Abstract

We present the near infrared to visible up-conversion photoluminescence in a Sm3+-doped 80B2O3-5Na2O-15Al2O3 glass excited with 804 nm femtosecond laser irradiation via a two-photon simultaneous absorption process. Besides, a bright red long-persistent luminescence can be seen with the naked eye in the dark after the removal of the activating laser. Both the up-conversion and long-persistent luminescence are attributed to the 4G5/26HJ/2 (J = 5, 7, 9) transitions of Sm3+. Furthermore, defect centers induced by the femtosecond laser irradiation are experimentally verified using the thermo-luminescence technique. A novel phenomenon associated with these defects is observed that a rewritten process of the traps is approached under the ultraviolet excitation. It infers that the fabrication of optical memory could be realized with ultraviolet energy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-photon absorption upconversion luminescence of a Tb3+-doped glass excited by an infrared femtosecond laser

Songmin Zhang, Bin Zhu, Shifeng Zhou, Shiqing Xu, and Jianrong Qiu
Opt. Express 15(11) 6883-6888 (2007)

Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses

Bin Zhu, Ye Dai, Hongliang Ma, Songmin Zhang, Geng Lin, and Jianrong Qiu
Opt. Express 15(10) 6069-6074 (2007)

Dynamics of laser-induced defects by multiple femtosecond pulses in potassium dihydrogen phosphate crystals

M.-C. Nadeau, G. Duchateau, M. Dumergue, N. Fedorov, D. Descamps, S. Petit, G. Geoffroy, and P. Martin
J. Opt. Soc. Am. B 35(5) 1119-1126 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
    [Crossref] [PubMed]
  2. E. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
    [Crossref] [PubMed]
  3. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  4. E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir 27(6), 3012–3019 (2011).
    [Crossref] [PubMed]
  5. Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
    [Crossref]
  6. W. Ryba-Romanowski, B. Macalik, and M. Berkowski, “Down- and up-conversion of femtosecond light pulse excitation into visible luminescence in cerium-doped Lu2SiO5-Gd2SiO5 solid solution crystals co-doped with Sm3+ or Dy3+.,” Opt. Express 23(4), 4552–4562 (2015).
    [Crossref] [PubMed]
  7. M. H. Yuan, H. H. Fan, Q. F. Dai, S. Lan, X. Wan, and S. L. Tie, “Upconversion luminescence from aluminoborate glasses doped with Tb3+, Eu3+ and Dy3+ under the excitation of 2.6-μm femtosecond laser pulses,” Opt. Express 23(17), 21909–21918 (2015).
    [Crossref] [PubMed]
  8. T. Wang, W. Bian, D. Zhou, J. Qiu, X. Yu, and X. Xu, “Tunable LLP via energy transfer between Na2–y(Zn1–xGax)GeO4 sosoloid host and emission centers with the assistance of Zn vacancies,” J. Phys. Chem. C 119(25), 14047 (2015).
  9. J. Qiu, K. Miura, H. Inouye, Y. Kondo, T. Mitsuyu, and K. Hirao, “Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions,” Appl. Phys. Lett. 73(13), 1763 (1998).
    [Crossref]
  10. J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass. Solid state communications,” Solid State Commun. 113(6), 341–344 (1999).
    [Crossref]
  11. F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
    [Crossref] [PubMed]
  12. G. Bai, M. K. Tsang, and J. Hao, “Tuning the luminescence of phosphors: beyond conventional chemical method,” Adv. Opt. Mater. 3(4), 431–462 (2015).
    [Crossref]
  13. X. L. Wang, Z. Q. Liu, M. A. Stevens-Kalceff, and H. Riesen, “Mechanochemical preparation of nanocrystalline BaFCl doped with samarium in the 2+ oxidation state,” Inorg. Chem. 53(17), 8839–8841 (2014).
    [Crossref] [PubMed]
  14. Y. Liu, B. Lei, and C. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3: Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
    [Crossref]
  15. Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
    [Crossref] [PubMed]
  16. J. Qiu, K. Miura, H. Inouye, S. Fujiwara, T. Mitsuyu, and K. Hirao, “Blue emission induced in Eu2+-doped glasses by an infrared femtosecond laser,” J. Non-Cryst. Solids 244(2), 185–188 (1999).
    [Crossref]
  17. G. Tripathi, V. K. Rai, and S. B. Rai, “Optical properties of Sm3+: CaO-Li2O-B2O3-BaO glass and codoped Sm3+: Eu3+,” Appl. Phys. B 84(3), 459–464 (2006).
    [Crossref]
  18. R. X. Yan and Y. D. Li, “Down/up conversion in Ln3+-Doped YF3 nanocrystals,” Adv. Funct. Mater. 15(5), 763–770 (2005).
    [Crossref]
  19. S. Zhang, B. Zhu, S. Zhou, S. Xu, and J. Qiu, “Multi-photon absorption upconversion luminescence of a Tb3+-doped glass excited by an infrared femtosecond laser,” Opt. Express 15(11), 6883–6888 (2007).
    [Crossref] [PubMed]
  20. Y. Ren, S. Li, Y. Zhang, S. D. Tse, and M. B. Long, “Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system,” Phys. Rev. Lett. 114(9), 093401 (2015).
    [Crossref] [PubMed]

