Abstract

The electromagnetic coupling and mechanical interaction between a plane wave and dispersive gain chiral structures are investigated using the Auxiliary Differential Equation Finite Difference Time Domain (ADE-FDTD) method. Utilizing the constitutive relations containing frequency-dependent Lorentzian models and a Condon model, the wave equations and time-averaged Lorentz force density for the magneto-electric coupling chiral media are presented. Numerical results show that the cross-polarized transmission coefficient is larger than the co-polarized transmission coefficient for a gain chiral slab with certain thickness. The gradient force engendered by bound currents of the cross-polarized waves in chiral media is larger than the scattering force to pull the slab towards the incident source. The complicated optical pulling or pushing force density among slabs, which is illuminated by a normally incident plane wave, containing chiral materials with different medium parameters is achieved.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Radiation pressure of active dispersive chiral slabs

Maoyan Wang, Hailong Li, Dongliang Gao, Lei Gao, Jun Xu, and Cheng-Wei Qiu
Opt. Express 23(13) 16546-16553 (2015)

Ab initio study of the radiation pressure on dielectric and magnetic media

Brandon A. Kemp, Tomasz M. Grzegorczyk, and Jin Au Kong
Opt. Express 13(23) 9280-9291 (2005)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  2. D. Gao, C. W. Qiu, L. Gao, T. Cui, and S. Zhang, “Macroscopic broadband optical escalator with force-loaded transformation optics,” Opt. Express 21(1), 796–803 (2013).
    [Crossref] [PubMed]
  3. A. Novitsky and C. W. Qiu, “Pulling extremely anisotropic lossy particles using light without intensity gradient,” Phys. Rev. A 90(5), 053815 (2014).
    [Crossref]
  4. W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
    [Crossref] [PubMed]
  5. M. Moocarme, B. Kusin, and L. T. Vuong, “Plasmon-induced Lorentz forces of nanowire chiral hybrid modes,” Opt. Mater. Express 4(11), 2355–2367 (2014).
  6. M. Z. Yaqoob, A. Ghaffar, M. A. S. Alkanhal, I. Shakir, and Q. A. Naqvi, “Scattering of electromagnetic waves from a chiral coated nihility cylinder hosted by isotropic plasma medium,” Opt. Mater. Express 5(5), 1224–1229 (2015).
  7. M. Wang, H. Li, D. Gao, L. Gao, J. Xu, and C. W. Qiu, “Radiation pressure of active dispersive chiral slabs,” Opt. Express 23(13), 16546–16553 (2015).
    [Crossref] [PubMed]
  8. K. Ding, J. Ng, L. Zhou, and C. T. Chan, “Realization of optical pulling forces using chirality,” Phys. Rev. A 89(6), 063825 (2014).
    [Crossref]
  9. X. C. Liu, Y. Q. Xu, Z. Zhu, S. W. Yu, C. Y. Guan, and J. H. Shi, “Manipulating wave polarization by twisted plasmonic metamaterials,” Opt. Mater. Express 4(5), 1003–1010 (2014).
    [Crossref]
  10. G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
    [Crossref] [PubMed]
  11. D. A. Canaguier, A. H. James, G. Cyriaque, and W. E. Thomas, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
    [Crossref]
  12. A. Mizrahi and Y. Fainman, “Negative radiation pressure on gain medium structures,” Opt. Lett. 35(20), 3405–3407 (2010).
    [Crossref] [PubMed]
  13. K. J. Webb and Shivanand, “Negative electromagnetic plane-wave force in gain media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(5), 057602 (2011).
    [Crossref] [PubMed]
  14. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite–Difference Time–Domain Method, 3rd Ed. (Artech House, 2005)
  15. M. Y. Wang, G. P. Li, M. Zhou, R. Wang, C. L. Zhong, J. Xu, and H. Zheng, “The effect of media parameters on wave propagation in a chiral metamaterials slab using FDTD,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 27(1), 109–121 (2014).
    [Crossref]
  16. J. A. Pereda, A. Grande, O. González, and Á. Vegas, “FDTD modeling of chiral media by using the mobius transformation technique,” IEEE Antenn. Wirel. Pr. 5(1), 327–330 (2006).
    [Crossref]
  17. V. Demir, A. Z. Elsherbeni, and E. Arvas, “FDTD formulation for dispersive chiral media using the Z transform method,” IEEE Trans. Antenn. Propag. 53(10), 3374–3384 (2005).
    [Crossref]
  18. A. Akyurtlu, D. H. Werner, and K. Aydin, “BI–FDTD: a new technique for modeling electromagnetic wave interaction with bi-isotropic media,” Microw. Opt. Technol. Lett. 26(4), 239–242 (2000).
    [Crossref]
  19. K. S. Zheng, J. Z. Li, G. Wei, and J. D. Xu, “Analysis of Doppler effect of moving conducting surfaces with Lorentz-FDTD method,” J. Electromagn. Waves Appl. 27(2), 149–159 (2013).
    [Crossref]
  20. A. Zakharian, M. Mansuripur, and J. Moloney, “Radiation pressure and the distribution of electromagnetic force in dielectric media,” Opt. Express 13(7), 2321–2336 (2005).
    [Crossref] [PubMed]
  21. B. Kemp, T. Grzegorczyk, and J. Kong, “Ab initio study of the radiation pressure on dielectric and magnetic media,” Opt. Express 13(23), 9280–9291 (2005).
    [Crossref] [PubMed]
  22. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi–isotropic Media (Artech House, 1994)
  23. T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. Engl. 53(42), 11199–11202 (2014).
    [Crossref] [PubMed]
  24. V. V. Pokropivny, “Non carbon nanotubes, synthesis, structure, properties and promising applications,” in Proceedings of the 2001 International Conference Hydrogen Materials Science and Chemistry of Metal Hydrides, T. Nejat Veziroglu, S. Yu. Zaginaichenko, D. V. Schur and V.I. Trefilov, ed. (Springer, 2001), pp. 630–631.
  25. K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
    [Crossref]

