Abstract

We investigated the hybrid antireflective (AR) structures with zinc oxide nanorods (ZnO NRs) grown on micro pyramidal silicon (MP-Si) structures. The MP-Si structures were fabricated by a simple and cost-effective anisotropic wet chemical etching technique under different ratios between potassium hydroxide (KOH) and isopropyl alcohol (IPA). For the MP-Si structures etched at 10:9 vol% of KOH and IPA, the relatively low average reflectance (Ravg) value of 14.5% was obtained in the wavelength range of 300-1100 nm. Its solar weighted reflectance (SWR) value was also estimated to be 12.6% in the wavelength range of 400-1100 nm. The ZnO NRs were hydrothermally grown on the MP-Si structures at various solution concentrations. For the ZnO NRs (25 mM)/MP-Si, the Ravg and SWR values were further decreased to 3.6% and 3.8%, respectively. The omnidirectional AR behavior was also observed in the wide incident angle range of 20-70°. The hybrid ZnO NRs/MP-Si AR structures revealed a superhydrophilic surface with water contact angles of < 5 o.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light transmission enhancement from hybrid ZnO micro-mesh and nanorod arrays with application to GaN-based light-emitting diodes

Zhengmao Yin, Xiaoyan Liu, Huining Wang, Yongzhong Wu, Xiaopeng Hao, Ziwu Ji, and Xiangang Xu
Opt. Express 21(23) 28531-28542 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [Crossref]
  2. M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
    [Crossref] [PubMed]
  3. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
    [Crossref] [PubMed]
  4. K. Rosan, “Hydrogenated Amorphous-Silicon Image Sensors,” IEEE Trans. Electron Dev. 36(12), 2923–2927 (1989).
    [Crossref]
  5. H. W. Icenogle, B. C. Platt, and W. L. Wolfe, “Refractive indexes and temperature coefficients of germanium and silicon,” Appl. Opt. 15(10), 2348–2351 (1976).
    [Crossref] [PubMed]
  6. M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008).
    [Crossref] [PubMed]
  7. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  8. S. H. Lee, J. W. Leem, X.-Y. Guan, and J. S. Yu, “Highly-reflective and conductive distributed Bragg reflectors based on glancing angle deposited indium tin oxide thin films for silicon optoelectronic applications,” Thin Solid Films 591, 351–356 (2015).
    [Crossref]
  9. J. Haschke, L. Jogschies, D. Amkreutz, L. Korte, and B. Rech, “Polycrystalline silicon heterojunction thin-film solar cells on glass exhibiting 582 mV open-circuit voltage,” Sol. Energy Mater. Sol. Cells 115, 7–10 (2013).
    [Crossref]
  10. K. Kendall, “Thin-film peeling-the elastic term,” J. Phys. D Appl. Phys. 8(13), 1449–1452 (1975).
    [Crossref]
  11. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
    [Crossref] [PubMed]
  12. J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008).
    [Crossref] [PubMed]
  13. E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and Wide-Angle Hybrid Antireflection Coatings With Nanostructures,” IEEE J. Photovolt. 4(3), 962–967 (2014).
    [Crossref]
  14. M.-J. Huang, C.-R. Yang, H.-S. Lee, and H.-L. Liu, “Fabrication of novel hybrid antireflection structures for solar cells,” Sol. Energy 107, 489–494 (2014).
    [Crossref]
  15. S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
    [Crossref] [PubMed]
  16. J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 930–934 (2010).
    [Crossref]
  17. P. Fan, B. Bai, J. Long, D. Jiang, G. Jin, H. Zhang, and M. Zhong, “Broadband High-Performance Infrared Antireflection Nanowires Facilely Grown on Ultrafast Laser Structured Cu Surface,” Nano Lett. 15(9), 5988–5994 (2015).
    [Crossref] [PubMed]
  18. D. Qi, L. Zheng, X. Cao, Y. Jiang, H. Xu, Y. Zhang, B. Yang, Y. Sun, H. H. Hng, N. Lu, L. Chi, and X. Chen, “Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity,” Nanoscale 5(24), 12383–12387 (2013).
    [Crossref] [PubMed]
  19. B. Dudem, J. W. Leem, and J. S. Yu, “A multifunctional hierarchical nano/microstructured silicon surface with omnidirectional antireflection and superhydrophilicity via an anodic aluminum oxide etch mask,” RSC Advances 6(5), 3764–3773 (2016).
    [Crossref]
  20. G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
    [Crossref] [PubMed]
  21. K. R. McIntosh and L. P. Johnson, “Recombination at textured silicon surfaces passivated with silicon dioxide,” J. Appl. Phys. 105(12), 124520 (2009).
    [Crossref]
  22. P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90(15), 2319–2328 (2006).
    [Crossref]
  23. Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure Formation and Passivation of Large-Area Black Silicon for Solar Cell Applications,” Small 8(9), 1392–1397 (2012).
    [Crossref] [PubMed]
  24. P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
    [Crossref]
  25. C. M. Chang, M. H. Hon, and I. C. Leu, “Influence of Size and Density of Au Nanoparticles on ZnO Nanorod Arrays for Sensing Reducing Gases,” J. Electrochem. Soc. 160(9), B170–B176 (2013).
    [Crossref]
  26. B. S. Kang, S. J. Pearton, and F. Ren, “Low temperature (<100 °C) patterned growth of ZnO nanorod arrays on Si,” Appl. Phys. Lett. 90(8), 083104 (2007).
    [Crossref]
  27. B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20(37), 375301 (2009).
    [Crossref] [PubMed]
  28. M.-Y. Choi, D. Choi, M.-J. Jin, I. Kim, S.-H. Kim, J.-Y. Choi, S. Y. Lee, J. M. Kim, and S.-W. Kim, “Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
    [Crossref]
  29. H. W. Choi, K.-S. Lee, and T. L. Alford, “Optimization of antireflective zinc oxide nanorod arrays on seedless substrate for bulk-heterojunction organic solar cells,” Appl. Phys. Lett. 101(15), 153301 (2012).
    [Crossref]
  30. S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater. 10(1), 013301 (2009).
    [Crossref]
  31. R. Shi, P. Yang, X. Dong, Q. Ma, and A. Zhang, “Growth of flower-like ZnO on ZnO nanorod arrays created on zinc substrate through low-temperature hydrothermal synthesis,” Appl. Surf. Sci. 264, 162–170 (2013).
    [Crossref]
  32. D. Guo, K. Sato, S. Hibino, T. Takeuchi, H. Bessho, and K. Kato, “Low-temperature preparation of transparent conductive Al-doped ZnO thin films by a novel sol–gel method,” J. Mater. Sci. 49(14), 4722–4734 (2014).
    [Crossref]
  33. I. Zubel and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions,” Sens. Actuator A-Phys. 93(2), 138–147 (2001).
    [Crossref]
  34. I. Zubel and I. Barycka, “Silicon anisotropic etching in alkaline solutions I. The geometric description of figures developed under etching Si (100) in various solutions,” Sens. Actuator A-Phys. 70(3), 250–259 (1998).
    [Crossref]
  35. I. Zubel and M. Kramkowska, “Etch rates and morphology of silicon (h k l) surfaces etched in KOH and KOH saturated with isopropanol solutions,” Sens. Actuator A-Phys. 115(2-3), 549–556 (2004).
    [Crossref]
  36. K. P. Rola and I. Zubel, “Impact of alcohol additives concentration on etch rate and surface morphology of (100) and (110) Si substrates etched in KOH solutions,” Microsyst. Technol. 19(4), 635–643 (2013).
    [Crossref]
  37. O. Powell and H. B. Harrison, “Anisotropic etching of {100} and {110} planes in (100) silicon,” J. Micromech. Microeng. 11(3), 217–220 (2001).
    [Crossref]
  38. C.-R. Yang, P.-Y. Chen, Y.-C. Chiou, and R.-T. Lee, “Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution,” Sens. Actuator A-Phys. 119(1), 263–270 (2005).
    [Crossref]
  39. J. W. Leem, S. H. Lee, X.-Y. Guan, and J. S. Yu, “Inverted tetrahedron-pyramidal micropatterned polymer films for boosting light output power in flip-chip light-emitting diodes,” Opt. Express 23(8), 9612–9617 (2015).
    [Crossref] [PubMed]
  40. P. Wangyang, Y. Gan, Q. Wang, and X. Jiang, “A hybrid resist hemispherical-pit array layer for light trapping in thin film silicon solar cells via UV nanoimprint lithography,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6140–6147 (2014).
    [Crossref]
  41. S. A. Vanalakar, S. S. Mali, R. C. Pawar, D. S. Dalavi, A. V. Mohalkar, H. P. Deshamukh, and P. S. Patil, “Farming of ZnO nanorod-arrays via aqueous chemical route for photoelectrochemical solar cell application,” Ceram. Int. 38(8), 6461–6467 (2012).
    [Crossref]
  42. M. Guo, P. Diao, and S. Cai, “Highly hydrophilic and superhydrophobic ZnO nanorod array films,” Thin Solid Films 515(18), 7162–7166 (2007).
    [Crossref]
  43. N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol, and C. C. Perry, “Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces,” Adv. Mater. 16(21), 1929–1932 (2004).
    [Crossref]
  44. D. Kim, S. Lee, and W. Hwang, “Complete wetting characteristics of micro/nano dual-scale surface by plasma etching to give nanohoneycomb structure,” Curr. Appl. Phys. 12(1), 219–224 (2012).
    [Crossref]
  45. H. Yu, J. Liu, X. Fan, W. Yan, L. Han, J. Han, X. Zhang, T. Hong, and Z. Liu, “Bionic micro-nano-bump-structures with a good self-cleaning property: The growth of ZnO nanoarrays modified by polystyrene spheres,” Mater. Chem. Phys. 170, 52–61 (2016).
    [Crossref]
  46. X. Zhou, X. Guo, W. Ding, and Y. Chen, “Superhydrophobic or superhydrophilic surfaces regulated by micro-nano structured ZnO powders,” Appl. Surf. Sci. 255(5), 3371–3374 (2008).
    [Crossref]
  47. N. S. Pesika, Z. Hu, K. J. Stebe, and P. C. Searson, “Quenching of Growth of ZnO Nanoparticles by Adsorption of Octanethiol,” J. Phys. Chem. B 106(28), 6985–6990 (2002).
    [Crossref]
  48. D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, “Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics,” Sol. Energy Mater. Sol. Cells 81(1), 13–24 (2004).
    [Crossref]