2015 (5)

T. Wang, W. Bian, D. Zhou, J. Qiu, X. Yu, and X. Xu, “Tunable LLP via energy transfer between Na2–y(Zn1–xGax)GeO4 sosoloid host and emission centers with the assistance of Zn vacancies,” J. Phys. Chem. C 119(25), 14047 (2015).

G. Bai, M. K. Tsang, and J. Hao, “Tuning the luminescence of phosphors: beyond conventional chemical method,” Adv. Opt. Mater. 3(4), 431–462 (2015).
[Crossref]

Y. Ren, S. Li, Y. Zhang, S. D. Tse, and M. B. Long, “Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system,” Phys. Rev. Lett. 114(9), 093401 (2015).
[Crossref] [PubMed]

W. Ryba-Romanowski, B. Macalik, and M. Berkowski, “Down- and up-conversion of femtosecond light pulse excitation into visible luminescence in cerium-doped Lu2SiO5-Gd2SiO5 solid solution crystals co-doped with Sm3+ or Dy3+.,” Opt. Express 23(4), 4552–4562 (2015).
[Crossref] [PubMed]

M. H. Yuan, H. H. Fan, Q. F. Dai, S. Lan, X. Wan, and S. L. Tie, “Upconversion luminescence from aluminoborate glasses doped with Tb3+, Eu3+ and Dy3+ under the excitation of 2.6-μm femtosecond laser pulses,” Opt. Express 23(17), 21909–21918 (2015).
[Crossref] [PubMed]

2014 (2)

X. L. Wang, Z. Q. Liu, M. A. Stevens-Kalceff, and H. Riesen, “Mechanochemical preparation of nanocrystalline BaFCl doped with samarium in the 2+ oxidation state,” Inorg. Chem. 53(17), 8839–8841 (2014).
[Crossref] [PubMed]

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

2012 (2)

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

E. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[Crossref] [PubMed]

2011 (2)

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir 27(6), 3012–3019 (2011).
[Crossref] [PubMed]

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

2010 (1)

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (1)

2006 (1)

G. Tripathi, V. K. Rai, and S. B. Rai, “Optical properties of Sm3+: CaO-Li2O-B2O3-BaO glass and codoped Sm3+: Eu3+,” Appl. Phys. B 84(3), 459–464 (2006).
[Crossref]

2005 (2)

R. X. Yan and Y. D. Li, “Down/up conversion in Ln3+-Doped YF3 nanocrystals,” Adv. Funct. Mater. 15(5), 763–770 (2005).
[Crossref]

Y. Liu, B. Lei, and C. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3: Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[Crossref]

1999 (2)

J. Qiu, K. Miura, H. Inouye, S. Fujiwara, T. Mitsuyu, and K. Hirao, “Blue emission induced in Eu2+-doped glasses by an infrared femtosecond laser,” J. Non-Cryst. Solids 244(2), 185–188 (1999).
[Crossref]

J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass. Solid state communications,” Solid State Commun. 113(6), 341–344 (1999).
[Crossref]

1998 (1)

J. Qiu, K. Miura, H. Inouye, Y. Kondo, T. Mitsuyu, and K. Hirao, “Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions,” Appl. Phys. Lett. 73(13), 1763 (1998).
[Crossref]

Bai, G.