2015 (2)

2014 (9)

X. C. Liu, Y. Q. Xu, Z. Zhu, S. W. Yu, C. Y. Guan, and J. H. Shi, “Manipulating wave polarization by twisted plasmonic metamaterials,” Opt. Mater. Express 4(5), 1003–1010 (2014).
[Crossref]

M. Moocarme, B. Kusin, and L. T. Vuong, “Plasmon-induced Lorentz forces of nanowire chiral hybrid modes,” Opt. Mater. Express 4(11), 2355–2367 (2014).

A. Novitsky and C. W. Qiu, “Pulling extremely anisotropic lossy particles using light without intensity gradient,” Phys. Rev. A 90(5), 053815 (2014).
[Crossref]

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

K. Ding, J. Ng, L. Zhou, and C. T. Chan, “Realization of optical pulling forces using chirality,” Phys. Rev. A 89(6), 063825 (2014).
[Crossref]

M. Y. Wang, G. P. Li, M. Zhou, R. Wang, C. L. Zhong, J. Xu, and H. Zheng, “The effect of media parameters on wave propagation in a chiral metamaterials slab using FDTD,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 27(1), 109–121 (2014).
[Crossref]

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. Engl. 53(42), 11199–11202 (2014).
[Crossref] [PubMed]

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
[Crossref]

2013 (3)

D. A. Canaguier, A. H. James, G. Cyriaque, and W. E. Thomas, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
[Crossref]

K. S. Zheng, J. Z. Li, G. Wei, and J. D. Xu, “Analysis of Doppler effect of moving conducting surfaces with Lorentz-FDTD method,” J. Electromagn. Waves Appl. 27(2), 149–159 (2013).
[Crossref]

D. Gao, C. W. Qiu, L. Gao, T. Cui, and S. Zhang, “Macroscopic broadband optical escalator with force-loaded transformation optics,” Opt. Express 21(1), 796–803 (2013).
[Crossref] [PubMed]

2011 (1)

