E. Halliburton, S. A. Basun, A. A. Grabar, S. G. Odoulov, A. Shumelyuk, N. C. Giles, and D. R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86(13), 134109 (2012).
[Crossref]

D. R. Evans, A. Shuymelyuk, G. Cook, and S. Odoulov, “Secondary photorefractive centers in Sn2P2S6:Sb crystals,” Opt. Lett. 36(4), 454–456 (2011).
[Crossref] [PubMed]

Fedyo, K.

K. Glukhov, K. Fedyo, J. Banys, and Y. Vysochanskii, “Electronic structure and phase transition in ferroelectic Sn2P2S6 crystal,” Int. J. Mol. Sci. 13(12), 14356–14384 (2012).
[Crossref] [PubMed]

Fedyo, K. V.

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Y. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

Gadret, G.

A. Grabar, P. Mathey, and G. Gadret, “Manipulation of fast light using photorefractive beam fanning,” J. Opt. Soc. Am. B 31(5), 980–986 (2014).
[Crossref]

P. Mathey, G. Gadret, A. Grabar, I. Stoika, and Y. Vysochanskii, “Photorefractive and photochromic effects in Sn2P2S6 at various temperatures,” Opt. Commun. 300, 90–95 (2013).
[Crossref]

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Y. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

Giles, N. C.

E. M. Golden, S. A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoica, N. C. Giles, and L. E. Halliburton, “Sn vacancies in photorefractive Sn2P2S6 crystals: An electron paramagnetic resonance study of an optically active hole trap,” J. Appl. Phys. 120(13), 133101 (2016).
[Crossref]

E. M. Golden, S. A. Basun, A. A. Grabar, I. M. Stoika, N. C. Giles, D. R. Evans, and L. E. Halliburton, “Sulfur vacancies in photorefractive Sn2P2S6 crystals,” J. Appl. Phys. 116(24), 244107 (2014).
[Crossref]

A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals,” J. Phys. Condens. Matter 25(20), 205501 (2013).
[Crossref] [PubMed]

A. T. Brant, L. E. Halliburton, S. A. Basun, A. A. Grabar, S. G. Odoulov, A. Shumelyuk, N. C. Giles, and D. R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86(13), 134109 (2012).
[Crossref]

Glukhov, K.

K. Glukhov, K. Fedyo, J. Banys, and Y. Vysochanskii, “Electronic structure and phase transition in ferroelectic Sn2P2S6 crystal,” Int. J. Mol. Sci. 13(12), 14356–14384 (2012).
[Crossref] [PubMed]

Golden, E. M.

E. M. Golden, S. A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoica, N. C. Giles, and L. E. Halliburton, “Sn vacancies in photorefractive Sn2P2S6 crystals: An electron paramagnetic resonance study of an optically active hole trap,” J. Appl. Phys. 120(13), 133101 (2016).
[Crossref]

E. M. Golden, S. A. Basun, A. A. Grabar, I. M. Stoika, N. C. Giles, D. R. Evans, and L. E. Halliburton, “Sulfur vacancies in photorefractive Sn2P2S6 crystals,” J. Appl. Phys. 116(24), 244107 (2014).
[Crossref]

Grabar, A.

A. Grabar, P. Mathey, and G. Gadret, “Manipulation of fast light using photorefractive beam fanning,” J. Opt. Soc. Am. B 31(5), 980–986 (2014).
[Crossref]

P. Mathey, G. Gadret, A. Grabar, I. Stoika, and Y. Vysochanskii, “Photorefractive and photochromic effects in Sn2P2S6 at various temperatures,” Opt. Commun. 300, 90–95 (2013).
[Crossref]

A. Grabar, P. Mathey, and R. Iegorov, “Coherent semilinear oscillator with Sn2P2S6:Sb crystals,” Appl. Phys. B 105(4), 813–819 (2011).
[Crossref]

Grabar, A. A.

E. M. Golden, S. A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoica, N. C. Giles, and L. E. Halliburton, “Sn vacancies in photorefractive Sn2P2S6 crystals: An electron paramagnetic resonance study of an optically active hole trap,” J. Appl. Phys. 120(13), 133101 (2016).
[Crossref]

E. M. Golden, S. A. Basun, A. A. Grabar, I. M. Stoika, N. C. Giles, D. R. Evans, and L. E. Halliburton, “Sulfur vacancies in photorefractive Sn2P2S6 crystals,” J. Appl. Phys. 116(24), 244107 (2014).
[Crossref]

A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals,” J. Phys. Condens. Matter 25(20), 205501 (2013).
[Crossref] [PubMed]

A. T. Brant, L. E. Halliburton, S. A. Basun, A. A. Grabar, S. G. Odoulov, A. Shumelyuk, N. C. Giles, and D. R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86(13), 134109 (2012).
[Crossref]

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Y. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