G. Bai, M. K. Tsang, and J. Hao, “Tuning the luminescence of phosphors: beyond conventional chemical method,” Adv. Opt. Mater. 3(4), 431–462 (2015).
[Crossref]

Berkowski, M.

Bian, W.

T. Wang, W. Bian, D. Zhou, J. Qiu, X. Yu, and X. Xu, “Tunable LLP via energy transfer between Na2–y(Zn1–xGax)GeO4 sosoloid host and emission centers with the assistance of Zn vacancies,” J. Phys. Chem. C 119(25), 14047 (2015).

Boulais, E.

E. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[Crossref] [PubMed]

Chen, Q. D.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Cheng, Y.

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Chichkov, B. N.

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir 27(6), 3012–3019 (2011).
[Crossref] [PubMed]

Chu, S. T.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Crawford, R. J.

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir 27(6), 3012–3019 (2011).
[Crossref] [PubMed]

Dai, Q. F.

Fadeeva, E.

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir 27(6), 3012–3019 (2011).
[Crossref] [PubMed]

Fan, H. H.

Fujiwara, S.

J. Qiu, K. Miura, H. Inouye, S. Fujiwara, T. Mitsuyu, and K. Hirao, “Blue emission induced in Eu2+-doped glasses by an infrared femtosecond laser,” J. Non-Cryst. Solids 244(2), 185–188 (1999).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Hao, J.

G. Bai, M. K. Tsang, and J. Hao, “Tuning the luminescence of phosphors: beyond conventional chemical method,” Adv. Opt. Mater. 3(4), 431–462 (2015).
[Crossref]

He, F.

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Hirao, K.

J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass. Solid state communications,” Solid State Commun. 113(6), 341–344 (1999).
[Crossref]

J. Qiu, K. Miura, H. Inouye, S. Fujiwara, T. Mitsuyu, and K. Hirao, “Blue emission induced in Eu2+-doped glasses by an infrared femtosecond laser,” J. Non-Cryst. Solids 244(2), 185–188 (1999).
[Crossref]

J. Qiu, K. Miura, H. Inouye, Y. Kondo, T. Mitsuyu, and K. Hirao, “Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions,” Appl. Phys. Lett. 73(13), 1763 (1998).
[Crossref]

Inouye, H.

J. Qiu, K. Miura, H. Inouye, S. Fujiwara, T. Mitsuyu, and K. Hirao, “Blue emission induced in Eu2+-doped glasses by an infrared femtosecond laser,” J. Non-Cryst. Solids 244(2), 185–188 (1999).
[Crossref]

J. Qiu, K. Miura, H. Inouye, Y. Kondo, T. Mitsuyu, and K. Hirao, “Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions,” Appl. Phys. Lett. 73(13), 1763 (1998).
[Crossref]

Ivanova, E. P.

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir 27(6), 3012–3019 (2011).
[Crossref] [PubMed]

Kondo, Y.

J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass. Solid state communications,” Solid State Commun. 113(6), 341–344 (1999).
[Crossref]

J. Qiu, K. Miura, H. Inouye, Y. Kondo, T. Mitsuyu, and K. Hirao, “Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions,” Appl. Phys. Lett. 73(13), 1763 (1998).
[Crossref]

Lachaine, R.

E. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[Crossref] [PubMed]

Lan, S.

Lei, B.

Y. Liu, B. Lei, and C. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3: Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[Crossref]

Li, S.

Y. Ren, S. Li, Y. Zhang, S. D. Tse, and M. B. Long, “Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system,” Phys. Rev. Lett. 114(9), 093401 (2015).
[Crossref] [PubMed]

Li, Y. D.

R. X. Yan and Y. D. Li, “Down/up conversion in Ln3+-Doped YF3 nanocrystals,” Adv. Funct. Mater. 15(5), 763–770 (2005).
[Crossref]

Liao, Y.

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Lin, J.

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Little, B. E.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Liu, F.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, B. Lei, and C. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3: Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[Crossref]

Liu, Z. Q.

