Abstract

It is demonstrated experimentally that an aluminum (Al) nanowire grating structure on silicon substrates can produce low-side-band monochromatic peak when it reflects colored light in the transverse magnetic (TM) mode. The central wavelength of the reflection is shown to be sensitive to the incident angle, which leads to significant color shifts. Formation of the monochromatic peak is attributed to the surface plasmon resonance on the interface between Al and air, together with remarkable diffraction at shorter wavelengths and strong Fabry-Perot (F-P) resonance absorption by Al-surrounding nano-cavities and silicon substrate at longer wavelengths. In contrast, reflection in transverse electric (TE) mode does not show distinct wavelength selectivity due to the cut-off effect of the nano-cavities. The outstanding characters of the proposed structure with polarization dependence, high sensitivity to incident angle, high color rendering facilitate more compact and sophisticated color-filter-based devices for displays, anti-counterfeit, and sensing applications. In addition, the two-dimensional structure with thin grating thickness and high duty ratio tolerance is relatively easy for fabrication.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and simulation of omnidirectional reflective color filters based on metal-dielectric-metal structure

Chenying Yang, Weidong Shen, Yueguang Zhang, Hao Peng, Xing Zhang, and Xu Liu
Opt. Express 22(9) 11384-11391 (2014)

Design of reflective color filters with high angular tolerance by particle swarm optimization method

Chenying Yang, Liang Hong, Weidong Shen, Yueguang Zhang, Xu Liu, and Hongyu Zhen
Opt. Express 21(8) 9315-9323 (2013)

Subwavelength nanocavity for flexible structural transmissive color generation with a wide viewing angle

Kyu-Tae Lee, Ji-Yun Jang, Sang Jin Park, Ujwal Kumar Thakur, Chengang Ji, L. Jay Guo, and Hui Joon Park
Optica 3(12) 1489-1495 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. Finlay, Color: A Natural History of the Palette (Random House, 2004).
  2. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [Crossref] [PubMed]
  3. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
    [Crossref]
  4. Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using Silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett. 18(20), 2126–2128 (2006).
    [Crossref]
  5. E. H. Cho, H. S. Kim, B. H. Cheong, O. Prudnikov, W. Xianyua, J. S. Sohn, D. J. Ma, H. Y. Choi, N. C. Park, and Y. P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17(10), 8621–8629 (2009).
    [Crossref] [PubMed]
  6. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  7. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
    [Crossref] [PubMed]
  8. Q. Chen and D. R. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
    [Crossref] [PubMed]
  9. D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S. T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 8337–8338 (2015).
    [Crossref] [PubMed]
  10. H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15(23), 15457–15463 (2007).
    [Crossref] [PubMed]
  11. T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
    [Crossref] [PubMed]
  12. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [Crossref] [PubMed]
  13. Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
    [Crossref] [PubMed]
  14. J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4, 6491 (2014).
    [Crossref] [PubMed]
  15. P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape Matters: Plasmonic Nanoparticle Shape Enhances Interaction with Dielectric Substrate,” Nano Lett. 11(9), 3531–3537 (2011).
    [Crossref] [PubMed]
  16. B. Baloukas, W. Trottier-Lapointe, and L. Martinu, “Fabry-Perot-like interference security image structures: From passive to active,” Thin Solid Films 559, 9–13 (2014).
    [Crossref]
  17. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
    [Crossref]
  18. A. D. Rakić, A. B. Djurišić, J. M. Elazar, M. L. Majewski, and M. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]

2015 (1)

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S. T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 8337–8338 (2015).
[Crossref] [PubMed]

2014 (2)

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4, 6491 (2014).
[Crossref] [PubMed]

B. Baloukas, W. Trottier-Lapointe, and L. Martinu, “Fabry-Perot-like interference security image structures: From passive to active,” Thin Solid Films 559, 9–13 (2014).
[Crossref]

2013 (1)

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

2012 (1)

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

2011 (1)

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape Matters: Plasmonic Nanoparticle Shape Enhances Interaction with Dielectric Substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2008 (2)

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[Crossref]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (1)

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using Silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

2003 (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

1998 (1)

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Albella, P.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape Matters: Plasmonic Nanoparticle Shape Enhances Interaction with Dielectric Substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Baloukas, B.