K. J. Webb and Shivanand, “Negative electromagnetic plane-wave force in gain media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(5), 057602 (2011).
[Crossref] [PubMed]

2010 (1)

2006 (1)

J. A. Pereda, A. Grande, O. González, and Á. Vegas, “FDTD modeling of chiral media by using the mobius transformation technique,” IEEE Antenn. Wirel. Pr. 5(1), 327–330 (2006).
[Crossref]

2005 (3)

2000 (1)

A. Akyurtlu, D. H. Werner, and K. Aydin, “BI–FDTD: a new technique for modeling electromagnetic wave interaction with bi-isotropic media,” Microw. Opt. Technol. Lett. 26(4), 239–242 (2000).
[Crossref]

1986 (1)

Akyurtlu, A.

A. Akyurtlu, D. H. Werner, and K. Aydin, “BI–FDTD: a new technique for modeling electromagnetic wave interaction with bi-isotropic media,” Microw. Opt. Technol. Lett. 26(4), 239–242 (2000).
[Crossref]

Alkanhal, M. A. S.

Arvas, E.

V. Demir, A. Z. Elsherbeni, and E. Arvas, “FDTD formulation for dispersive chiral media using the Z transform method,” IEEE Trans. Antenn. Propag. 53(10), 3374–3384 (2005).
[Crossref]

Ashkin, A.

Aydin, K.

A. Akyurtlu, D. H. Werner, and K. Aydin, “BI–FDTD: a new technique for modeling electromagnetic wave interaction with bi-isotropic media,” Microw. Opt. Technol. Lett. 26(4), 239–242 (2000).
[Crossref]

Bjorkholm, J. E.

Brasselet, E.

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

Canaguier, D. A.

D. A. Canaguier, A. H. James, G. Cyriaque, and W. E. Thomas, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
[Crossref]

Chan, C. T.

K. Ding, J. Ng, L. Zhou, and C. T. Chan, “Realization of optical pulling forces using chirality,” Phys. Rev. A 89(6), 063825 (2014).
[Crossref]

Chu, S.

Cui, T.

Cyriaque, G.

D. A. Canaguier, A. H. James, G. Cyriaque, and W. E. Thomas, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
[Crossref]

Demir, V.

V. Demir, A. Z. Elsherbeni, and E. Arvas, “FDTD formulation for dispersive chiral media using the Z transform method,” IEEE Trans. Antenn. Propag. 53(10), 3374–3384 (2005).
[Crossref]

Ding, K.

K. Ding, J. Ng, L. Zhou, and C. T. Chan, “Realization of optical pulling forces using chirality,” Phys. Rev. A 89(6), 063825 (2014).
[Crossref]

Dziedzic, J. M.

Elsherbeni, A. Z.

V. Demir, A. Z. Elsherbeni, and E. Arvas, “FDTD formulation for dispersive chiral media using the Z transform method,” IEEE Trans. Antenn. Propag. 53(10), 3374–3384 (2005).
[Crossref]

Fainman, Y.

Gao, D.

Gao, L.

Ghaffar, A.

González, O.

J. A. Pereda, A. Grande, O. González, and Á. Vegas, “FDTD modeling of chiral media by using the mobius transformation technique,” IEEE Antenn. Wirel. Pr. 5(1), 327–330 (2006).
[Crossref]

Grande, A.

J. A. Pereda, A. Grande, O. González, and Á. Vegas, “FDTD modeling of chiral media by using the mobius transformation technique,” IEEE Antenn. Wirel. Pr. 5(1), 327–330 (2006).
[Crossref]

Grzegorczyk, T.

Guan, C. Y.

Hannam, K.

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
[Crossref]

Hosoi, K.

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. Engl. 53(42), 11199–11202 (2014).
[Crossref] [PubMed]

Huang, C. B.

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Huang, J. S.

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

James, A. H.

D. A. Canaguier, A. H. James, G. Cyriaque, and W. E. Thomas, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
[Crossref]

Kanto, Y.

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. Engl. 53(42), 11199–11202 (2014).
[Crossref] [PubMed]

Kawasaki, T.