X. L. Wang, Z. Q. Liu, M. A. Stevens-Kalceff, and H. Riesen, “Mechanochemical preparation of nanocrystalline BaFCl doped with samarium in the 2+ oxidation state,” Inorg. Chem. 53(17), 8839–8841 (2014).
[Crossref] [PubMed]

Long, M. B.

Y. Ren, S. Li, Y. Zhang, S. D. Tse, and M. B. Long, “Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system,” Phys. Rev. Lett. 114(9), 093401 (2015).
[Crossref] [PubMed]

Lu, Y. Y.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Macalik, B.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Meunier, M.

E. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[Crossref] [PubMed]

Mitsuyu, T.

J. Qiu, K. Miura, H. Inouye, S. Fujiwara, T. Mitsuyu, and K. Hirao, “Blue emission induced in Eu2+-doped glasses by an infrared femtosecond laser,” J. Non-Cryst. Solids 244(2), 185–188 (1999).
[Crossref]

J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass. Solid state communications,” Solid State Commun. 113(6), 341–344 (1999).
[Crossref]

J. Qiu, K. Miura, H. Inouye, Y. Kondo, T. Mitsuyu, and K. Hirao, “Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions,” Appl. Phys. Lett. 73(13), 1763 (1998).
[Crossref]

Miura, K.

J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass. Solid state communications,” Solid State Commun. 113(6), 341–344 (1999).
[Crossref]

J. Qiu, K. Miura, H. Inouye, S. Fujiwara, T. Mitsuyu, and K. Hirao, “Blue emission induced in Eu2+-doped glasses by an infrared femtosecond laser,” J. Non-Cryst. Solids 244(2), 185–188 (1999).
[Crossref]

J. Qiu, K. Miura, H. Inouye, Y. Kondo, T. Mitsuyu, and K. Hirao, “Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions,” Appl. Phys. Lett. 73(13), 1763 (1998).
[Crossref]

Morandotti, R.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Moss, D. J.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Nouchi, K.

J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass. Solid state communications,” Solid State Commun. 113(6), 341–344 (1999).
[Crossref]

Pan, Z.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Park, Y.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Pasquazi, A.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Peccianti, M.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Qiao, L.

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Qiu, J.

T. Wang, W. Bian, D. Zhou, J. Qiu, X. Yu, and X. Xu, “Tunable LLP via energy transfer between Na2–y(Zn1–xGax)GeO4 sosoloid host and emission centers with the assistance of Zn vacancies,” J. Phys. Chem. C 119(25), 14047 (2015).

S. Zhang, B. Zhu, S. Zhou, S. Xu, and J. Qiu, “Multi-photon absorption upconversion luminescence of a Tb3+-doped glass excited by an infrared femtosecond laser,” Opt. Express 15(11), 6883–6888 (2007).
[Crossref] [PubMed]

J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass. Solid state communications,” Solid State Commun. 113(6), 341–344 (1999).
[Crossref]

J. Qiu, K. Miura, H. Inouye, S. Fujiwara, T. Mitsuyu, and K. Hirao, “Blue emission induced in Eu2+-doped glasses by an infrared femtosecond laser,” J. Non-Cryst. Solids 244(2), 185–188 (1999).
[Crossref]

J. Qiu, K. Miura, H. Inouye, Y. Kondo, T. Mitsuyu, and K. Hirao, “Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions,” Appl. Phys. Lett. 73(13), 1763 (1998).
[Crossref]

Rai, S. B.

G. Tripathi, V. K. Rai, and S. B. Rai, “Optical properties of Sm3+: CaO-Li2O-B2O3-BaO glass and codoped Sm3+: Eu3+,” Appl. Phys. B 84(3), 459–464 (2006).
[Crossref]

Rai, V. K.

G. Tripathi, V. K. Rai, and S. B. Rai, “Optical properties of Sm3+: CaO-Li2O-B2O3-BaO glass and codoped Sm3+: Eu3+,” Appl. Phys. B 84(3), 459–464 (2006).
[Crossref]

Ren, Y.

Y. Ren, S. Li, Y. Zhang, S. D. Tse, and M. B. Long, “Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system,” Phys. Rev. Lett. 114(9), 093401 (2015).
[Crossref] [PubMed]

Riesen, H.