T. Bach, M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24(7), 1535–1541 (2007).
[Crossref]

M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Wavelength dependence of visible and near-infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. 22(11), 2459–2467 (2005).
[Crossref]

K. Kuepper, B. Schneider, V. Caciuc, M. Neumann, A. V. Postnikov, A. Ruediger, A. A. Grabar, and Y. M. Vysochanskii, “Electronic structure of Sn2P2S6,” Phys. Rev. B 67(11), 115101 (2003).
[Crossref]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1–4), 187–194 (2001).
[Crossref]

S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoyka, “Photorefraction in tin hypothiodiphosphate in the near infrared,” J. Opt. Soc. Am. B 13(10), 2352–2360 (1996).
[Crossref]

Günter, P.

T. Bach, M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24(7), 1535–1541 (2007).
[Crossref]

M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Wavelength dependence of visible and near-infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. 22(11), 2459–2467 (2005).
[Crossref]

Gurzan, M. I.

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1–4), 187–194 (2001).
[Crossref]

Haertle, D.

M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Wavelength dependence of visible and near-infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. 22(11), 2459–2467 (2005).
[Crossref]

Halliburton, L. E.

E. M. Golden, S. A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoica, N. C. Giles, and L. E. Halliburton, “Sn vacancies in photorefractive Sn2P2S6 crystals: An electron paramagnetic resonance study of an optically active hole trap,” J. Appl. Phys. 120(13), 133101 (2016).
[Crossref]

E. M. Golden, S. A. Basun, A. A. Grabar, I. M. Stoika, N. C. Giles, D. R. Evans, and L. E. Halliburton, “Sulfur vacancies in photorefractive Sn2P2S6 crystals,” J. Appl. Phys. 116(24), 244107 (2014).
[Crossref]

A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals,” J. Phys. Condens. Matter 25(20), 205501 (2013).
[Crossref] [PubMed]

A. T. Brant, L. E. Halliburton, S. A. Basun, A. A. Grabar, S. G. Odoulov, A. Shumelyuk, N. C. Giles, and D. R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86(13), 134109 (2012).
[Crossref]

Hellwig, U.

Iegorov, R.

A. Grabar, P. Mathey, and R. Iegorov, “Coherent semilinear oscillator with Sn2P2S6:Sb crystals,” Appl. Phys. B 105(4), 813–819 (2011).
[Crossref]

Imlau, M.

Jazbinšek, M.

T. Bach, M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24(7), 1535–1541 (2007).
[Crossref]

M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Wavelength dependence of visible and near-infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. 22(11), 2459–2467 (2005).
[Crossref]

Kedyk, I. V.

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Y. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1–4), 187–194 (2001).
[Crossref]

Kuepper, K.

K. Kuepper, B. Schneider, V. Caciuc, M. Neumann, A. V. Postnikov, A. Ruediger, A. A. Grabar, and Y. M. Vysochanskii, “Electronic structure of Sn2P2S6,” Phys. Rev. B 67(11), 115101 (2003).
[Crossref]

Mathey, P.

A. Grabar, P. Mathey, and G. Gadret, “Manipulation of fast light using photorefractive beam fanning,” J. Opt. Soc. Am. B 31(5), 980–986 (2014).
[Crossref]

P. Mathey, G. Gadret, A. Grabar, I. Stoika, and Y. Vysochanskii, “Photorefractive and photochromic effects in Sn2P2S6 at various temperatures,” Opt. Commun. 300, 90–95 (2013).
[Crossref]

A. Grabar, P. Mathey, and R. Iegorov, “Coherent semilinear oscillator with Sn2P2S6:Sb crystals,” Appl. Phys. B 105(4), 813–819 (2011).
[Crossref]

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Y. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

Molnar, A. A.

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1–4), 187–194 (2001).
[Crossref]

Montemezzani, G.

T. Bach, M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24(7), 1535–1541 (2007).
[Crossref]

M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Wavelength dependence of visible and near-infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. 22(11), 2459–2467 (2005).
[Crossref]

Neumann, M.

K. Kuepper, B. Schneider, V. Caciuc, M. Neumann, A. V. Postnikov, A. Ruediger, A. A. Grabar, and Y. M. Vysochanskii, “Electronic structure of Sn2P2S6,” Phys. Rev. B 67(11), 115101 (2003).
[Crossref]

Odoulov, S.

Y. Skrypka, A. Shumelyuk, S. Odoulov, S. Basun, and D. Evans, “Light-induced absorption and optical sensitizing of Sn2P2S6:Sb,” Opt. Commun. 356, 208–211 (2015).
[Crossref]

D. R. Evans, A. Shuymelyuk, G. Cook, and S. Odoulov, “Secondary photorefractive centers in Sn2P2S6:Sb crystals,” Opt. Lett. 36(4), 454–456 (2011).
[Crossref] [PubMed]

Odoulov, S. G.