2016 (2)

B. Dudem, J. W. Leem, and J. S. Yu, “A multifunctional hierarchical nano/microstructured silicon surface with omnidirectional antireflection and superhydrophilicity via an anodic aluminum oxide etch mask,” RSC Advances 6(5), 3764–3773 (2016).
[Crossref]

H. Yu, J. Liu, X. Fan, W. Yan, L. Han, J. Han, X. Zhang, T. Hong, and Z. Liu, “Bionic micro-nano-bump-structures with a good self-cleaning property: The growth of ZnO nanoarrays modified by polystyrene spheres,” Mater. Chem. Phys. 170, 52–61 (2016).
[Crossref]

2015 (3)

J. W. Leem, S. H. Lee, X.-Y. Guan, and J. S. Yu, “Inverted tetrahedron-pyramidal micropatterned polymer films for boosting light output power in flip-chip light-emitting diodes,” Opt. Express 23(8), 9612–9617 (2015).
[Crossref] [PubMed]

P. Fan, B. Bai, J. Long, D. Jiang, G. Jin, H. Zhang, and M. Zhong, “Broadband High-Performance Infrared Antireflection Nanowires Facilely Grown on Ultrafast Laser Structured Cu Surface,” Nano Lett. 15(9), 5988–5994 (2015).
[Crossref] [PubMed]

S. H. Lee, J. W. Leem, X.-Y. Guan, and J. S. Yu, “Highly-reflective and conductive distributed Bragg reflectors based on glancing angle deposited indium tin oxide thin films for silicon optoelectronic applications,” Thin Solid Films 591, 351–356 (2015).
[Crossref]

2014 (4)

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and Wide-Angle Hybrid Antireflection Coatings With Nanostructures,” IEEE J. Photovolt. 4(3), 962–967 (2014).
[Crossref]

M.-J. Huang, C.-R. Yang, H.-S. Lee, and H.-L. Liu, “Fabrication of novel hybrid antireflection structures for solar cells,” Sol. Energy 107, 489–494 (2014).
[Crossref]

D. Guo, K. Sato, S. Hibino, T. Takeuchi, H. Bessho, and K. Kato, “Low-temperature preparation of transparent conductive Al-doped ZnO thin films by a novel sol–gel method,” J. Mater. Sci. 49(14), 4722–4734 (2014).
[Crossref]

P. Wangyang, Y. Gan, Q. Wang, and X. Jiang, “A hybrid resist hemispherical-pit array layer for light trapping in thin film silicon solar cells via UV nanoimprint lithography,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6140–6147 (2014).
[Crossref]

2013 (7)

R. Shi, P. Yang, X. Dong, Q. Ma, and A. Zhang, “Growth of flower-like ZnO on ZnO nanorod arrays created on zinc substrate through low-temperature hydrothermal synthesis,” Appl. Surf. Sci. 264, 162–170 (2013).
[Crossref]

K. P. Rola and I. Zubel, “Impact of alcohol additives concentration on etch rate and surface morphology of (100) and (110) Si substrates etched in KOH solutions,” Microsyst. Technol. 19(4), 635–643 (2013).
[Crossref]

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
[Crossref]

C. M. Chang, M. H. Hon, and I. C. Leu, “Influence of Size and Density of Au Nanoparticles on ZnO Nanorod Arrays for Sensing Reducing Gases,” J. Electrochem. Soc. 160(9), B170–B176 (2013).
[Crossref]

J. Haschke, L. Jogschies, D. Amkreutz, L. Korte, and B. Rech, “Polycrystalline silicon heterojunction thin-film solar cells on glass exhibiting 582 mV open-circuit voltage,” Sol. Energy Mater. Sol. Cells 115, 7–10 (2013).
[Crossref]

D. Qi, L. Zheng, X. Cao, Y. Jiang, H. Xu, Y. Zhang, B. Yang, Y. Sun, H. H. Hng, N. Lu, L. Chi, and X. Chen, “Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity,” Nanoscale 5(24), 12383–12387 (2013).
[Crossref] [PubMed]

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

2012 (6)

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure Formation and Passivation of Large-Area Black Silicon for Solar Cell Applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

H. W. Choi, K.-S. Lee, and T. L. Alford, “Optimization of antireflective zinc oxide nanorod arrays on seedless substrate for bulk-heterojunction organic solar cells,” Appl. Phys. Lett. 101(15), 153301 (2012).
[Crossref]

S. A. Vanalakar, S. S. Mali, R. C. Pawar, D. S. Dalavi, A. V. Mohalkar, H. P. Deshamukh, and P. S. Patil, “Farming of ZnO nanorod-arrays via aqueous chemical route for photoelectrochemical solar cell application,” Ceram. Int. 38(8), 6461–6467 (2012).
[Crossref]

D. Kim, S. Lee, and W. Hwang, “Complete wetting characteristics of micro/nano dual-scale surface by plasma etching to give nanohoneycomb structure,” Curr. Appl. Phys. 12(1), 219–224 (2012).
[Crossref]

2010 (1)

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 930–934 (2010).
[Crossref]

2009 (4)

K. R. McIntosh and L. P. Johnson, “Recombination at textured silicon surfaces passivated with silicon dioxide,” J. Appl. Phys. 105(12), 124520 (2009).
[Crossref]

S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater. 10(1), 013301 (2009).
[Crossref]

B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20(37), 375301 (2009).
[Crossref] [PubMed]

M.-Y. Choi, D. Choi, M.-J. Jin, I. Kim, S.-H. Kim, J.-Y. Choi, S. Y. Lee, J. M. Kim, and S.-W. Kim, “Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[Crossref]

2008 (4)

J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008).
[Crossref] [PubMed]

X. Zhou, X. Guo, W. Ding, and Y. Chen, “Superhydrophobic or superhydrophilic surfaces regulated by micro-nano structured ZnO powders,” Appl. Surf. Sci. 255(5), 3371–3374 (2008).
[Crossref]

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
[Crossref] [PubMed]

M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008).
[Crossref] [PubMed]

2007 (5)

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
[Crossref] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

B. S. Kang, S. J. Pearton, and F. Ren, “Low temperature (<100 °C) patterned growth of ZnO nanorod arrays on Si,” Appl. Phys. Lett. 90(8), 083104 (2007).
[Crossref]

M. Guo, P. Diao, and S. Cai, “Highly hydrophilic and superhydrophobic ZnO nanorod array films,” Thin Solid Films 515(18), 7162–7166 (2007).
[Crossref]

2006 (1)

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90(15), 2319–2328 (2006).
[Crossref]

2005 (1)

C.-R. Yang, P.-Y. Chen, Y.-C. Chiou, and R.-T. Lee, “Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution,” Sens. Actuator A-Phys. 119(1), 263–270 (2005).
[Crossref]

2004 (3)

D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, “Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics,” Sol. Energy Mater. Sol. Cells 81(1), 13–24 (2004).
[Crossref]

N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol, and C. C. Perry, “Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces,” Adv. Mater. 16(21), 1929–1932 (2004).
[Crossref]

I. Zubel and M. Kramkowska, “Etch rates and morphology of silicon (h k l) surfaces etched in KOH and KOH saturated with isopropanol solutions,” Sens. Actuator A-Phys. 115(2-3), 549–556 (2004).
[Crossref]

2002 (1)

N. S. Pesika, Z. Hu, K. J. Stebe, and P. C. Searson, “Quenching of Growth of ZnO Nanoparticles by Adsorption of Octanethiol,” J. Phys. Chem. B 106(28), 6985–6990 (2002).
[Crossref]

2001 (2)

O. Powell and H. B. Harrison, “Anisotropic etching of {100} and {110} planes in (100) silicon,” J. Micromech. Microeng. 11(3), 217–220 (2001).
[Crossref]

I. Zubel and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions,” Sens. Actuator A-Phys. 93(2), 138–147 (2001).
[Crossref]

1998 (1)

I. Zubel and I. Barycka, “Silicon anisotropic etching in alkaline solutions I. The geometric description of figures developed under etching Si (100) in various solutions,” Sens. Actuator A-Phys. 70(3), 250–259 (1998).
[Crossref]

1989 (1)

K. Rosan, “Hydrogenated Amorphous-Silicon Image Sensors,” IEEE Trans. Electron Dev. 36(12), 2923–2927 (1989).
[Crossref]

1976 (1)

1975 (1)

K. Kendall, “Thin-film peeling-the elastic term,” J. Phys. D Appl. Phys. 8(13), 1449–1452 (1975).
[Crossref]

Alford, T. L.

