Abstract

Light-induced heating under high-average-power laser is investigated in LiNbO3-type crystals in green second-harmonic generation. A rate-equation based on the kinetics of polarons is proposed and important parameters of the rate-equation are determined by reproducing experimental results. Light-induced heat and threshold intensity of catastrophic breakdown are evaluated using the rate-equation. The accumulation effect of polarons causes the decrease of threshold intensity of catastrophic breakdown of crystals.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light-induced charge transport in LiNbO3:Fe at high light intensities

F. Jermann and J. Otten
J. Opt. Soc. Am. B 10(11) 2085-2092 (1993)

Laser induced damage studies of LiNbO3 using 1030-nm, ultrashort pulses at 10-1000 kHz

Florian Bach, Mark Mero, Ming-Hsien Chou, and Valentin Petrov
Opt. Mater. Express 7(1) 240-252 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
    [Crossref] [PubMed]
  2. S. Kurimura, H. H. Lim, and N. E. Yu, “Green-suppressed quasi-phase-matched optical parametric oscillation,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (online) (Optical Society of America, 2013), paper ATu4A.8.
    [Crossref]
  3. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10(11), 2085–2092 (1993).
    [Crossref]
  4. B. Sturman, E. Podivilov, and M. Gorkunov, “Origin of stretched exponential relaxation for hopping-transport models,” Phys. Rev. Lett. 91(17), 176602 (2003).
    [Crossref] [PubMed]
  5. J. Carnicero, M. Carrascosa, G. García, and F. Agulló-López, “Site correlation effects in the dynamics of iron impurities Fe2+/Fe3+ and antisite defects NbLi4+/NbLi5+ after a short-pulse excitation in LiNbO3,” Phys. Rev. B 72(24), 245108 (2005).
    [Crossref]
  6. C. Merschjann, M. Imlau, H. Brüning, B. Schoke, and S. Torbrügge, “Nonexponential relaxation dynamics of localized carrier densities in oxide crystals without structural or energetic disorder,” Phys. Rev. B 84(5), 052302 (2011).
    [Crossref]
  7. F. Luedtke, K. Buse, and B. Sturman, “Hidden reservoir of photoactive electrons in LiNbO3 crystals,” Phys. Rev. Lett. 109(2), 026603 (2012).
    [Crossref] [PubMed]
  8. S. Kato, S. Kurimura, H. H. Lim, and N. Mio, “Induced heating by nonlinear absorption in LiNbO3-type crystals under continuous-wave laser irradiation,” Opt. Mater. 40, 10–13 (2015).
    [Crossref]
  9. O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys.: Condens. Matter 21(12), 123201 (2009).
  10. P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, and E. Kratzig, “Evidence for light-induced hole polarons in LiNbO3,” Phys. Rev. Lett. 95(6), 067404 (2005).
    [Crossref] [PubMed]
  11. C. Merschjann, B. Schoke, and M. Imlau, “Influence of chemical reduction on the particular number densities of light-induced small electron and hole polarons in nominally pure LiNbO3,” Phys. Rev. B 76(8), 085114 (2007).
    [Crossref]
  12. C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgár, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21(1), 015906 (2009).
  13. O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Femtosecond time-resolved absorption processes in lithium niobate crystals,” Opt. Lett. 30(11), 1366–1368 (2005).
    [Crossref] [PubMed]
  14. S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105(8), 083102 (2009).
    [Crossref]
  15. S. M. Kostritskii and M. Aillerie, “Z-scan study of nonlinear absorption in reduced LiNbO3 crystals,” J. Appl. Phys. 111(10), 103504 (2012).
    [Crossref]
  16. Y. Qiu, K. B. Ucer, and R. T. Williams, “Formation time of a small electron polaron in LiNbO3: measurements and interpretation,” Phys. Status Solidi C 2(1), 232–235 (2005).
    [Crossref]
  17. O. Beyer, D. Maxein, T. Woike, and K. Buse, “Generation of small bound polarons in lithium niobate crystals on the subpicosecond time scale,” Appl. Phys. B 83(4), 527–530 (2006).
    [Crossref]

2015 (1)

S. Kato, S. Kurimura, H. H. Lim, and N. Mio, “Induced heating by nonlinear absorption in LiNbO3-type crystals under continuous-wave laser irradiation,” Opt. Mater. 40, 10–13 (2015).
[Crossref]