A. T. Brant, L. E. Halliburton, S. A. Basun, A. A. Grabar, S. G. Odoulov, A. Shumelyuk, N. C. Giles, and D. R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86(13), 134109 (2012).
[Crossref]

S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoyka, “Photorefraction in tin hypothiodiphosphate in the near infrared,” J. Opt. Soc. Am. B 13(10), 2352–2360 (1996).
[Crossref]

Postnikov, A. V.

K. Kuepper, B. Schneider, V. Caciuc, M. Neumann, A. V. Postnikov, A. Ruediger, A. A. Grabar, and Y. M. Vysochanskii, “Electronic structure of Sn2P2S6,” Phys. Rev. B 67(11), 115101 (2003).
[Crossref]

Prits, I. P.

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Y. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

Ruediger, A.

K. Kuepper, B. Schneider, V. Caciuc, M. Neumann, A. V. Postnikov, A. Ruediger, A. A. Grabar, and Y. M. Vysochanskii, “Electronic structure of Sn2P2S6,” Phys. Rev. B 67(11), 115101 (2003).
[Crossref]

Rupp, R. A.

Schäfer, H.

G. Dittmar and H. Schäfer, “Crystal structure of Sn2P2S6,” Z. Naturforsch. C 29b(5–6), 312–317 (1974).

Schneider, B.

K. Kuepper, B. Schneider, V. Caciuc, M. Neumann, A. V. Postnikov, A. Ruediger, A. A. Grabar, and Y. M. Vysochanskii, “Electronic structure of Sn2P2S6,” Phys. Rev. B 67(11), 115101 (2003).
[Crossref]

Shumelyuk, A.

Y. Skrypka, A. Shumelyuk, S. Odoulov, S. Basun, and D. Evans, “Light-induced absorption and optical sensitizing of Sn2P2S6:Sb,” Opt. Commun. 356, 208–211 (2015).
[Crossref]

A. T. Brant, L. E. Halliburton, S. A. Basun, A. A. Grabar, S. G. Odoulov, A. Shumelyuk, N. C. Giles, and D. R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86(13), 134109 (2012).
[Crossref]

M. Imlau, V. Dieckmann, H. Badorreck, and A. Shumelyuk, “Tin hypothiodiphosphate: nonlinear response in the sub-100 fs time domain,” Opt. Mater. Express 1(5), 953–961 (2011).
[Crossref]

Shumelyuk, A. N.

Shuymelyuk, A.

Skrypka, Y.

Y. Skrypka, A. Shumelyuk, S. Odoulov, S. Basun, and D. Evans, “Light-induced absorption and optical sensitizing of Sn2P2S6:Sb,” Opt. Commun. 356, 208–211 (2015).
[Crossref]

Stoica, I. M.

E. M. Golden, S. A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoica, N. C. Giles, and L. E. Halliburton, “Sn vacancies in photorefractive Sn2P2S6 crystals: An electron paramagnetic resonance study of an optically active hole trap,” J. Appl. Phys. 120(13), 133101 (2016).
[Crossref]

Stoika, I.

P. Mathey, G. Gadret, A. Grabar, I. Stoika, and Y. Vysochanskii, “Photorefractive and photochromic effects in Sn2P2S6 at various temperatures,” Opt. Commun. 300, 90–95 (2013).
[Crossref]

Stoika, I. M.

E. M. Golden, S. A. Basun, A. A. Grabar, I. M. Stoika, N. C. Giles, D. R. Evans, and L. E. Halliburton, “Sulfur vacancies in photorefractive Sn2P2S6 crystals,” J. Appl. Phys. 116(24), 244107 (2014).
[Crossref]

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Y. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Wavelength dependence of visible and near-infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. 22(11), 2459–2467 (2005).
[Crossref]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1–4), 187–194 (2001).
[Crossref]

Stoyka, I. M.

Vysochanskii, Y.

P. Mathey, G. Gadret, A. Grabar, I. Stoika, and Y. Vysochanskii, “Photorefractive and photochromic effects in Sn2P2S6 at various temperatures,” Opt. Commun. 300, 90–95 (2013).
[Crossref]

K. Glukhov, K. Fedyo, J. Banys, and Y. Vysochanskii, “Electronic structure and phase transition in ferroelectic Sn2P2S6 crystal,” Int. J. Mol. Sci. 13(12), 14356–14384 (2012).
[Crossref] [PubMed]

Vysochanskii, Y. M.