H. W. Choi, K.-S. Lee, and T. L. Alford, “Optimization of antireflective zinc oxide nanorod arrays on seedless substrate for bulk-heterojunction organic solar cells,” Appl. Phys. Lett. 101(15), 153301 (2012).
[Crossref]

Amkreutz, D.

J. Haschke, L. Jogschies, D. Amkreutz, L. Korte, and B. Rech, “Polycrystalline silicon heterojunction thin-film solar cells on glass exhibiting 582 mV open-circuit voltage,” Sol. Energy Mater. Sol. Cells 115, 7–10 (2013).
[Crossref]

Atwater, H. A.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
[Crossref] [PubMed]

Bai, B.

P. Fan, B. Bai, J. Long, D. Jiang, G. Jin, H. Zhang, and M. Zhong, “Broadband High-Performance Infrared Antireflection Nanowires Facilely Grown on Ultrafast Laser Structured Cu Surface,” Nano Lett. 15(9), 5988–5994 (2015).
[Crossref] [PubMed]

Baruah, S.

S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater. 10(1), 013301 (2009).
[Crossref]

Barycka, I.

I. Zubel and I. Barycka, “Silicon anisotropic etching in alkaline solutions I. The geometric description of figures developed under etching Si (100) in various solutions,” Sens. Actuator A-Phys. 70(3), 250–259 (1998).
[Crossref]

Bessho, H.

D. Guo, K. Sato, S. Hibino, T. Takeuchi, H. Bessho, and K. Kato, “Low-temperature preparation of transparent conductive Al-doped ZnO thin films by a novel sol–gel method,” J. Mater. Sci. 49(14), 4722–4734 (2014).
[Crossref]

Bowers, J. E.

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and Wide-Angle Hybrid Antireflection Coatings With Nanostructures,” IEEE J. Photovolt. 4(3), 962–967 (2014).
[Crossref]

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
[Crossref] [PubMed]

Brongersma, M. L.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Buie, D.

D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, “Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics,” Sol. Energy Mater. Sol. Cells 81(1), 13–24 (2004).
[Crossref]

Cai, S.

M. Guo, P. Diao, and S. Cai, “Highly hydrophilic and superhydrophobic ZnO nanorod array films,” Thin Solid Films 515(18), 7162–7166 (2007).
[Crossref]

Cao, X.

D. Qi, L. Zheng, X. Cao, Y. Jiang, H. Xu, Y. Zhang, B. Yang, Y. Sun, H. H. Hng, N. Lu, L. Chi, and X. Chen, “Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity,” Nanoscale 5(24), 12383–12387 (2013).
[Crossref] [PubMed]

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Chabrol, G.

N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol, and C. C. Perry, “Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces,” Adv. Mater. 16(21), 1929–1932 (2004).
[Crossref]

Chang, C. M.

C. M. Chang, M. H. Hon, and I. C. Leu, “Influence of Size and Density of Au Nanoparticles on ZnO Nanorod Arrays for Sensing Reducing Gases,” J. Electrochem. Soc. 160(9), B170–B176 (2013).
[Crossref]

Chaumartin, A.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90(15), 2319–2328 (2006).
[Crossref]

Chen, J. Y.

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 930–934 (2010).
[Crossref]

Chen, M.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Chen, P.-Y.

C.-R. Yang, P.-Y. Chen, Y.-C. Chiou, and R.-T. Lee, “Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution,” Sens. Actuator A-Phys. 119(1), 263–270 (2005).
[Crossref]

Chen, X.

D. Qi, L. Zheng, X. Cao, Y. Jiang, H. Xu, Y. Zhang, B. Yang, Y. Sun, H. H. Hng, N. Lu, L. Chi, and X. Chen, “Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity,” Nanoscale 5(24), 12383–12387 (2013).
[Crossref] [PubMed]

Chen, Y.

X. Zhou, X. Guo, W. Ding, and Y. Chen, “Superhydrophobic or superhydrophilic surfaces regulated by micro-nano structured ZnO powders,” Appl. Surf. Sci. 255(5), 3371–3374 (2008).
[Crossref]

Chi, L.

D. Qi, L. Zheng, X. Cao, Y. Jiang, H. Xu, Y. Zhang, B. Yang, Y. Sun, H. H. Hng, N. Lu, L. Chi, and X. Chen, “Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity,” Nanoscale 5(24), 12383–12387 (2013).
[Crossref] [PubMed]

Chiou, Y.-C.

C.-R. Yang, P.-Y. Chen, Y.-C. Chiou, and R.-T. Lee, “Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution,” Sens. Actuator A-Phys. 119(1), 263–270 (2005).
[Crossref]

Choi, D.

M.-Y. Choi, D. Choi, M.-J. Jin, I. Kim, S.-H. Kim, J.-Y. Choi, S. Y. Lee, J. M. Kim, and S.-W. Kim, “Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[Crossref]

Choi, H. W.

H. W. Choi, K.-S. Lee, and T. L. Alford, “Optimization of antireflective zinc oxide nanorod arrays on seedless substrate for bulk-heterojunction organic solar cells,” Appl. Phys. Lett. 101(15), 153301 (2012).
[Crossref]

Choi, J.-Y.

M.-Y. Choi, D. Choi, M.-J. Jin, I. Kim, S.-H. Kim, J.-Y. Choi, S. Y. Lee, J. M. Kim, and S.-W. Kim, “Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[Crossref]

Choi, M.-Y.

M.-Y. Choi, D. Choi, M.-J. Jin, I. Kim, S.-H. Kim, J.-Y. Choi, S. Y. Lee, J. M. Kim, and S.-W. Kim, “Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[Crossref]

Cohen, O.

Cui, Y.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Dalavi, D. S.

S. A. Vanalakar, S. S. Mali, R. C. Pawar, D. S. Dalavi, A. V. Mohalkar, H. P. Deshamukh, and P. S. Patil, “Farming of ZnO nanorod-arrays via aqueous chemical route for photoelectrochemical solar cell application,” Ceram. Int. 38(8), 6461–6467 (2012).
[Crossref]

Deshamukh, H. P.

S. A. Vanalakar, S. S. Mali, R. C. Pawar, D. S. Dalavi, A. V. Mohalkar, H. P. Deshamukh, and P. S. Patil, “Farming of ZnO nanorod-arrays via aqueous chemical route for photoelectrochemical solar cell application,” Ceram. Int. 38(8), 6461–6467 (2012).
[Crossref]

Dey, C. J.

D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, “Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics,” Sol. Energy Mater. Sol. Cells 81(1), 13–24 (2004).
[Crossref]

Diao, P.

M. Guo, P. Diao, and S. Cai, “Highly hydrophilic and superhydrophobic ZnO nanorod array films,” Thin Solid Films 515(18), 7162–7166 (2007).
[Crossref]

Ding, W.

X. Zhou, X. Guo, W. Ding, and Y. Chen, “Superhydrophobic or superhydrophilic surfaces regulated by micro-nano structured ZnO powders,” Appl. Surf. Sci. 255(5), 3371–3374 (2008).
[Crossref]

Dong, X.

R. Shi, P. Yang, X. Dong, Q. Ma, and A. Zhang, “Growth of flower-like ZnO on ZnO nanorod arrays created on zinc substrate through low-temperature hydrothermal synthesis,” Appl. Surf. Sci. 264, 162–170 (2013).
[Crossref]

Du, X.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure Formation and Passivation of Large-Area Black Silicon for Solar Cell Applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Dudem, B.

B. Dudem, J. W. Leem, and J. S. Yu, “A multifunctional hierarchical nano/microstructured silicon surface with omnidirectional antireflection and superhydrophilicity via an anodic aluminum oxide etch mask,” RSC Advances 6(5), 3764–3773 (2016).
[Crossref]

Dutta, J.