2012 (2)

F. Luedtke, K. Buse, and B. Sturman, “Hidden reservoir of photoactive electrons in LiNbO3 crystals,” Phys. Rev. Lett. 109(2), 026603 (2012).
[Crossref] [PubMed]

S. M. Kostritskii and M. Aillerie, “Z-scan study of nonlinear absorption in reduced LiNbO3 crystals,” J. Appl. Phys. 111(10), 103504 (2012).
[Crossref]

2011 (1)

C. Merschjann, M. Imlau, H. Brüning, B. Schoke, and S. Torbrügge, “Nonexponential relaxation dynamics of localized carrier densities in oxide crystals without structural or energetic disorder,” Phys. Rev. B 84(5), 052302 (2011).
[Crossref]

2009 (3)

O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys.: Condens. Matter 21(12), 123201 (2009).

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgár, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21(1), 015906 (2009).

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105(8), 083102 (2009).
[Crossref]

2008 (1)

2007 (1)

C. Merschjann, B. Schoke, and M. Imlau, “Influence of chemical reduction on the particular number densities of light-induced small electron and hole polarons in nominally pure LiNbO3,” Phys. Rev. B 76(8), 085114 (2007).
[Crossref]

2006 (1)

O. Beyer, D. Maxein, T. Woike, and K. Buse, “Generation of small bound polarons in lithium niobate crystals on the subpicosecond time scale,” Appl. Phys. B 83(4), 527–530 (2006).
[Crossref]

2005 (4)

Y. Qiu, K. B. Ucer, and R. T. Williams, “Formation time of a small electron polaron in LiNbO3: measurements and interpretation,” Phys. Status Solidi C 2(1), 232–235 (2005).
[Crossref]

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Femtosecond time-resolved absorption processes in lithium niobate crystals,” Opt. Lett. 30(11), 1366–1368 (2005).
[Crossref] [PubMed]

J. Carnicero, M. Carrascosa, G. García, and F. Agulló-López, “Site correlation effects in the dynamics of iron impurities Fe2+/Fe3+ and antisite defects NbLi4+/NbLi5+ after a short-pulse excitation in LiNbO3,” Phys. Rev. B 72(24), 245108 (2005).
[Crossref]

P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, and E. Kratzig, “Evidence for light-induced hole polarons in LiNbO3,” Phys. Rev. Lett. 95(6), 067404 (2005).
[Crossref] [PubMed]

2003 (1)

B. Sturman, E. Podivilov, and M. Gorkunov, “Origin of stretched exponential relaxation for hopping-transport models,” Phys. Rev. Lett. 91(17), 176602 (2003).
[Crossref] [PubMed]

1993 (1)

Agulló-López, F.

J. Carnicero, M. Carrascosa, G. García, and F. Agulló-López, “Site correlation effects in the dynamics of iron impurities Fe2+/Fe3+ and antisite defects NbLi4+/NbLi5+ after a short-pulse excitation in LiNbO3,” Phys. Rev. B 72(24), 245108 (2005).
[Crossref]

Aillerie, M.

S. M. Kostritskii and M. Aillerie, “Z-scan study of nonlinear absorption in reduced LiNbO3 crystals,” J. Appl. Phys. 111(10), 103504 (2012).
[Crossref]

Ashihara, S.

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105(8), 083102 (2009).
[Crossref]

Beyer, O.

O. Beyer, D. Maxein, T. Woike, and K. Buse, “Generation of small bound polarons in lithium niobate crystals on the subpicosecond time scale,” Appl. Phys. B 83(4), 527–530 (2006).
[Crossref]

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Femtosecond time-resolved absorption processes in lithium niobate crystals,” Opt. Lett. 30(11), 1366–1368 (2005).
[Crossref] [PubMed]

Brüning, H.

C. Merschjann, M. Imlau, H. Brüning, B. Schoke, and S. Torbrügge, “Nonexponential relaxation dynamics of localized carrier densities in oxide crystals without structural or energetic disorder,” Phys. Rev. B 84(5), 052302 (2011).
[Crossref]

Buse, K.