X. L. Wang, Z. Q. Liu, M. A. Stevens-Kalceff, and H. Riesen, “Mechanochemical preparation of nanocrystalline BaFCl doped with samarium in the 2+ oxidation state,” Inorg. Chem. 53(17), 8839–8841 (2014).
[Crossref] [PubMed]

Ryba-Romanowski, W.

Shi, C.

Y. Liu, B. Lei, and C. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3: Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[Crossref]

Song, J.

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Stevens-Kalceff, M. A.

X. L. Wang, Z. Q. Liu, M. A. Stevens-Kalceff, and H. Riesen, “Mechanochemical preparation of nanocrystalline BaFCl doped with samarium in the 2+ oxidation state,” Inorg. Chem. 53(17), 8839–8841 (2014).
[Crossref] [PubMed]

Stiesch, M.

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir 27(6), 3012–3019 (2011).
[Crossref] [PubMed]

Sugioka, K.

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Sun, H. B.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Suzuki, T.

J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass. Solid state communications,” Solid State Commun. 113(6), 341–344 (1999).
[Crossref]

Tie, S. L.

Tripathi, G.

G. Tripathi, V. K. Rai, and S. B. Rai, “Optical properties of Sm3+: CaO-Li2O-B2O3-BaO glass and codoped Sm3+: Eu3+,” Appl. Phys. B 84(3), 459–464 (2006).
[Crossref]

Truong, V. K.

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir 27(6), 3012–3019 (2011).
[Crossref] [PubMed]

Tsang, M. K.

G. Bai, M. K. Tsang, and J. Hao, “Tuning the luminescence of phosphors: beyond conventional chemical method,” Adv. Opt. Mater. 3(4), 431–462 (2015).
[Crossref]

Tse, S. D.

Y. Ren, S. Li, Y. Zhang, S. D. Tse, and M. B. Long, “Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system,” Phys. Rev. Lett. 114(9), 093401 (2015).
[Crossref] [PubMed]

Wan, X.

Wang, J.

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir 27(6), 3012–3019 (2011).
[Crossref] [PubMed]

Wang, T.

T. Wang, W. Bian, D. Zhou, J. Qiu, X. Yu, and X. Xu, “Tunable LLP via energy transfer between Na2–y(Zn1–xGax)GeO4 sosoloid host and emission centers with the assistance of Zn vacancies,” J. Phys. Chem. C 119(25), 14047 (2015).

Wang, X. L.

X. L. Wang, Z. Q. Liu, M. A. Stevens-Kalceff, and H. Riesen, “Mechanochemical preparation of nanocrystalline BaFCl doped with samarium in the 2+ oxidation state,” Inorg. Chem. 53(17), 8839–8841 (2014).
[Crossref] [PubMed]

Xia, H.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Xu, S.

Xu, X.

T. Wang, W. Bian, D. Zhou, J. Qiu, X. Yu, and X. Xu, “Tunable LLP via energy transfer between Na2–y(Zn1–xGax)GeO4 sosoloid host and emission centers with the assistance of Zn vacancies,” J. Phys. Chem. C 119(25), 14047 (2015).

Yan, R. X.

R. X. Yan and Y. D. Li, “Down/up conversion in Ln3+-Doped YF3 nanocrystals,” Adv. Funct. Mater. 15(5), 763–770 (2005).
[Crossref]

Yu, X.

T. Wang, W. Bian, D. Zhou, J. Qiu, X. Yu, and X. Xu, “Tunable LLP via energy transfer between Na2–y(Zn1–xGax)GeO4 sosoloid host and emission centers with the assistance of Zn vacancies,” J. Phys. Chem. C 119(25), 14047 (2015).

Yuan, M. H.

Zhang, S.

Zhang, Y.

Y. Ren, S. Li, Y. Zhang, S. D. Tse, and M. B. Long, “Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system,” Phys. Rev. Lett. 114(9), 093401 (2015).
[Crossref] [PubMed]

Zhang, Y. L.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Zhou, D.

T. Wang, W. Bian, D. Zhou, J. Qiu, X. Yu, and X. Xu, “Tunable LLP via energy transfer between Na2–y(Zn1–xGax)GeO4 sosoloid host and emission centers with the assistance of Zn vacancies,” J. Phys. Chem. C 119(25), 14047 (2015).