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. Engl. 53(42), 11199–11202 (2014).
[Crossref] [PubMed]

Kemp, B.

Kivshar, Y. S.

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
[Crossref]

Kong, J.

Kuruhara, N.

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. Engl. 53(42), 11199–11202 (2014).
[Crossref] [PubMed]

Kusin, B.

Li, G. P.

M. Y. Wang, G. P. Li, M. Zhou, R. Wang, C. L. Zhong, J. Xu, and H. Zheng, “The effect of media parameters on wave propagation in a chiral metamaterials slab using FDTD,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 27(1), 109–121 (2014).
[Crossref]

Li, H.

Li, J. Z.

K. S. Zheng, J. Z. Li, G. Wei, and J. D. Xu, “Analysis of Doppler effect of moving conducting surfaces with Lorentz-FDTD method,” J. Electromagn. Waves Appl. 27(2), 149–159 (2013).
[Crossref]

Liu, X. C.

Mansuripur, M.

Matsumoto, A.

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. Engl. 53(42), 11199–11202 (2014).
[Crossref] [PubMed]

Mizrahi, A.

Moloney, J.

Moocarme, M.

Nakaoda, M.

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. Engl. 53(42), 11199–11202 (2014).
[Crossref] [PubMed]

Naqvi, Q. A.

Ng, J.

K. Ding, J. Ng, L. Zhou, and C. T. Chan, “Realization of optical pulling forces using chirality,” Phys. Rev. A 89(6), 063825 (2014).
[Crossref]

Novitsky, A.

A. Novitsky and C. W. Qiu, “Pulling extremely anisotropic lossy particles using light without intensity gradient,” Phys. Rev. A 90(5), 053815 (2014).
[Crossref]

Pereda, J. A.

J. A. Pereda, A. Grande, O. González, and Á. Vegas, “FDTD modeling of chiral media by using the mobius transformation technique,” IEEE Antenn. Wirel. Pr. 5(1), 327–330 (2006).
[Crossref]

Powell, D. A.

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
[Crossref]

Qiu, C. W.

Sato, I.

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. Engl. 53(42), 11199–11202 (2014).
[Crossref] [PubMed]

Shadrivov, I. V.

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
[Crossref]

Shakir, I.

Shi, J. H.

Shivanand,

K. J. Webb and Shivanand, “Negative electromagnetic plane-wave force in gain media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(5), 057602 (2011).
[Crossref] [PubMed]

Soai, K.

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. Engl. 53(42), 11199–11202 (2014).
[Crossref] [PubMed]

Takahashi, Y.

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. Engl. 53(42), 11199–11202 (2014).
[Crossref] [PubMed]

Thomas, W. E.

D. A. Canaguier, A. H. James, G. Cyriaque, and W. E. Thomas, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
[Crossref]

Tkachenko, G.

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

Tsai, W. Y.

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Vegas, Á.

J. A. Pereda, A. Grande, O. González, and Á. Vegas, “FDTD modeling of chiral media by using the mobius transformation technique,” IEEE Antenn. Wirel. Pr. 5(1), 327–330 (2006).
[Crossref]

Vuong, L. T.

Wang, M.

Wang, M. Y.

M. Y. Wang, G. P. Li, M. Zhou, R. Wang, C. L. Zhong, J. Xu, and H. Zheng, “The effect of media parameters on wave propagation in a chiral metamaterials slab using FDTD,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 27(1), 109–121 (2014).
[Crossref]

Wang, R.

M. Y. Wang, G. P. Li, M. Zhou, R. Wang, C. L. Zhong, J. Xu, and H. Zheng, “The effect of media parameters on wave propagation in a chiral metamaterials slab using FDTD,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 27(1), 109–121 (2014).
[Crossref]

Webb, K. J.

K. J. Webb and Shivanand, “Negative electromagnetic plane-wave force in gain media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(5), 057602 (2011).
[Crossref] [PubMed]

Wei, G.