F. Luedtke, K. Buse, and B. Sturman, “Hidden reservoir of photoactive electrons in LiNbO3 crystals,” Phys. Rev. Lett. 109(2), 026603 (2012).
[Crossref] [PubMed]

O. Beyer, D. Maxein, T. Woike, and K. Buse, “Generation of small bound polarons in lithium niobate crystals on the subpicosecond time scale,” Appl. Phys. B 83(4), 527–530 (2006).
[Crossref]

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Femtosecond time-resolved absorption processes in lithium niobate crystals,” Opt. Lett. 30(11), 1366–1368 (2005).
[Crossref] [PubMed]

Carnicero, J.

J. Carnicero, M. Carrascosa, G. García, and F. Agulló-López, “Site correlation effects in the dynamics of iron impurities Fe2+/Fe3+ and antisite defects NbLi4+/NbLi5+ after a short-pulse excitation in LiNbO3,” Phys. Rev. B 72(24), 245108 (2005).
[Crossref]

Carrascosa, M.

J. Carnicero, M. Carrascosa, G. García, and F. Agulló-López, “Site correlation effects in the dynamics of iron impurities Fe2+/Fe3+ and antisite defects NbLi4+/NbLi5+ after a short-pulse excitation in LiNbO3,” Phys. Rev. B 72(24), 245108 (2005).
[Crossref]

Conradi, D.

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgár, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21(1), 015906 (2009).

Corradi, G.

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgár, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21(1), 015906 (2009).

García, G.

J. Carnicero, M. Carrascosa, G. García, and F. Agulló-López, “Site correlation effects in the dynamics of iron impurities Fe2+/Fe3+ and antisite defects NbLi4+/NbLi5+ after a short-pulse excitation in LiNbO3,” Phys. Rev. B 72(24), 245108 (2005).
[Crossref]

Gorkunov, M.

B. Sturman, E. Podivilov, and M. Gorkunov, “Origin of stretched exponential relaxation for hopping-transport models,” Phys. Rev. Lett. 91(17), 176602 (2003).
[Crossref] [PubMed]

Granzow, T.

P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, and E. Kratzig, “Evidence for light-induced hole polarons in LiNbO3,” Phys. Rev. Lett. 95(6), 067404 (2005).
[Crossref] [PubMed]

Herth, P.

P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, and E. Kratzig, “Evidence for light-induced hole polarons in LiNbO3,” Phys. Rev. Lett. 95(6), 067404 (2005).
[Crossref] [PubMed]

Hirohashi, J.

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105(8), 083102 (2009).
[Crossref]

Hsieh, H. T.

Imlau, M.

C. Merschjann, M. Imlau, H. Brüning, B. Schoke, and S. Torbrügge, “Nonexponential relaxation dynamics of localized carrier densities in oxide crystals without structural or energetic disorder,” Phys. Rev. B 84(5), 052302 (2011).
[Crossref]

O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys.: Condens. Matter 21(12), 123201 (2009).

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgár, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21(1), 015906 (2009).

C. Merschjann, B. Schoke, and M. Imlau, “Influence of chemical reduction on the particular number densities of light-induced small electron and hole polarons in nominally pure LiNbO3,” Phys. Rev. B 76(8), 085114 (2007).
[Crossref]

P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, and E. Kratzig, “Evidence for light-induced hole polarons in LiNbO3,” Phys. Rev. Lett. 95(6), 067404 (2005).
[Crossref] [PubMed]

Jermann, F.

Katagai, T.

Kato, S.

S. Kato, S. Kurimura, H. H. Lim, and N. Mio, “Induced heating by nonlinear absorption in LiNbO3-type crystals under continuous-wave laser irradiation,” Opt. Mater. 40, 10–13 (2015).
[Crossref]

Kostritskii, S. M.

S. M. Kostritskii and M. Aillerie, “Z-scan study of nonlinear absorption in reduced LiNbO3 crystals,” J. Appl. Phys. 111(10), 103504 (2012).
[Crossref]

Kratzig, E.

P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, and E. Kratzig, “Evidence for light-induced hole polarons in LiNbO3,” Phys. Rev. Lett. 95(6), 067404 (2005).
[Crossref] [PubMed]

Kurimura, S.