Zhou, S.

Zhu, B.

Adv. Funct. Mater. (1)

R. X. Yan and Y. D. Li, “Down/up conversion in Ln3+-Doped YF3 nanocrystals,” Adv. Funct. Mater. 15(5), 763–770 (2005).
[Crossref]

Adv. Opt. Mater. (1)

G. Bai, M. K. Tsang, and J. Hao, “Tuning the luminescence of phosphors: beyond conventional chemical method,” Adv. Opt. Mater. 3(4), 431–462 (2015).
[Crossref]

Appl. Phys. B (1)

G. Tripathi, V. K. Rai, and S. B. Rai, “Optical properties of Sm3+: CaO-Li2O-B2O3-BaO glass and codoped Sm3+: Eu3+,” Appl. Phys. B 84(3), 459–464 (2006).
[Crossref]

Appl. Phys. Lett. (1)

J. Qiu, K. Miura, H. Inouye, Y. Kondo, T. Mitsuyu, and K. Hirao, “Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions,” Appl. Phys. Lett. 73(13), 1763 (1998).
[Crossref]

Chem. Mater. (1)

Y. Liu, B. Lei, and C. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3: Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[Crossref]

Inorg. Chem. (1)

X. L. Wang, Z. Q. Liu, M. A. Stevens-Kalceff, and H. Riesen, “Mechanochemical preparation of nanocrystalline BaFCl doped with samarium in the 2+ oxidation state,” Inorg. Chem. 53(17), 8839–8841 (2014).
[Crossref] [PubMed]

J. Non-Cryst. Solids (1)

J. Qiu, K. Miura, H. Inouye, S. Fujiwara, T. Mitsuyu, and K. Hirao, “Blue emission induced in Eu2+-doped glasses by an infrared femtosecond laser,” J. Non-Cryst. Solids 244(2), 185–188 (1999).
[Crossref]

J. Phys. Chem. C (1)

T. Wang, W. Bian, D. Zhou, J. Qiu, X. Yu, and X. Xu, “Tunable LLP via energy transfer between Na2–y(Zn1–xGax)GeO4 sosoloid host and emission centers with the assistance of Zn vacancies,” J. Phys. Chem. C 119(25), 14047 (2015).

Langmuir (1)

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir 27(6), 3012–3019 (2011).
[Crossref] [PubMed]

Nano Lett. (1)

E. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[Crossref] [PubMed]

Nano Today (1)

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Nat. Commun. (1)

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (3)

Phys. Rev. Lett. (1)

Y. Ren, S. Li, Y. Zhang, S. D. Tse, and M. B. Long, “Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system,” Phys. Rev. Lett. 114(9), 093401 (2015).
[Crossref] [PubMed]

Sensors (Basel) (1)

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Solid State Commun. (1)

J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass. Solid state communications,” Solid State Commun. 113(6), 341–344 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Excitation spectrum of the Sm3+-doped glass monitored at 596 nm and the emission spectra obtained separately by using an excitation wavelength of 402 nm from a Xenon lamp and 804 nm of the femtosecond laser (a); Absorption spectrum of the glass (b); Up-conversion luminescence intensity of the 6H5/26P3/2 transition of Sm3+ ions in the glass as a function of the femtosecond laser pump power (c); Photograph of the emission state of Sm3+ under the excitation of the femtosecond laser (d).
Fig. 2
Fig. 2 Decay curves of the femtosecond laser-induced LPL of the Sm3+-doped glass with varying laser power. The inset shows the photograph of the LPL in the glass 5 mins after the removal of the exciting laser with different power (left) and the afterglow spectrum of the glass recorded at 1 min after the stoppage of femtosecond laser excitation (right).
Fig. 3
Fig. 3 TL curves of the glass with different delay times (2h and 12h) after ceasing the femtosecond laser irradiation (black and red curves), and the glass after heat-treated at 250°C for 20 min and irradiated with UV light (green and blue curves). The inset is the decay curve of the LPL after UV irradiated.
Fig. 4
Fig. 4 Possible schematic of the up-conversion emission and LPL mechanism in the Sm3+-doped glass

Metrics