K. S. Zheng, J. Z. Li, G. Wei, and J. D. Xu, “Analysis of Doppler effect of moving conducting surfaces with Lorentz-FDTD method,” J. Electromagn. Waves Appl. 27(2), 149–159 (2013).
[Crossref]

Werner, D. H.

A. Akyurtlu, D. H. Werner, and K. Aydin, “BI–FDTD: a new technique for modeling electromagnetic wave interaction with bi-isotropic media,” Microw. Opt. Technol. Lett. 26(4), 239–242 (2000).
[Crossref]

Xu, J.

M. Wang, H. Li, D. Gao, L. Gao, J. Xu, and C. W. Qiu, “Radiation pressure of active dispersive chiral slabs,” Opt. Express 23(13), 16546–16553 (2015).
[Crossref] [PubMed]

M. Y. Wang, G. P. Li, M. Zhou, R. Wang, C. L. Zhong, J. Xu, and H. Zheng, “The effect of media parameters on wave propagation in a chiral metamaterials slab using FDTD,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 27(1), 109–121 (2014).
[Crossref]

Xu, J. D.

K. S. Zheng, J. Z. Li, G. Wei, and J. D. Xu, “Analysis of Doppler effect of moving conducting surfaces with Lorentz-FDTD method,” J. Electromagn. Waves Appl. 27(2), 149–159 (2013).
[Crossref]

Xu, Y. Q.

Yaqoob, M. Z.

Yu, S. W.

Zakharian, A.

Zhang, S.

Zheng, H.

M. Y. Wang, G. P. Li, M. Zhou, R. Wang, C. L. Zhong, J. Xu, and H. Zheng, “The effect of media parameters on wave propagation in a chiral metamaterials slab using FDTD,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 27(1), 109–121 (2014).
[Crossref]

Zheng, K. S.

K. S. Zheng, J. Z. Li, G. Wei, and J. D. Xu, “Analysis of Doppler effect of moving conducting surfaces with Lorentz-FDTD method,” J. Electromagn. Waves Appl. 27(2), 149–159 (2013).
[Crossref]

Zhong, C. L.

M. Y. Wang, G. P. Li, M. Zhou, R. Wang, C. L. Zhong, J. Xu, and H. Zheng, “The effect of media parameters on wave propagation in a chiral metamaterials slab using FDTD,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 27(1), 109–121 (2014).
[Crossref]

Zhou, L.

K. Ding, J. Ng, L. Zhou, and C. T. Chan, “Realization of optical pulling forces using chirality,” Phys. Rev. A 89(6), 063825 (2014).
[Crossref]

Zhou, M.

M. Y. Wang, G. P. Li, M. Zhou, R. Wang, C. L. Zhong, J. Xu, and H. Zheng, “The effect of media parameters on wave propagation in a chiral metamaterials slab using FDTD,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 27(1), 109–121 (2014).
[Crossref]

Zhu, Z.

Angew. Chem. Int. Ed. Engl. (1)

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. Engl. 53(42), 11199–11202 (2014).
[Crossref] [PubMed]

IEEE Antenn. Wirel. Pr. (1)

J. A. Pereda, A. Grande, O. González, and Á. Vegas, “FDTD modeling of chiral media by using the mobius transformation technique,” IEEE Antenn. Wirel. Pr. 5(1), 327–330 (2006).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

V. Demir, A. Z. Elsherbeni, and E. Arvas, “FDTD formulation for dispersive chiral media using the Z transform method,” IEEE Trans. Antenn. Propag. 53(10), 3374–3384 (2005).
[Crossref]

International Journal of Numerical Modelling: Electronic Networks, Devices and Fields (1)

M. Y. Wang, G. P. Li, M. Zhou, R. Wang, C. L. Zhong, J. Xu, and H. Zheng, “The effect of media parameters on wave propagation in a chiral metamaterials slab using FDTD,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 27(1), 109–121 (2014).
[Crossref]

J. Electromagn. Waves Appl. (1)

K. S. Zheng, J. Z. Li, G. Wei, and J. D. Xu, “Analysis of Doppler effect of moving conducting surfaces with Lorentz-FDTD method,” J. Electromagn. Waves Appl. 27(2), 149–159 (2013).
[Crossref]