S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater. 10(1), 013301 (2009).
[Crossref]

Fan, P.

P. Fan, B. Bai, J. Long, D. Jiang, G. Jin, H. Zhang, and M. Zhong, “Broadband High-Performance Infrared Antireflection Nanowires Facilely Grown on Ultrafast Laser Structured Cu Surface,” Nano Lett. 15(9), 5988–5994 (2015).
[Crossref] [PubMed]

Fan, S.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Fan, X.

H. Yu, J. Liu, X. Fan, W. Yan, L. Han, J. Han, X. Zhang, T. Hong, and Z. Liu, “Bionic micro-nano-bump-structures with a good self-cleaning property: The growth of ZnO nanoarrays modified by polystyrene spheres,” Mater. Chem. Phys. 170, 52–61 (2016).
[Crossref]

Fang, A. W.

Fave, A.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90(15), 2319–2328 (2006).
[Crossref]

Filler, M. A.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
[Crossref] [PubMed]

Friedman, D. J.

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and Wide-Angle Hybrid Antireflection Coatings With Nanostructures,” IEEE J. Photovolt. 4(3), 962–967 (2014).
[Crossref]

Gan, Y.

P. Wangyang, Y. Gan, Q. Wang, and X. Jiang, “A hybrid resist hemispherical-pit array layer for light trapping in thin film silicon solar cells via UV nanoimprint lithography,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6140–6147 (2014).
[Crossref]

Garnett, E. C.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Guan, X.-Y.

J. W. Leem, S. H. Lee, X.-Y. Guan, and J. S. Yu, “Inverted tetrahedron-pyramidal micropatterned polymer films for boosting light output power in flip-chip light-emitting diodes,” Opt. Express 23(8), 9612–9617 (2015).
[Crossref] [PubMed]

S. H. Lee, J. W. Leem, X.-Y. Guan, and J. S. Yu, “Highly-reflective and conductive distributed Bragg reflectors based on glancing angle deposited indium tin oxide thin films for silicon optoelectronic applications,” Thin Solid Films 591, 351–356 (2015).
[Crossref]

Guo, D.

D. Guo, K. Sato, S. Hibino, T. Takeuchi, H. Bessho, and K. Kato, “Low-temperature preparation of transparent conductive Al-doped ZnO thin films by a novel sol–gel method,” J. Mater. Sci. 49(14), 4722–4734 (2014).
[Crossref]

Guo, M.

M. Guo, P. Diao, and S. Cai, “Highly hydrophilic and superhydrophobic ZnO nanorod array films,” Thin Solid Films 515(18), 7162–7166 (2007).
[Crossref]

Guo, X.

X. Zhou, X. Guo, W. Ding, and Y. Chen, “Superhydrophobic or superhydrophilic surfaces regulated by micro-nano structured ZnO powders,” Appl. Surf. Sci. 255(5), 3371–3374 (2008).
[Crossref]

Haarahiltunen, A.

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
[Crossref]

Han, J.

H. Yu, J. Liu, X. Fan, W. Yan, L. Han, J. Han, X. Zhang, T. Hong, and Z. Liu, “Bionic micro-nano-bump-structures with a good self-cleaning property: The growth of ZnO nanoarrays modified by polystyrene spheres,” Mater. Chem. Phys. 170, 52–61 (2016).
[Crossref]

Han, L.

H. Yu, J. Liu, X. Fan, W. Yan, L. Han, J. Han, X. Zhang, T. Hong, and Z. Liu, “Bionic micro-nano-bump-structures with a good self-cleaning property: The growth of ZnO nanoarrays modified by polystyrene spheres,” Mater. Chem. Phys. 170, 52–61 (2016).
[Crossref]

Harrison, H. B.

O. Powell and H. B. Harrison, “Anisotropic etching of {100} and {110} planes in (100) silicon,” J. Micromech. Microeng. 11(3), 217–220 (2001).
[Crossref]

Haschke, J.

J. Haschke, L. Jogschies, D. Amkreutz, L. Korte, and B. Rech, “Polycrystalline silicon heterojunction thin-film solar cells on glass exhibiting 582 mV open-circuit voltage,” Sol. Energy Mater. Sol. Cells 115, 7–10 (2013).
[Crossref]

Hibino, S.

D. Guo, K. Sato, S. Hibino, T. Takeuchi, H. Bessho, and K. Kato, “Low-temperature preparation of transparent conductive Al-doped ZnO thin films by a novel sol–gel method,” J. Mater. Sci. 49(14), 4722–4734 (2014).
[Crossref]

Hng, H. H.

D. Qi, L. Zheng, X. Cao, Y. Jiang, H. Xu, Y. Zhang, B. Yang, Y. Sun, H. H. Hng, N. Lu, L. Chi, and X. Chen, “Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity,” Nanoscale 5(24), 12383–12387 (2013).
[Crossref] [PubMed]

Hon, M. H.

C. M. Chang, M. H. Hon, and I. C. Leu, “Influence of Size and Density of Au Nanoparticles on ZnO Nanorod Arrays for Sensing Reducing Gases,” J. Electrochem. Soc. 160(9), B170–B176 (2013).
[Crossref]

Hong, T.

H. Yu, J. Liu, X. Fan, W. Yan, L. Han, J. Han, X. Zhang, T. Hong, and Z. Liu, “Bionic micro-nano-bump-structures with a good self-cleaning property: The growth of ZnO nanoarrays modified by polystyrene spheres,” Mater. Chem. Phys. 170, 52–61 (2016).
[Crossref]

Hu, Z.

N. S. Pesika, Z. Hu, K. J. Stebe, and P. C. Searson, “Quenching of Growth of ZnO Nanoparticles by Adsorption of Octanethiol,” J. Phys. Chem. B 106(28), 6985–6990 (2002).
[Crossref]

Huang, J.

J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008).
[Crossref] [PubMed]

Huang, M.-J.

M.-J. Huang, C.-R. Yang, H.-S. Lee, and H.-L. Liu, “Fabrication of novel hybrid antireflection structures for solar cells,” Sol. Energy 107, 489–494 (2014).
[Crossref]

Huffaker, D. L.

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

Hung, C.-H.

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

Hwang, W.

D. Kim, S. Lee, and W. Hwang, “Complete wetting characteristics of micro/nano dual-scale surface by plasma etching to give nanohoneycomb structure,” Curr. Appl. Phys. 12(1), 219–224 (2012).
[Crossref]

Icenogle, H. W.

Jeong, S.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Jiang, D.

P. Fan, B. Bai, J. Long, D. Jiang, G. Jin, H. Zhang, and M. Zhong, “Broadband High-Performance Infrared Antireflection Nanowires Facilely Grown on Ultrafast Laser Structured Cu Surface,” Nano Lett. 15(9), 5988–5994 (2015).
[Crossref] [PubMed]

Jiang, X.

P. Wangyang, Y. Gan, Q. Wang, and X. Jiang, “A hybrid resist hemispherical-pit array layer for light trapping in thin film silicon solar cells via UV nanoimprint lithography,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6140–6147 (2014).
[Crossref]

Jiang, Y.

D. Qi, L. Zheng, X. Cao, Y. Jiang, H. Xu, Y. Zhang, B. Yang, Y. Sun, H. H. Hng, N. Lu, L. Chi, and X. Chen, “Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity,” Nanoscale 5(24), 12383–12387 (2013).
[Crossref] [PubMed]

Jin, G.

P. Fan, B. Bai, J. Long, D. Jiang, G. Jin, H. Zhang, and M. Zhong, “Broadband High-Performance Infrared Antireflection Nanowires Facilely Grown on Ultrafast Laser Structured Cu Surface,” Nano Lett. 15(9), 5988–5994 (2015).
[Crossref] [PubMed]

Jin, M.-J.

M.-Y. Choi, D. Choi, M.-J. Jin, I. Kim, S.-H. Kim, J.-Y. Choi, S. Y. Lee, J. M. Kim, and S.-W. Kim, “Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[Crossref]

Jogschies, L.

J. Haschke, L. Jogschies, D. Amkreutz, L. Korte, and B. Rech, “Polycrystalline silicon heterojunction thin-film solar cells on glass exhibiting 582 mV open-circuit voltage,” Sol. Energy Mater. Sol. Cells 115, 7–10 (2013).
[Crossref]

Johnson, L. P.

K. R. McIntosh and L. P. Johnson, “Recombination at textured silicon surfaces passivated with silicon dioxide,” J. Appl. Phys. 105(12), 124520 (2009).
[Crossref]

Jones, R.

Kaminski, A.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90(15), 2319–2328 (2006).
[Crossref]

Kang, B. S.

B. S. Kang, S. J. Pearton, and F. Ren, “Low temperature (<100 °C) patterned growth of ZnO nanorod arrays on Si,” Appl. Phys. Lett. 90(8), 083104 (2007).
[Crossref]

Kato, K.