S. Kato, S. Kurimura, H. H. Lim, and N. Mio, “Induced heating by nonlinear absorption in LiNbO3-type crystals under continuous-wave laser irradiation,” Opt. Mater. 40, 10–13 (2015).
[Crossref]

S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
[Crossref] [PubMed]

S. Kurimura, H. H. Lim, and N. E. Yu, “Green-suppressed quasi-phase-matched optical parametric oscillation,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (online) (Optical Society of America, 2013), paper ATu4A.8.
[Crossref]

Lim, H. H.

S. Kato, S. Kurimura, H. H. Lim, and N. Mio, “Induced heating by nonlinear absorption in LiNbO3-type crystals under continuous-wave laser irradiation,” Opt. Mater. 40, 10–13 (2015).
[Crossref]

S. Kurimura, H. H. Lim, and N. E. Yu, “Green-suppressed quasi-phase-matched optical parametric oscillation,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (online) (Optical Society of America, 2013), paper ATu4A.8.
[Crossref]

Luedtke, F.

F. Luedtke, K. Buse, and B. Sturman, “Hidden reservoir of photoactive electrons in LiNbO3 crystals,” Phys. Rev. Lett. 109(2), 026603 (2012).
[Crossref] [PubMed]

Maxein, D.

O. Beyer, D. Maxein, T. Woike, and K. Buse, “Generation of small bound polarons in lithium niobate crystals on the subpicosecond time scale,” Appl. Phys. B 83(4), 527–530 (2006).
[Crossref]

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Femtosecond time-resolved absorption processes in lithium niobate crystals,” Opt. Lett. 30(11), 1366–1368 (2005).
[Crossref] [PubMed]

Merschjann, C.

C. Merschjann, M. Imlau, H. Brüning, B. Schoke, and S. Torbrügge, “Nonexponential relaxation dynamics of localized carrier densities in oxide crystals without structural or energetic disorder,” Phys. Rev. B 84(5), 052302 (2011).
[Crossref]

O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys.: Condens. Matter 21(12), 123201 (2009).

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgár, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21(1), 015906 (2009).

C. Merschjann, B. Schoke, and M. Imlau, “Influence of chemical reduction on the particular number densities of light-induced small electron and hole polarons in nominally pure LiNbO3,” Phys. Rev. B 76(8), 085114 (2007).
[Crossref]

Mio, N.

S. Kato, S. Kurimura, H. H. Lim, and N. Mio, “Induced heating by nonlinear absorption in LiNbO3-type crystals under continuous-wave laser irradiation,” Opt. Mater. 40, 10–13 (2015).
[Crossref]

S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
[Crossref] [PubMed]

Moriwaki, S.

Ohmae, N.

Otten, J.

Podivilov, E.

B. Sturman, E. Podivilov, and M. Gorkunov, “Origin of stretched exponential relaxation for hopping-transport models,” Phys. Rev. Lett. 91(17), 176602 (2003).
[Crossref] [PubMed]

Polgár, K.

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgár, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21(1), 015906 (2009).

Psaltis, D.

Qiu, Y.

Y. Qiu, K. B. Ucer, and R. T. Williams, “Formation time of a small electron polaron in LiNbO3: measurements and interpretation,” Phys. Status Solidi C 2(1), 232–235 (2005).
[Crossref]

Sasamoto, S.

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105(8), 083102 (2009).
[Crossref]

Schaniel, D.

P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, and E. Kratzig, “Evidence for light-induced hole polarons in LiNbO3,” Phys. Rev. Lett. 95(6), 067404 (2005).
[Crossref] [PubMed]

Schirmer, O. F.

O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys.: Condens. Matter 21(12), 123201 (2009).

Schoke, B.

C. Merschjann, M. Imlau, H. Brüning, B. Schoke, and S. Torbrügge, “Nonexponential relaxation dynamics of localized carrier densities in oxide crystals without structural or energetic disorder,” Phys. Rev. B 84(5), 052302 (2011).
[Crossref]

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgár, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21(1), 015906 (2009).

O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys.: Condens. Matter 21(12), 123201 (2009).

C. Merschjann, B. Schoke, and M. Imlau, “Influence of chemical reduction on the particular number densities of light-induced small electron and hole polarons in nominally pure LiNbO3,” Phys. Rev. B 76(8), 085114 (2007).
[Crossref]

Sturman, B.