B. Baloukas, W. Trottier-Lapointe, and L. Martinu, “Fabry-Perot-like interference security image structures: From passive to active,” Thin Solid Films 559, 9–13 (2014).
[Crossref]

Boroumand, J.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S. T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 8337–8338 (2015).
[Crossref] [PubMed]

Brown, A.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape Matters: Plasmonic Nanoparticle Shape Enhances Interaction with Dielectric Substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Chanda, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S. T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 8337–8338 (2015).
[Crossref] [PubMed]

Chen, Q.

Chen, Y.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S. T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 8337–8338 (2015).
[Crossref] [PubMed]

Cheong, B. H.

Cho, E. H.

Choi, H. Y.

Crozier, K. B.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

Cumming, D. R.

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Djurišic, A. B.

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Elazar, J. M.

Ellenbogen, T.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

Everitt, H. O.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape Matters: Plasmonic Nanoparticle Shape Enhances Interaction with Dielectric Substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Franklin, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S. T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 8337–8338 (2015).
[Crossref] [PubMed]

Garcia-Cueto, B.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape Matters: Plasmonic Nanoparticle Shape Enhances Interaction with Dielectric Substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

González, F.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape Matters: Plasmonic Nanoparticle Shape Enhances Interaction with Dielectric Substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Guo, L. J.

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Hane, K.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using Silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

Hollowell, A. E.

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Kanamori, Y.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using Silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

Kim, H. S.

Kim, S. H.

Kim, T. H.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape Matters: Plasmonic Nanoparticle Shape Enhances Interaction with Dielectric Substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Kinoshita, S.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[Crossref]

Lalanne, P.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref] [PubMed]

Lee, H. S.

Lee, K. D.

Lee, S. S.

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Liu, H.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref] [PubMed]

Ma, D. J.

Magnusson, R.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Majewski, M.

Majewski, M. L.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Martinu, L.

B. Baloukas, W. Trottier-Lapointe, and L. Martinu, “Fabry-Perot-like interference security image structures: From passive to active,” Thin Solid Films 559, 9–13 (2014).
[Crossref]

Miyazaki, J.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[Crossref]

Modak, S.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S. T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 8337–8338 (2015).
[Crossref] [PubMed]

Moreno, F.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape Matters: Plasmonic Nanoparticle Shape Enhances Interaction with Dielectric Substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Park, N. C.

Park, Y. P.

Prudnikov, O.

Rakic, A. D.

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

Seo, K.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

Sheng, Z. M.

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4, 6491 (2014).
[Crossref] [PubMed]

Shieh, H. P.

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4, 6491 (2014).
[Crossref] [PubMed]

Shimono, M.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using Silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

Sohn, J. S.

Sun, N. L.

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4, 6491 (2014).
[Crossref] [PubMed]

Trottier-Lapointe, W.

B. Baloukas, W. Trottier-Lapointe, and L. Martinu, “Fabry-Perot-like interference security image structures: From passive to active,” Thin Solid Films 559, 9–13 (2014).
[Crossref]

Vazquez-Guardado, A.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S. T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 8337–8338 (2015).
[Crossref] [PubMed]

Videen, G.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape Matters: Plasmonic Nanoparticle Shape Enhances Interaction with Dielectric Substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Vukusic, P.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

Wang, S. S.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Wu, P. C.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape Matters: Plasmonic Nanoparticle Shape Enhances Interaction with Dielectric Substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Wu, S. T.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S. T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 8337–8338 (2015).
[Crossref] [PubMed]

Wu, Y. K.

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Xianyua, W.

Xu, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S. T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 8337–8338 (2015).
[Crossref] [PubMed]

Yang, Y.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape Matters: Plasmonic Nanoparticle Shape Enhances Interaction with Dielectric Substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Ye, Z. C.

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4, 6491 (2014).
[Crossref] [PubMed]

Yoon, Y. T.

Yoshioka, S.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[Crossref]

Zhang, C.