D. Guo, K. Sato, S. Hibino, T. Takeuchi, H. Bessho, and K. Kato, “Low-temperature preparation of transparent conductive Al-doped ZnO thin films by a novel sol–gel method,” J. Mater. Sci. 49(14), 4722–4734 (2014).
[Crossref]

Kayes, B. M.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
[Crossref] [PubMed]

Kelzenberg, M. D.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
[Crossref] [PubMed]

Kendall, K.

K. Kendall, “Thin-film peeling-the elastic term,” J. Phys. D Appl. Phys. 8(13), 1449–1452 (1975).
[Crossref]

Kim, D.

D. Kim, S. Lee, and W. Hwang, “Complete wetting characteristics of micro/nano dual-scale surface by plasma etching to give nanohoneycomb structure,” Curr. Appl. Phys. 12(1), 219–224 (2012).
[Crossref]

Kim, I.

M.-Y. Choi, D. Choi, M.-J. Jin, I. Kim, S.-H. Kim, J.-Y. Choi, S. Y. Lee, J. M. Kim, and S.-W. Kim, “Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[Crossref]

Kim, J. K.

M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008).
[Crossref] [PubMed]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Kim, J. M.

M.-Y. Choi, D. Choi, M.-J. Jin, I. Kim, S.-H. Kim, J.-Y. Choi, S. Y. Lee, J. M. Kim, and S.-W. Kim, “Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[Crossref]

Kim, S.-H.

M.-Y. Choi, D. Choi, M.-J. Jin, I. Kim, S.-H. Kim, J.-Y. Choi, S. Y. Lee, J. M. Kim, and S.-W. Kim, “Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[Crossref]

Kim, S.-W.

M.-Y. Choi, D. Choi, M.-J. Jin, I. Kim, S.-H. Kim, J.-Y. Choi, S. Y. Lee, J. M. Kim, and S.-W. Kim, “Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[Crossref]

Kim, Y. S.

Korte, L.

J. Haschke, L. Jogschies, D. Amkreutz, L. Korte, and B. Rech, “Polycrystalline silicon heterojunction thin-film solar cells on glass exhibiting 582 mV open-circuit voltage,” Sol. Energy Mater. Sol. Cells 115, 7–10 (2013).
[Crossref]

Kraiem, J.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90(15), 2319–2328 (2006).
[Crossref]

Kramkowska, M.

I. Zubel and M. Kramkowska, “Etch rates and morphology of silicon (h k l) surfaces etched in KOH and KOH saturated with isopropanol solutions,” Sens. Actuator A-Phys. 115(2-3), 549–556 (2004).
[Crossref]

I. Zubel and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions,” Sens. Actuator A-Phys. 93(2), 138–147 (2001).
[Crossref]

Kuittinen, M.

B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20(37), 375301 (2009).
[Crossref] [PubMed]

Kuo, M.-L.

Kuznetsov, A. Y.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure Formation and Passivation of Large-Area Black Silicon for Solar Cell Applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Lai, T.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure Formation and Passivation of Large-Area Black Silicon for Solar Cell Applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Lee, H.-S.

M.-J. Huang, C.-R. Yang, H.-S. Lee, and H.-L. Liu, “Fabrication of novel hybrid antireflection structures for solar cells,” Sol. Energy 107, 489–494 (2014).
[Crossref]

Lee, K.-S.

H. W. Choi, K.-S. Lee, and T. L. Alford, “Optimization of antireflective zinc oxide nanorod arrays on seedless substrate for bulk-heterojunction organic solar cells,” Appl. Phys. Lett. 101(15), 153301 (2012).
[Crossref]

Lee, R.-T.

C.-R. Yang, P.-Y. Chen, Y.-C. Chiou, and R.-T. Lee, “Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution,” Sens. Actuator A-Phys. 119(1), 263–270 (2005).
[Crossref]

Lee, S.

D. Kim, S. Lee, and W. Hwang, “Complete wetting characteristics of micro/nano dual-scale surface by plasma etching to give nanohoneycomb structure,” Curr. Appl. Phys. 12(1), 219–224 (2012).
[Crossref]

Lee, S. H.

J. W. Leem, S. H. Lee, X.-Y. Guan, and J. S. Yu, “Inverted tetrahedron-pyramidal micropatterned polymer films for boosting light output power in flip-chip light-emitting diodes,” Opt. Express 23(8), 9612–9617 (2015).
[Crossref] [PubMed]

S. H. Lee, J. W. Leem, X.-Y. Guan, and J. S. Yu, “Highly-reflective and conductive distributed Bragg reflectors based on glancing angle deposited indium tin oxide thin films for silicon optoelectronic applications,” Thin Solid Films 591, 351–356 (2015).
[Crossref]

Lee, S. Y.

M.-Y. Choi, D. Choi, M.-J. Jin, I. Kim, S.-H. Kim, J.-Y. Choi, S. Y. Lee, J. M. Kim, and S.-W. Kim, “Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[Crossref]

Leem, J. W.

B. Dudem, J. W. Leem, and J. S. Yu, “A multifunctional hierarchical nano/microstructured silicon surface with omnidirectional antireflection and superhydrophilicity via an anodic aluminum oxide etch mask,” RSC Advances 6(5), 3764–3773 (2016).
[Crossref]

S. H. Lee, J. W. Leem, X.-Y. Guan, and J. S. Yu, “Highly-reflective and conductive distributed Bragg reflectors based on glancing angle deposited indium tin oxide thin films for silicon optoelectronic applications,” Thin Solid Films 591, 351–356 (2015).
[Crossref]

J. W. Leem, S. H. Lee, X.-Y. Guan, and J. S. Yu, “Inverted tetrahedron-pyramidal micropatterned polymer films for boosting light output power in flip-chip light-emitting diodes,” Opt. Express 23(8), 9612–9617 (2015).
[Crossref] [PubMed]

Lelievre, J.-F.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90(15), 2319–2328 (2006).
[Crossref]

Lemiti, M.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90(15), 2319–2328 (2006).
[Crossref]

Leu, I. C.

C. M. Chang, M. H. Hon, and I. C. Leu, “Influence of Size and Density of Au Nanoparticles on ZnO Nanorod Arrays for Sensing Reducing Gases,” J. Electrochem. Soc. 160(9), B170–B176 (2013).
[Crossref]

Lewis, N. S.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
[Crossref] [PubMed]

Li, H.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure Formation and Passivation of Large-Area Black Silicon for Solar Cell Applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Li, Z.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure Formation and Passivation of Large-Area Black Silicon for Solar Cell Applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Liang, H.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure Formation and Passivation of Large-Area Black Silicon for Solar Cell Applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Lin, C.-T.

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and Wide-Angle Hybrid Antireflection Coatings With Nanostructures,” IEEE J. Photovolt. 4(3), 962–967 (2014).
[Crossref]

Lin, S.-Y.

M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008).
[Crossref] [PubMed]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Liu, H.-L.

M.-J. Huang, C.-R. Yang, H.-S. Lee, and H.-L. Liu, “Fabrication of novel hybrid antireflection structures for solar cells,” Sol. Energy 107, 489–494 (2014).
[Crossref]

Liu, J.

H. Yu, J. Liu, X. Fan, W. Yan, L. Han, J. Han, X. Zhang, T. Hong, and Z. Liu, “Bionic micro-nano-bump-structures with a good self-cleaning property: The growth of ZnO nanoarrays modified by polystyrene spheres,” Mater. Chem. Phys. 170, 52–61 (2016).
[Crossref]

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Liu, Y.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure Formation and Passivation of Large-Area Black Silicon for Solar Cell Applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Liu, Z.

H. Yu, J. Liu, X. Fan, W. Yan, L. Han, J. Han, X. Zhang, T. Hong, and Z. Liu, “Bionic micro-nano-bump-structures with a good self-cleaning property: The growth of ZnO nanoarrays modified by polystyrene spheres,” Mater. Chem. Phys. 170, 52–61 (2016).
[Crossref]

Long, J.

P. Fan, B. Bai, J. Long, D. Jiang, G. Jin, H. Zhang, and M. Zhong, “Broadband High-Performance Infrared Antireflection Nanowires Facilely Grown on Ultrafast Laser Structured Cu Surface,” Nano Lett. 15(9), 5988–5994 (2015).
[Crossref] [PubMed]

Lu, N.

D. Qi, L. Zheng, X. Cao, Y. Jiang, H. Xu, Y. Zhang, B. Yang, Y. Sun, H. H. Hng, N. Lu, L. Chi, and X. Chen, “Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity,” Nanoscale 5(24), 12383–12387 (2013).
[Crossref] [PubMed]

Ma, Q.

R. Shi, P. Yang, X. Dong, Q. Ma, and A. Zhang, “Growth of flower-like ZnO on ZnO nanorod arrays created on zinc substrate through low-temperature hydrothermal synthesis,” Appl. Surf. Sci. 264, 162–170 (2013).
[Crossref]

Mali, S. S.