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Y. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

T. Bach, M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24(7), 1535–1541 (2007).
[Crossref]

M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Wavelength dependence of visible and near-infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. 22(11), 2459–2467 (2005).
[Crossref]

K. Kuepper, B. Schneider, V. Caciuc, M. Neumann, A. V. Postnikov, A. Ruediger, A. A. Grabar, and Y. M. Vysochanskii, “Electronic structure of Sn2P2S6,” Phys. Rev. B 67(11), 115101 (2003).
[Crossref]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1–4), 187–194 (2001).
[Crossref]

Appl. Phys. B (2)

A. Grabar, P. Mathey, and R. Iegorov, “Coherent semilinear oscillator with Sn2P2S6:Sb crystals,” Appl. Phys. B 105(4), 813–819 (2011).
[Crossref]

I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Y. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92(4), 549–554 (2008).
[Crossref]

Int. J. Mol. Sci. (1)

K. Glukhov, K. Fedyo, J. Banys, and Y. Vysochanskii, “Electronic structure and phase transition in ferroelectic Sn2P2S6 crystal,” Int. J. Mol. Sci. 13(12), 14356–14384 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (2)

E. M. Golden, S. A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoica, N. C. Giles, and L. E. Halliburton, “Sn vacancies in photorefractive Sn2P2S6 crystals: An electron paramagnetic resonance study of an optically active hole trap,” J. Appl. Phys. 120(13), 133101 (2016).
[Crossref]

E. M. Golden, S. A. Basun, A. A. Grabar, I. M. Stoika, N. C. Giles, D. R. Evans, and L. E. Halliburton, “Sulfur vacancies in photorefractive Sn2P2S6 crystals,” J. Appl. Phys. 116(24), 244107 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Wavelength dependence of visible and near-infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. 22(11), 2459–2467 (2005).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. Condens. Matter (1)

A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, “Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals,” J. Phys. Condens. Matter 25(20), 205501 (2013).
[Crossref] [PubMed]

Opt. Commun. (3)

P. Mathey, G. Gadret, A. Grabar, I. Stoika, and Y. Vysochanskii, “Photorefractive and photochromic effects in Sn2P2S6 at various temperatures,” Opt. Commun. 300, 90–95 (2013).
[Crossref]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1–4), 187–194 (2001).
[Crossref]

Y. Skrypka, A. Shumelyuk, S. Odoulov, S. Basun, and D. Evans, “Light-induced absorption and optical sensitizing of Sn2P2S6:Sb,” Opt. Commun. 356, 208–211 (2015).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (2)

A. T. Brant, L. E. Halliburton, S. A. Basun, A. A. Grabar, S. G. Odoulov, A. Shumelyuk, N. C. Giles, and D. R. Evans, “Photoinduced EPR study of Sb2+ ions in photorefractive Sn2P2S6 crystals,” Phys. Rev. B 86(13), 134109 (2012).
[Crossref]

K. Kuepper, B. Schneider, V. Caciuc, M. Neumann, A. V. Postnikov, A. Ruediger, A. A. Grabar, and Y. M. Vysochanskii, “Electronic structure of Sn2P2S6,” Phys. Rev. B 67(11), 115101 (2003).
[Crossref]

Z. Naturforsch. C (1)

G. Dittmar and H. Schäfer, “Crystal structure of Sn2P2S6,” Z. Naturforsch. C 29b(5–6), 312–317 (1974).

Other (1)

S. A. Basun, L. E. Halliburton, and D. R. Evans are preparing a manuscript entitled “Hyperbolic decay of photo-generated Sb2+ ions in Sn2P2S6 crystals detected with a novel electron paramagnetic resonance technique.”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 EPR spectrum from an SPS crystal taken at 42 K with the magnetic field along the a axis. Blue stick diagrams identify lines from the Sb2+ ions (trapped electrons) and red stick diagrams identify lines from (Sb-VSn)0 complexes (trapped holes). Hyperfine lines from the 121Sb and 123Sb nuclei are present for both defects, as well as 31P hyperfine triplets for the (Sb-VSn)0 complexes.
Fig. 2
Fig. 2 Models of Sb-related defects in an SPS crystal (before illumination), (a) Isolated Sb3+ ion with no nearby defects. During illumination, this defect attracts an electron and forms a trapped-electron center. (b) Sb3+ ion with a neighboring Sn vacancy. During illumination, this complex attracts a hole and forms a trapped-hole center.

Tables (2)

Tables Icon

Table 1 Comparison of 31P hyperfine interactions for the (Sb-VSn)0 trapped hole center and the isolated singly ionized Sn vacancy. Units are mT. For each defect, two 31P nuclei in one (P2S6) unit are participating (they are arbitrarily labeled nucleus 1 and nucleus 2).

Tables Icon

Table 2 Spin-Hamiltonian parameters for the (Sb-VSn)0 trapped hole center and the Sb2+ trapped electron center. Principal-axis directions are expressed as (θ,ϕ) pairs. The polar angle θ is defined relative to the c axis and the azimuthal angle ϕ is defined relative to the a axis with positive rotation from a toward b in the plane perpendicular to c.

Metrics