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Zhang, J.

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4, 6491 (2014).
[Crossref] [PubMed]

Zhang, R.

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4, 6491 (2014).
[Crossref] [PubMed]

Zheng, J.

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4, 6491 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using Silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

Nano Lett. (2)

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape Matters: Plasmonic Nanoparticle Shape Enhances Interaction with Dielectric Substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S. T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 8337–8338 (2015).
[Crossref] [PubMed]

Nature (3)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Rep. Prog. Phys. (1)

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[Crossref]

Sci. Rep. (2)

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4, 6491 (2014).
[Crossref] [PubMed]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Thin Solid Films (1)

B. Baloukas, W. Trottier-Lapointe, and L. Martinu, “Fabry-Perot-like interference security image structures: From passive to active,” Thin Solid Films 559, 9–13 (2014).
[Crossref]

Other (1)

V. Finlay, Color: A Natural History of the Palette (Random House, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The schematic diagram of the reflective plasmonic structure color device. (b) SEM images of the top and side views of a fabricated device. The PMMA grating pitch is T = 420 nm with duty cycle of 50%, the thickness of the dielectric and aluminum are h1 = 90 nm and h2 = 40 nm, respectively, the sidewalls of the PMMA bars are coated with Al with width of about 5 nm.
Fig. 2
Fig. 2 (a) Measured reflected spectra and the corresponding color patterns for the incident TM white light with incident angles from 15° to 50°. (b) The locations of measured reflected spectra in the CIE 1931 xy chromaticity diagram. (c) The simulated reflection spectra for different incident angles. The magenta dashed line and the red stars represent the calculated λSPR and the measured reflected peaks, respectively. The inset shows the reflection spectra for θi = 20°, 30° and 40°. (d) The steady amplitude distribution of the simulated magnetic field Hz for an incident TM light with wavelength of 630 nm and incident angle of 30°. The incident and reflected light are depicted by the white arrows, respectively. The white lines schematically depict the profile of the structure. The amplitude of the incident magnetic field is 1.0. The parameters used in this simulation is the same as that of the fabricated device shown in Fig. 1.
Fig. 3
Fig. 3 (a) Measured reflection spectra for the TE white light with incident angles from 15° to 50°. (b) The simulated reflection spectra. The insets in (a-b) show the reflection spectra for θi = 20°, 30° and 40°. (c) The steady amplitude distribution of the simulated electric field Ez for an incident light with wavelength of 630 nm and incident angle of 30°. The incident and reflected light are depicted by the white arrows, respectively. The white lines schematically depict the profile of the device structure. The amplitude of the incident electric field is 1.0. The structure used in this simulation is the same as that of the fabricated device shown in Fig. 1.
Fig. 4
Fig. 4 (a-b) The simulated diffraction spectra (a) and absorption spectra (b) for the different incident angles. The magenta dashed lines represent the diffraction limited wavelength λDiff. The insets in (a) represent the measured diffraction patterns for the incident TM white light with incident angle of 25° and 50°. The inset in (b) shows the absorption spectra for θi = 20°, 30° and 40°. (c-d) The steady amplitude distribution of the simulated magnetic field Hz for a wavelength of 530 nm (c) and 680 nm (d) and incident angle of 30°, respectively. The incident and diffracted light are depicted by the white arrows, respectively. The white lines schematically depict the profile of the device structure. The amplitude of the incident magnetic field is 1.0. The structure used in this simulation is the same as that of the fabricated device shown in Fig. 1.
Fig. 5
Fig. 5 The simulated diffraction (a, d), reflection (b, e), and absorption (c, f) spectra for TM (a-c) and TE (d-f) incident white light and θi = 30° with change of cavity depth h1. The other simulation parameters are same with that in Fig. 2.
Fig. 6
Fig. 6 Simulated TM (solid lines) and TE (dashed lines) reflection for h1 = 90 nm and θi = 30° with change of duty ratio (a) and grating pitch T (b). (c) The locations in the CIE 1931 xy chromaticity diagram for TM reflected spectra in (b). The other simulation parameters are same with that in Fig. 2.

Metrics