F. Luedtke, K. Buse, and B. Sturman, “Hidden reservoir of photoactive electrons in LiNbO3 crystals,” Phys. Rev. Lett. 109(2), 026603 (2012).
[Crossref] [PubMed]

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Femtosecond time-resolved absorption processes in lithium niobate crystals,” Opt. Lett. 30(11), 1366–1368 (2005).
[Crossref] [PubMed]

B. Sturman, E. Podivilov, and M. Gorkunov, “Origin of stretched exponential relaxation for hopping-transport models,” Phys. Rev. Lett. 91(17), 176602 (2003).
[Crossref] [PubMed]

Suzuki, I.

Takeno, K.

Torbrügge, S.

C. Merschjann, M. Imlau, H. Brüning, B. Schoke, and S. Torbrügge, “Nonexponential relaxation dynamics of localized carrier densities in oxide crystals without structural or energetic disorder,” Phys. Rev. B 84(5), 052302 (2011).
[Crossref]

Tovstonog, S. V.

Ucer, K. B.

Y. Qiu, K. B. Ucer, and R. T. Williams, “Formation time of a small electron polaron in LiNbO3: measurements and interpretation,” Phys. Status Solidi C 2(1), 232–235 (2005).
[Crossref]

Williams, R. T.

Y. Qiu, K. B. Ucer, and R. T. Williams, “Formation time of a small electron polaron in LiNbO3: measurements and interpretation,” Phys. Status Solidi C 2(1), 232–235 (2005).
[Crossref]

Woike, T.

O. Beyer, D. Maxein, T. Woike, and K. Buse, “Generation of small bound polarons in lithium niobate crystals on the subpicosecond time scale,” Appl. Phys. B 83(4), 527–530 (2006).
[Crossref]

P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, and E. Kratzig, “Evidence for light-induced hole polarons in LiNbO3,” Phys. Rev. Lett. 95(6), 067404 (2005).
[Crossref] [PubMed]

Yu, N. E.

S. Kurimura, H. H. Lim, and N. E. Yu, “Green-suppressed quasi-phase-matched optical parametric oscillation,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (online) (Optical Society of America, 2013), paper ATu4A.8.
[Crossref]

Appl. Phys. B (1)

O. Beyer, D. Maxein, T. Woike, and K. Buse, “Generation of small bound polarons in lithium niobate crystals on the subpicosecond time scale,” Appl. Phys. B 83(4), 527–530 (2006).
[Crossref]

J. Appl. Phys. (2)

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105(8), 083102 (2009).
[Crossref]

S. M. Kostritskii and M. Aillerie, “Z-scan study of nonlinear absorption in reduced LiNbO3 crystals,” J. Appl. Phys. 111(10), 103504 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (2)

O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys.: Condens. Matter 21(12), 123201 (2009).

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgár, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21(1), 015906 (2009).

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

S. Kato, S. Kurimura, H. H. Lim, and N. Mio, “Induced heating by nonlinear absorption in LiNbO3-type crystals under continuous-wave laser irradiation,” Opt. Mater. 40, 10–13 (2015).
[Crossref]

Phys. Rev. B (3)

J. Carnicero, M. Carrascosa, G. García, and F. Agulló-López, “Site correlation effects in the dynamics of iron impurities Fe2+/Fe3+ and antisite defects NbLi4+/NbLi5+ after a short-pulse excitation in LiNbO3,” Phys. Rev. B 72(24), 245108 (2005).
[Crossref]

C. Merschjann, M. Imlau, H. Brüning, B. Schoke, and S. Torbrügge, “Nonexponential relaxation dynamics of localized carrier densities in oxide crystals without structural or energetic disorder,” Phys. Rev. B 84(5), 052302 (2011).
[Crossref]

C. Merschjann, B. Schoke, and M. Imlau, “Influence of chemical reduction on the particular number densities of light-induced small electron and hole polarons in nominally pure LiNbO3,” Phys. Rev. B 76(8), 085114 (2007).
[Crossref]

Phys. Rev. Lett. (3)

P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, and E. Kratzig, “Evidence for light-induced hole polarons in LiNbO3,” Phys. Rev. Lett. 95(6), 067404 (2005).
[Crossref] [PubMed]