S. A. Vanalakar, S. S. Mali, R. C. Pawar, D. S. Dalavi, A. V. Mohalkar, H. P. Deshamukh, and P. S. Patil, “Farming of ZnO nanorod-arrays via aqueous chemical route for photoelectrochemical solar cell application,” Ceram. Int. 38(8), 6461–6467 (2012).
[Crossref]

Mariani, G.

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

McCann, M. J.

D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, “Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics,” Sol. Energy Mater. Sol. Cells 81(1), 13–24 (2004).
[Crossref]

McGehee, M. D.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

McHale, G.

N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol, and C. C. Perry, “Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces,” Adv. Mater. 16(21), 1929–1932 (2004).
[Crossref]

McIntosh, K. R.

K. R. McIntosh and L. P. Johnson, “Recombination at textured silicon surfaces passivated with silicon dioxide,” J. Appl. Phys. 105(12), 124520 (2009).
[Crossref]

McMahon, W. E.

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and Wide-Angle Hybrid Antireflection Coatings With Nanostructures,” IEEE J. Photovolt. 4(3), 962–967 (2014).
[Crossref]

Mei, Z.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure Formation and Passivation of Large-Area Black Silicon for Solar Cell Applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Mohalkar, A. V.

S. A. Vanalakar, S. S. Mali, R. C. Pawar, D. S. Dalavi, A. V. Mohalkar, H. P. Deshamukh, and P. S. Patil, “Farming of ZnO nanorod-arrays via aqueous chemical route for photoelectrochemical solar cell application,” Ceram. Int. 38(8), 6461–6467 (2012).
[Crossref]

Mont, F. W.

Newton, M. I.

N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol, and C. C. Perry, “Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces,” Adv. Mater. 16(21), 1929–1932 (2004).
[Crossref]

Nichiporuk, O.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90(15), 2319–2328 (2006).
[Crossref]

Päivänranta, B.

B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20(37), 375301 (2009).
[Crossref] [PubMed]

Paniccia, M. J.

Papet, P.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90(15), 2319–2328 (2006).
[Crossref]

Park, H.

Patil, P. S.

S. A. Vanalakar, S. S. Mali, R. C. Pawar, D. S. Dalavi, A. V. Mohalkar, H. P. Deshamukh, and P. S. Patil, “Farming of ZnO nanorod-arrays via aqueous chemical route for photoelectrochemical solar cell application,” Ceram. Int. 38(8), 6461–6467 (2012).
[Crossref]

Pawar, R. C.

S. A. Vanalakar, S. S. Mali, R. C. Pawar, D. S. Dalavi, A. V. Mohalkar, H. P. Deshamukh, and P. S. Patil, “Farming of ZnO nanorod-arrays via aqueous chemical route for photoelectrochemical solar cell application,” Ceram. Int. 38(8), 6461–6467 (2012).
[Crossref]

Pearton, S. J.

B. S. Kang, S. J. Pearton, and F. Ren, “Low temperature (<100 °C) patterned growth of ZnO nanorod arrays on Si,” Appl. Phys. Lett. 90(8), 083104 (2007).
[Crossref]

Perl, E. E.

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and Wide-Angle Hybrid Antireflection Coatings With Nanostructures,” IEEE J. Photovolt. 4(3), 962–967 (2014).
[Crossref]

Perry, C. C.

N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol, and C. C. Perry, “Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces,” Adv. Mater. 16(21), 1929–1932 (2004).
[Crossref]

Pesika, N. S.

N. S. Pesika, Z. Hu, K. J. Stebe, and P. C. Searson, “Quenching of Growth of ZnO Nanoparticles by Adsorption of Octanethiol,” J. Phys. Chem. B 106(28), 6985–6990 (2002).
[Crossref]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Platt, B. C.

Polman, A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Powell, O.

O. Powell and H. B. Harrison, “Anisotropic etching of {100} and {110} planes in (100) silicon,” J. Micromech. Microeng. 11(3), 217–220 (2001).
[Crossref]

Poxson, D. J.

Putnam, M. C.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
[Crossref] [PubMed]

Qi, D.

D. Qi, L. Zheng, X. Cao, Y. Jiang, H. Xu, Y. Zhang, B. Yang, Y. Sun, H. H. Hng, N. Lu, L. Chi, and X. Chen, “Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity,” Nanoscale 5(24), 12383–12387 (2013).
[Crossref] [PubMed]

Raday, O.

Rech, B.

J. Haschke, L. Jogschies, D. Amkreutz, L. Korte, and B. Rech, “Polycrystalline silicon heterojunction thin-film solar cells on glass exhibiting 582 mV open-circuit voltage,” Sol. Energy Mater. Sol. Cells 115, 7–10 (2013).
[Crossref]

Ren, F.

B. S. Kang, S. J. Pearton, and F. Ren, “Low temperature (<100 °C) patterned growth of ZnO nanorod arrays on Si,” Appl. Phys. Lett. 90(8), 083104 (2007).
[Crossref]

Repo, P.

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
[Crossref]

Rola, K. P.

K. P. Rola and I. Zubel, “Impact of alcohol additives concentration on etch rate and surface morphology of (100) and (110) Si substrates etched in KOH solutions,” Microsyst. Technol. 19(4), 635–643 (2013).
[Crossref]

Rosan, K.

K. Rosan, “Hydrogenated Amorphous-Silicon Image Sensors,” IEEE Trans. Electron Dev. 36(12), 2923–2927 (1989).
[Crossref]

Rozier, Y.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90(15), 2319–2328 (2006).
[Crossref]

Saastamoinen, T.

B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20(37), 375301 (2009).
[Crossref] [PubMed]

Sainiemi, L.

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
[Crossref]

Sato, K.

D. Guo, K. Sato, S. Hibino, T. Takeuchi, H. Bessho, and K. Kato, “Low-temperature preparation of transparent conductive Al-doped ZnO thin films by a novel sol–gel method,” J. Mater. Sci. 49(14), 4722–4734 (2014).
[Crossref]

Savin, H.

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
[Crossref]

Schubert, E. F.

M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008).
[Crossref] [PubMed]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Schubert, M. C.

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
[Crossref]

Schubert, M. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Scofield, A. C.

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

Searson, P. C.

N. S. Pesika, Z. Hu, K. J. Stebe, and P. C. Searson, “Quenching of Growth of ZnO Nanoparticles by Adsorption of Octanethiol,” J. Phys. Chem. B 106(28), 6985–6990 (2002).
[Crossref]

Shi, R.

R. Shi, P. Yang, X. Dong, Q. Ma, and A. Zhang, “Growth of flower-like ZnO on ZnO nanorod arrays created on zinc substrate through low-temperature hydrothermal synthesis,” Appl. Surf. Sci. 264, 162–170 (2013).
[Crossref]

Shirtcliffe, N. J.

N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol, and C. C. Perry, “Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces,” Adv. Mater. 16(21), 1929–1932 (2004).
[Crossref]

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Stebe, K. J.

N. S. Pesika, Z. Hu, K. J. Stebe, and P. C. Searson, “Quenching of Growth of ZnO Nanoparticles by Adsorption of Octanethiol,” J. Phys. Chem. B 106(28), 6985–6990 (2002).
[Crossref]

Sun, K. W.

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 930–934 (2010).
[Crossref]

Sun, Y.

D. Qi, L. Zheng, X. Cao, Y. Jiang, H. Xu, Y. Zhang, B. Yang, Y. Sun, H. H. Hng, N. Lu, L. Chi, and X. Chen, “Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity,” Nanoscale 5(24), 12383–12387 (2013).
[Crossref] [PubMed]

Takeuchi, T.

D. Guo, K. Sato, S. Hibino, T. Takeuchi, H. Bessho, and K. Kato, “Low-temperature preparation of transparent conductive Al-doped ZnO thin films by a novel sol–gel method,” J. Mater. Sci. 49(14), 4722–4734 (2014).
[Crossref]

Talvitie, H.

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
[Crossref]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Turner-Evans, D. B.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
[Crossref] [PubMed]

Vanalakar, S. A.

S. A. Vanalakar, S. S. Mali, R. C. Pawar, D. S. Dalavi, A. V. Mohalkar, H. P. Deshamukh, and P. S. Patil, “Farming of ZnO nanorod-arrays via aqueous chemical route for photoelectrochemical solar cell application,” Ceram. Int. 38(8), 6461–6467 (2012).
[Crossref]

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Wang, Q.

P. Wangyang, Y. Gan, Q. Wang, and X. Jiang, “A hybrid resist hemispherical-pit array layer for light trapping in thin film silicon solar cells via UV nanoimprint lithography,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6140–6147 (2014).
[Crossref]

Wang, S.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Wang, W.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure Formation and Passivation of Large-Area Black Silicon for Solar Cell Applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Wang, X.

J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008).
[Crossref] [PubMed]

Wang, Y.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure Formation and Passivation of Large-Area Black Silicon for Solar Cell Applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Wang, Z. L.