Microw. Opt. Technol. Lett. (1)

A. Akyurtlu, D. H. Werner, and K. Aydin, “BI–FDTD: a new technique for modeling electromagnetic wave interaction with bi-isotropic media,” Microw. Opt. Technol. Lett. 26(4), 239–242 (2000).
[Crossref]

Nano Lett. (1)

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

New J. Phys. (1)

D. A. Canaguier, A. H. James, G. Cyriaque, and W. E. Thomas, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (3)

Phys. Rev. A (2)

K. Ding, J. Ng, L. Zhou, and C. T. Chan, “Realization of optical pulling forces using chirality,” Phys. Rev. A 89(6), 063825 (2014).
[Crossref]

A. Novitsky and C. W. Qiu, “Pulling extremely anisotropic lossy particles using light without intensity gradient,” Phys. Rev. A 90(5), 053815 (2014).
[Crossref]

Phys. Rev. B (1)

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

K. J. Webb and Shivanand, “Negative electromagnetic plane-wave force in gain media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(5), 057602 (2011).
[Crossref] [PubMed]

Other (3)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite–Difference Time–Domain Method, 3rd Ed. (Artech House, 2005)

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi–isotropic Media (Artech House, 1994)

V. V. Pokropivny, “Non carbon nanotubes, synthesis, structure, properties and promising applications,” in Proceedings of the 2001 International Conference Hydrogen Materials Science and Chemistry of Metal Hydrides, T. Nejat Veziroglu, S. Yu. Zaginaichenko, D. V. Schur and V.I. Trefilov, ed. (Springer, 2001), pp. 630–631.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Co- polarized reflection, co- and cross-polarized transmission coefficients of a chiral slab.
Fig. 2
Fig. 2 FDTD computed co-polarized and cross-polarized electric fields, scattering coefficients and Lorentz force densities Fz (per unit cross-sectional area) in a chiral slab. (a) versus timestep, in the middle of the chiral slab, (b) versus z, at time t = 18000Δt, (c) reflection and transmission coefficients, (d) force densities.
Fig. 3
Fig. 3 FDTD predicted co-polarized, cross-polarized and net force densities inside two slabs containing a chiral medium. (a) repulsive force densities, (b) attractive force densities.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

D(ω)=ε(ω)E+[ χ(ω)jκ(ω) ] μ 0 ε 0 H
B(ω)=μ(ω)H+[ χ(ω)+jκ(ω) ] μ 0 ε 0 E
ε(ω)= ε ε 0 + ( ε s ε ) ε 0 ω e 2 ω e 2 ω 2 +j2 ξ e ω
μ(ω)= μ μ 0 + ( μ s μ ) μ 0 ω h 2 ω h 2 ω 2 +j2 ξ h ω
κ(ω)= τ κ ω κ 2 ω ω κ 2 ω 2 +j2 ω κ ξ κ ω
Im{ μ }<0 Im{ ε }<0 Im 2 { κ }< Im{ μ }Im{ ε } μ 0 ε 0
×H= ε ε 0 E t +J+ J s + K c 2 J 2 t +2 ξ e J t + ω e 2 J=( ε s ε ) ε 0 ω e 2 E t 2 K 2 t +2 ξ h K t + ω h 2 K=( μ s μ ) μ 0 ω h 2 H t ×E= μ μ 0 H t K J c 2 J c 2 t +2 ω κ ξ κ J c t + ω κ 2 J c = τ κ ω κ 2 μ 0 ε 0 2 E 2 t 2 K c 2 t +2 ω κ ξ κ K c t + ω κ 2 K c = τ κ ω κ 2 μ 0 ε 0 2 H 2 t
<F>= (1/T) 0 T (E ε 0 E+ J e_bound × μ 0 H+H μ 0 H J m_bound × ε 0 E)dt
J e_bound = J+ K c ε + ( ε 1)(×H) ε
J m_bound = K+ J c μ + (1 μ )(×E) μ

Metrics