F. Luedtke, K. Buse, and B. Sturman, “Hidden reservoir of photoactive electrons in LiNbO3 crystals,” Phys. Rev. Lett. 109(2), 026603 (2012).
[Crossref] [PubMed]

B. Sturman, E. Podivilov, and M. Gorkunov, “Origin of stretched exponential relaxation for hopping-transport models,” Phys. Rev. Lett. 91(17), 176602 (2003).
[Crossref] [PubMed]

Phys. Status Solidi C (1)

Y. Qiu, K. B. Ucer, and R. T. Williams, “Formation time of a small electron polaron in LiNbO3: measurements and interpretation,” Phys. Status Solidi C 2(1), 232–235 (2005).
[Crossref]

Other (1)

S. Kurimura, H. H. Lim, and N. E. Yu, “Green-suppressed quasi-phase-matched optical parametric oscillation,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (online) (Optical Society of America, 2013), paper ATu4A.8.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the rate-equation model. Nb Nb 4 + / 5 +, Nb Li 4 + / 5 +, O−/2− are represented by 1, 2, and 3, respectively.
Fig. 2
Fig. 2 Temporal evolution of the light-induced absorption. Solid red and black lines show the calculation of this model and experimental results [14], respectively. Dotted and dashed black lines show the exponential decay function of decay constants τ = 40 and 167 ns, respectively. The stretched exponential curve in the experiment is fitted by exp[−(t/τ)β], where τ = 40ns, β = 0.37. The average decay time < τ > = τ β Γ [ 1 / β ], where Γ is the gamma function, is 167 ns. Solid red line almost overlaps with solid black one.
Fig. 3
Fig. 3 Temporal evolution of the number densities. Solid, dotted and dashed lines show the number densities of n1, n2, and n3, respectively.
Fig. 4
Fig. 4 Absorption power density as a function of intensity of second harmonic (SH) laser. Circle, down-pointing triangle, triangle, diamond, and square indicate fundamental laser intensities 0, 20, 40, 60, and 100 MW/cm2, respectively.

Tables (1)

Tables Icon

Table 1 All parameters for simulation. ACS, RC, and TC show absorption cross section, recombination coefficient, and transition coefficient, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d n e d t = β 2 h ¯ ω 2 I 2 2 R e h n e n h R 3 e n 3 n e + [ σ 1 ( ω 1 ) I 1 h ¯ ω 1 + σ 1 ( ω 2 ) I 2 h ¯ ω 2 ] n 1 T e 1 ( n 1 0 n 1 ) n e + [ σ 2 ( ω 1 ) I 1 h ¯ ω 1 + σ 2 ( ω 2 ) I 2 h ¯ ω 2 ] n 2 T e 2 ( n 2 0 n 2 ) n e , d n h d t = β 2 h ¯ ω 2 I 2 2 R e h n e n h R 1 h n 1 n h R 2 h n 2 n h + [ σ 3 ( ω 1 ) I 1 h ¯ ω 1 + σ 3 ( ω 2 ) I 2 h ¯ ω 2 ] n 3 T h 3 ( n 3 0 n 3 ) n h , d n 1 d t = T e 1 ( n 1 0 n 1 ) n e [ σ 1 ( ω 1 ) I 1 h ¯ ω 1 + σ 1 ( ω 2 ) I 2 h ¯ ω 2 ] n 1 R 1 h n 1 n h R 1 3 n 1 n 3 γ 1 2 ( n 2 0 n 2 ) n 1 + γ 2 1 ( n 1 0 n 1 ) n 2 , d n 2 d t = T e 2 ( n 2 0 n 2 ) n e [ σ 2 ( ω 1 ) I 1 h ¯ ω 1 + σ 2 ( ω 2 ) I 2 h ¯ ω 2 ] n 2 R 2 h n 2 n h R 2 3 n 2 n 3 + γ 1 2 ( n 2 0 n 2 ) n 1 γ 2 1 ( n 1 0 n 1 ) n 2 , d n 3 d t = T h 3 ( n 3 0 n 3 ) n h [ σ 3 ( ω 1 ) I 1 h ¯ ω 1 + σ 3 ( ω 2 ) I 2 h ¯ ω 2 ] n 3 R 3 e n 3 n e R 1 3 n 1 n 3 R 2 3 n 2 n 3 ,

Metrics