J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008).
[Crossref] [PubMed]

Wangyang, P.

P. Wangyang, Y. Gan, Q. Wang, and X. Jiang, “A hybrid resist hemispherical-pit array layer for light trapping in thin film silicon solar cells via UV nanoimprint lithography,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6140–6147 (2014).
[Crossref]

Weber, K. J.

D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, “Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics,” Sol. Energy Mater. Sol. Cells 81(1), 13–24 (2004).
[Crossref]

Wolfe, W. L.

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Xu, H.

D. Qi, L. Zheng, X. Cao, Y. Jiang, H. Xu, Y. Zhang, B. Yang, Y. Sun, H. H. Hng, N. Lu, L. Chi, and X. Chen, “Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity,” Nanoscale 5(24), 12383–12387 (2013).
[Crossref] [PubMed]

Yan, W.

H. Yu, J. Liu, X. Fan, W. Yan, L. Han, J. Han, X. Zhang, T. Hong, and Z. Liu, “Bionic micro-nano-bump-structures with a good self-cleaning property: The growth of ZnO nanoarrays modified by polystyrene spheres,” Mater. Chem. Phys. 170, 52–61 (2016).
[Crossref]

Yang, B.

D. Qi, L. Zheng, X. Cao, Y. Jiang, H. Xu, Y. Zhang, B. Yang, Y. Sun, H. H. Hng, N. Lu, L. Chi, and X. Chen, “Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity,” Nanoscale 5(24), 12383–12387 (2013).
[Crossref] [PubMed]

Yang, C.-R.

M.-J. Huang, C.-R. Yang, H.-S. Lee, and H.-L. Liu, “Fabrication of novel hybrid antireflection structures for solar cells,” Sol. Energy 107, 489–494 (2014).
[Crossref]

C.-R. Yang, P.-Y. Chen, Y.-C. Chiou, and R.-T. Lee, “Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution,” Sens. Actuator A-Phys. 119(1), 263–270 (2005).
[Crossref]

Yang, P.

R. Shi, P. Yang, X. Dong, Q. Ma, and A. Zhang, “Growth of flower-like ZnO on ZnO nanorod arrays created on zinc substrate through low-temperature hydrothermal synthesis,” Appl. Surf. Sci. 264, 162–170 (2013).
[Crossref]

Yli-Koski, M.

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
[Crossref]

Yu, H.

H. Yu, J. Liu, X. Fan, W. Yan, L. Han, J. Han, X. Zhang, T. Hong, and Z. Liu, “Bionic micro-nano-bump-structures with a good self-cleaning property: The growth of ZnO nanoarrays modified by polystyrene spheres,” Mater. Chem. Phys. 170, 52–61 (2016).
[Crossref]

Yu, J. S.

B. Dudem, J. W. Leem, and J. S. Yu, “A multifunctional hierarchical nano/microstructured silicon surface with omnidirectional antireflection and superhydrophilicity via an anodic aluminum oxide etch mask,” RSC Advances 6(5), 3764–3773 (2016).
[Crossref]

S. H. Lee, J. W. Leem, X.-Y. Guan, and J. S. Yu, “Highly-reflective and conductive distributed Bragg reflectors based on glancing angle deposited indium tin oxide thin films for silicon optoelectronic applications,” Thin Solid Films 591, 351–356 (2015).
[Crossref]

J. W. Leem, S. H. Lee, X.-Y. Guan, and J. S. Yu, “Inverted tetrahedron-pyramidal micropatterned polymer films for boosting light output power in flip-chip light-emitting diodes,” Opt. Express 23(8), 9612–9617 (2015).
[Crossref] [PubMed]

Yu, Z.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Zhang, A.

R. Shi, P. Yang, X. Dong, Q. Ma, and A. Zhang, “Growth of flower-like ZnO on ZnO nanorod arrays created on zinc substrate through low-temperature hydrothermal synthesis,” Appl. Surf. Sci. 264, 162–170 (2013).
[Crossref]

Zhang, F.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure Formation and Passivation of Large-Area Black Silicon for Solar Cell Applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Zhang, H.

P. Fan, B. Bai, J. Long, D. Jiang, G. Jin, H. Zhang, and M. Zhong, “Broadband High-Performance Infrared Antireflection Nanowires Facilely Grown on Ultrafast Laser Structured Cu Surface,” Nano Lett. 15(9), 5988–5994 (2015).
[Crossref] [PubMed]

Zhang, X.

H. Yu, J. Liu, X. Fan, W. Yan, L. Han, J. Han, X. Zhang, T. Hong, and Z. Liu, “Bionic micro-nano-bump-structures with a good self-cleaning property: The growth of ZnO nanoarrays modified by polystyrene spheres,” Mater. Chem. Phys. 170, 52–61 (2016).
[Crossref]

Zhang, Y.

D. Qi, L. Zheng, X. Cao, Y. Jiang, H. Xu, Y. Zhang, B. Yang, Y. Sun, H. H. Hng, N. Lu, L. Chi, and X. Chen, “Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity,” Nanoscale 5(24), 12383–12387 (2013).
[Crossref] [PubMed]

Zheng, L.

D. Qi, L. Zheng, X. Cao, Y. Jiang, H. Xu, Y. Zhang, B. Yang, Y. Sun, H. H. Hng, N. Lu, L. Chi, and X. Chen, “Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity,” Nanoscale 5(24), 12383–12387 (2013).
[Crossref] [PubMed]

Zhong, M.

P. Fan, B. Bai, J. Long, D. Jiang, G. Jin, H. Zhang, and M. Zhong, “Broadband High-Performance Infrared Antireflection Nanowires Facilely Grown on Ultrafast Laser Structured Cu Surface,” Nano Lett. 15(9), 5988–5994 (2015).
[Crossref] [PubMed]

Zhou, X.

X. Zhou, X. Guo, W. Ding, and Y. Chen, “Superhydrophobic or superhydrophilic surfaces regulated by micro-nano structured ZnO powders,” Appl. Surf. Sci. 255(5), 3371–3374 (2008).
[Crossref]

Zubel, I.

K. P. Rola and I. Zubel, “Impact of alcohol additives concentration on etch rate and surface morphology of (100) and (110) Si substrates etched in KOH solutions,” Microsyst. Technol. 19(4), 635–643 (2013).
[Crossref]

I. Zubel and M. Kramkowska, “Etch rates and morphology of silicon (h k l) surfaces etched in KOH and KOH saturated with isopropanol solutions,” Sens. Actuator A-Phys. 115(2-3), 549–556 (2004).
[Crossref]

I. Zubel and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions,” Sens. Actuator A-Phys. 93(2), 138–147 (2001).
[Crossref]

I. Zubel and I. Barycka, “Silicon anisotropic etching in alkaline solutions I. The geometric description of figures developed under etching Si (100) in various solutions,” Sens. Actuator A-Phys. 70(3), 250–259 (1998).
[Crossref]

Adv. Mater. (2)

M.-Y. Choi, D. Choi, M.-J. Jin, I. Kim, S.-H. Kim, J.-Y. Choi, S. Y. Lee, J. M. Kim, and S.-W. Kim, “Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[Crossref]

N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol, and C. C. Perry, “Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces,” Adv. Mater. 16(21), 1929–1932 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. W. Choi, K.-S. Lee, and T. L. Alford, “Optimization of antireflective zinc oxide nanorod arrays on seedless substrate for bulk-heterojunction organic solar cells,” Appl. Phys. Lett. 101(15), 153301 (2012).
[Crossref]

B. S. Kang, S. J. Pearton, and F. Ren, “Low temperature (<100 °C) patterned growth of ZnO nanorod arrays on Si,” Appl. Phys. Lett. 90(8), 083104 (2007).
[Crossref]

Appl. Surf. Sci. (2)

R. Shi, P. Yang, X. Dong, Q. Ma, and A. Zhang, “Growth of flower-like ZnO on ZnO nanorod arrays created on zinc substrate through low-temperature hydrothermal synthesis,” Appl. Surf. Sci. 264, 162–170 (2013).
[Crossref]

X. Zhou, X. Guo, W. Ding, and Y. Chen, “Superhydrophobic or superhydrophilic surfaces regulated by micro-nano structured ZnO powders,” Appl. Surf. Sci. 255(5), 3371–3374 (2008).
[Crossref]

Ceram. Int. (1)

S. A. Vanalakar, S. S. Mali, R. C. Pawar, D. S. Dalavi, A. V. Mohalkar, H. P. Deshamukh, and P. S. Patil, “Farming of ZnO nanorod-arrays via aqueous chemical route for photoelectrochemical solar cell application,” Ceram. Int. 38(8), 6461–6467 (2012).
[Crossref]

Curr. Appl. Phys. (1)

D. Kim, S. Lee, and W. Hwang, “Complete wetting characteristics of micro/nano dual-scale surface by plasma etching to give nanohoneycomb structure,” Curr. Appl. Phys. 12(1), 219–224 (2012).
[Crossref]

IEEE J. Photovolt. (2)

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
[Crossref]

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and Wide-Angle Hybrid Antireflection Coatings With Nanostructures,” IEEE J. Photovolt. 4(3), 962–967 (2014).
[Crossref]

IEEE Trans. Electron Dev. (1)

K. Rosan, “Hydrogenated Amorphous-Silicon Image Sensors,” IEEE Trans. Electron Dev. 36(12), 2923–2927 (1989).
[Crossref]

J. Appl. Phys. (2)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

K. R. McIntosh and L. P. Johnson, “Recombination at textured silicon surfaces passivated with silicon dioxide,” J. Appl. Phys. 105(12), 124520 (2009).
[Crossref]

J. Electrochem. Soc. (1)

C. M. Chang, M. H. Hon, and I. C. Leu, “Influence of Size and Density of Au Nanoparticles on ZnO Nanorod Arrays for Sensing Reducing Gases,” J. Electrochem. Soc. 160(9), B170–B176 (2013).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

P. Wangyang, Y. Gan, Q. Wang, and X. Jiang, “A hybrid resist hemispherical-pit array layer for light trapping in thin film silicon solar cells via UV nanoimprint lithography,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6140–6147 (2014).
[Crossref]

J. Mater. Sci. (1)

D. Guo, K. Sato, S. Hibino, T. Takeuchi, H. Bessho, and K. Kato, “Low-temperature preparation of transparent conductive Al-doped ZnO thin films by a novel sol–gel method,” J. Mater. Sci. 49(14), 4722–4734 (2014).
[Crossref]

J. Micromech. Microeng. (1)

O. Powell and H. B. Harrison, “Anisotropic etching of {100} and {110} planes in (100) silicon,” J. Micromech. Microeng. 11(3), 217–220 (2001).
[Crossref]

J. Phys. Chem. B (1)

N. S. Pesika, Z. Hu, K. J. Stebe, and P. C. Searson, “Quenching of Growth of ZnO Nanoparticles by Adsorption of Octanethiol,” J. Phys. Chem. B 106(28), 6985–6990 (2002).
[Crossref]

J. Phys. D Appl. Phys. (1)

K. Kendall, “Thin-film peeling-the elastic term,” J. Phys. D Appl. Phys. 8(13), 1449–1452 (1975).
[Crossref]

Mater. Chem. Phys. (1)

H. Yu, J. Liu, X. Fan, W. Yan, L. Han, J. Han, X. Zhang, T. Hong, and Z. Liu, “Bionic micro-nano-bump-structures with a good self-cleaning property: The growth of ZnO nanoarrays modified by polystyrene spheres,” Mater. Chem. Phys. 170, 52–61 (2016).
[Crossref]

Microsyst. Technol. (1)

K. P. Rola and I. Zubel, “Impact of alcohol additives concentration on etch rate and surface morphology of (100) and (110) Si substrates etched in KOH solutions,” Microsyst. Technol. 19(4), 635–643 (2013).
[Crossref]

Nano Lett. (3)

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

P. Fan, B. Bai, J. Long, D. Jiang, G. Jin, H. Zhang, and M. Zhong, “Broadband High-Performance Infrared Antireflection Nanowires Facilely Grown on Ultrafast Laser Structured Cu Surface,” Nano Lett. 15(9), 5988–5994 (2015).
[Crossref] [PubMed]

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
[Crossref] [PubMed]

Nanoscale (1)

D. Qi, L. Zheng, X. Cao, Y. Jiang, H. Xu, Y. Zhang, B. Yang, Y. Sun, H. H. Hng, N. Lu, L. Chi, and X. Chen, “Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity,” Nanoscale 5(24), 12383–12387 (2013).
[Crossref] [PubMed]

Nanotechnology (2)

B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20(37), 375301 (2009).
[Crossref] [PubMed]

J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008).
[Crossref] [PubMed]

Nat. Commun. (2)

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Opt. Express (2)

Opt. Lett. (1)

RSC Advances (1)

B. Dudem, J. W. Leem, and J. S. Yu, “A multifunctional hierarchical nano/microstructured silicon surface with omnidirectional antireflection and superhydrophilicity via an anodic aluminum oxide etch mask,” RSC Advances 6(5), 3764–3773 (2016).
[Crossref]

Sci. Technol. Adv. Mater. (1)

S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater. 10(1), 013301 (2009).
[Crossref]

Sens. Actuator A-Phys. (4)

I. Zubel and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions,” Sens. Actuator A-Phys. 93(2), 138–147 (2001).
[Crossref]

I. Zubel and I. Barycka, “Silicon anisotropic etching in alkaline solutions I. The geometric description of figures developed under etching Si (100) in various solutions,” Sens. Actuator A-Phys. 70(3), 250–259 (1998).
[Crossref]

I. Zubel and M. Kramkowska, “Etch rates and morphology of silicon (h k l) surfaces etched in KOH and KOH saturated with isopropanol solutions,” Sens. Actuator A-Phys. 115(2-3), 549–556 (2004).
[Crossref]

C.-R. Yang, P.-Y. Chen, Y.-C. Chiou, and R.-T. Lee, “Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution,” Sens. Actuator A-Phys. 119(1), 263–270 (2005).
[Crossref]

Small (1)

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure Formation and Passivation of Large-Area Black Silicon for Solar Cell Applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Sol. Energy (1)

M.-J. Huang, C.-R. Yang, H.-S. Lee, and H.-L. Liu, “Fabrication of novel hybrid antireflection structures for solar cells,” Sol. Energy 107, 489–494 (2014).
[Crossref]

Sol. Energy Mater. Sol. Cells (4)

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 930–934 (2010).
[Crossref]

J. Haschke, L. Jogschies, D. Amkreutz, L. Korte, and B. Rech, “Polycrystalline silicon heterojunction thin-film solar cells on glass exhibiting 582 mV open-circuit voltage,” Sol. Energy Mater. Sol. Cells 115, 7–10 (2013).
[Crossref]

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90(15), 2319–2328 (2006).
[Crossref]

D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, “Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics,” Sol. Energy Mater. Sol. Cells 81(1), 13–24 (2004).
[Crossref]

Thin Solid Films (2)

M. Guo, P. Diao, and S. Cai, “Highly hydrophilic and superhydrophobic ZnO nanorod array films,” Thin Solid Films 515(18), 7162–7166 (2007).
[Crossref]

S. H. Lee, J. W. Leem, X.-Y. Guan, and J. S. Yu, “Highly-reflective and conductive distributed Bragg reflectors based on glancing angle deposited indium tin oxide thin films for silicon optoelectronic applications,” Thin Solid Films 591, 351–356 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram for the fabrication of the hybrid ZnO NRs grown on MP-Si AR structure.
Fig. 2
Fig. 2 XRD pattern of hybrid ZnO NRs (25 mM)/MP-Si AR structure. The EDX spectrum of the ZnO NRs (25 mM)/MP-Si structure is shown in the inset.
Fig. 3
Fig. 3 (a) TEM images, (b) high-resolution (HR) TEM images, (c) selective area electron diffraction (SAED) pattern, and (d) elemental mapping images of the single ZnO NR.
Fig. 4
Fig. 4 (a) Si etching rate at different IPA concentrations. (b) Measured reflectance spectra of the bare Si and the MP-Si structures at different etchant conditions over a broad wavelength range of 300-1100 nm. The inset of Fig. 4(a) shows the SEM images of the corresponding MP-Si structures at different etchant conditions.
Fig. 5
Fig. 5 (a) Top-view and cross-sectional SEM images of the MP-Si structures (KOH:IPA = 10:9) covered by the ZnO NRs grown at 0, 15, 25, and 50 mM and (b) surface wettability of the bare Si and the ZnO NRs (0 and 25 mM)/MP-Si structures.
Fig. 6
Fig. 6 (a) Measured reflectance spectra of the ZnO NRs (0, 15, 25, and 50 mM)/MP-Si structures and (b) calculated E-field intensity distributions of the bare Si and the ZnO NRs (0 and 25 mM)/MP-Si structures at λ = 550 nm using the FDTD simulations. The photographic images of the bare Si and the ZnO NRs (0, 15, 25, and 50 mM)/MP-Si structures under the fluorescence light are shown in the inset of (a). The high-magnification images of E-field distributions at the corresponding interfaces are shown in the inset of (b).
Fig. 7
Fig. 7 Contour plots of variations of measured reflectance spectra as a function of θinc for the (a) bare Si, (b) MP-Si, and (c) ZnO NRs (25 mM)/MP-Si structures in the wavelength range of 300-1100 nm for un-polarized light.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Si+2O H - +2 H 2 O SiO 2 (OH) 2 2- +2 H 2 .
R[ H 2 O ]a×[ O H - ]b.
SWR= I s (λ)R(λ)dλ I s (λ)dλ ,

Metrics