Abstract

Azobenzene-modified photosensitive polymers offer the possibility to reshape flat films upon UV-Vis irradiation. The photochemical isomerization between trans-cis configurations is the key mechanism for surface relief grating (SRG) formation on the free surface of thin azo-polymeric films illuminated by structured illumination. In the present work, we consider a sandwich configuration wherein an azopolymeric film (PAZO) is coated by a plasma-deposited polyacrylic acid (PPAA). It is demonstrated that the PPAA coating protects the PAZO against dissolution in aqueous environment. More interestingly, light-induced SRG can still be formed in the PAZO film, and the resulting modulation is transferred to the PPAA coating above. Results obtained open the possibility of exploiting water-soluble azopolymers in bio-oriented applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Epoxy-based azo polymer for photofabricating surface-relief quasi-crystal structures

Renbo Wei, Zeda Xu, and Xiaogong Wang
Opt. Mater. Express 5(6) 1348-1355 (2015)

Nanoindentation study of optically patterned surface relief grating of azobenzene polymers

Kang-Han Kim and Yong-Cheol Jeong
Opt. Express 24(22) 25242-25249 (2016)

Superimposed surface-relief diffraction grating holographic lenses on azo-polymer films

Ribal Georges Sabat
Opt. Express 21(7) 8711-8723 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. S. Hartley, “The cis form of azobenzene,” Nature 140(3537), 281 (1937).
    [Crossref]
  2. N. K. Viswanathan, D. Y. Kim, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
    [Crossref]
  3. A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
    [Crossref] [PubMed]
  4. G. S. Kumar and D. C. Neckers, “Photochemistry of azobenzene-containing polymers,” Chem. Rev. 89(8), 1915–1925 (1989).
    [Crossref]
  5. S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
    [Crossref] [PubMed]
  6. A. Primagi and A. Shevchenko, “Azopolymer-Based Micro- and Nanopatterning for Photonic Applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
    [Crossref]
  7. A. Goulet-Hanssens and C. J. Barrett, “Photo-control of biological systems with azobenzene polymers,” J. Polym. Sci. A Polym. Chem. 51(14), 3058–3070 (2013).
    [Crossref]
  8. K. G. Yager and C. J. Barrett, “Novel photo-switching using azobenzene functional materials,” J. Photochem. Photobiol. Chem. 182(3), 250–261 (2006).
    [Crossref]
  9. F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
    [Crossref] [PubMed]
  10. N. Lomadze, A. Kopyshev, J. Ruhe, and S. Santer, “Light-induced chain scission in photosensitive polymer brushes,” Macromolecules 44(18), 7372–7377 (2011).
    [Crossref]
  11. K. Ichimura, S. K. Oh, and M. Nakagawa, “Light-driven motion of liquids on a photoresponsive surface,” Science 288(5471), 1624–1626 (2000).
    [Crossref] [PubMed]
  12. K. Klismeta, J. Teteris, and J. Aleksejeva, “Photoinduced mass transport in azo compounds,” Functional materials and Nanotechnologies, IOP Conf. Series: Materials Science and Engineering 49, 012036 (2013).
  13. M.-M. Russew and S. Hecht, “Photoswitches: from molecules to materials,” Adv. Mater. 22(31), 3348–3360 (2010).
    [Crossref] [PubMed]
  14. O. Sadovski, A. A. Beharry, F. Zhang, and G. A. Woolley, “Spectral tuning of azobenzene photoswitches for biological applications,” Angew. Chem. Int. Ed. Engl. 48(8), 1484–1486 (2009).
    [Crossref] [PubMed]
  15. R. Barillé, R. Janik, S. Kucharski, J. Eyer, and F. Letournel, “Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: an in vitro study for neuron guidance,” Colloids Surf. B Biointerfaces 88(1), 63–71 (2011).
    [Crossref] [PubMed]
  16. O. G. Gardens, Trend in Optical Materials Research (Nova Science Publisher, 2007), Chap. 6.
  17. O. Kulikovska, L. M. Goldenberg, and J. Stumpe, “Supramolecular azobenzene-based materials for optical generation of microstructures,” Chem. Mater. 19(13), 3343–3348 (2007).
    [Crossref]
  18. N. S. Yadavalli, F. Linde, A. Kopyshev, and S. Santer, “Soft matter beats hard matter: rupturing of thin metallic films induced by mass transport in photosensitive polymer films,” ACS Appl. Mater. Interfaces 5(16), 7743–7747 (2013).
    [Crossref] [PubMed]
  19. N. S. Yadavalli, D. Korolkov, J.-F. Moulin, M. Krutyeva, and S. Santer, “Probing opto-mechanical stresses within azobenzene-containing photosensitive polymer films by a thin metal film placed above,” ACS Appl. Mater. Interfaces 6(14), 11333–11340 (2014).
    [Crossref] [PubMed]
  20. S. Ricciardi, R. Castagna, S. M. Severino, I. Ferrante, F. Frascella, E. Celasco, P. Mandracci, I. Vallini, G. Mantero, C. F. Pirri, and P. Rivolo, “Surface Functionalization by Poly-Acrylic Acid Plasma-Polymerized films for Microarray DNA Diagnostics,” Surf. Coat. Tech. 207, 389–399 (2012).
    [Crossref]
  21. P. Rivolo, S. M. Severino, S. Ricciardi, F. Frascella, and F. Geobaldo, “Protein immobilization on nanoporous silicon functionalized by RF activated plasma polymerization of acrylic acid,” J. Colloid Interface Sci. 416, 73–80 (2014).
    [Crossref] [PubMed]
  22. O. Kulikovska, K. Gharagozloo-Hubmann, J. Stumpe, B. D. Huey, and V. N. Bliznyuk, “Formation of surface relief grating in polymers with pendant azobenzene chromophores as studied by AFM/UFM,” Nanotechnology 23(48), 485309 (2012).
    [Crossref] [PubMed]
  23. R. A. L. Jones and R. W. Richards, Polymer at Surface and Interfaces (Cambridge University Press, 1999).
  24. K. G. Yager and C. J. Barrett, “Confinement of surface patterning in azo-polymer thin films,” J. Chem. Phys. 126(9), 094908 (2007).
    [Crossref] [PubMed]
  25. C. Rianna, A. Calabuig, M. Ventre, S. Cavalli, V. Pagliarulo, S. Grilli, P. Ferraro, and P. A. Netti, “Reversible holographic patterns on azopolymers for guiding cell adhesion and orientation,” ACS Appl. Mater. Interfaces 7(31), 16984–16991 (2015).
    [Crossref] [PubMed]

2015 (1)

C. Rianna, A. Calabuig, M. Ventre, S. Cavalli, V. Pagliarulo, S. Grilli, P. Ferraro, and P. A. Netti, “Reversible holographic patterns on azopolymers for guiding cell adhesion and orientation,” ACS Appl. Mater. Interfaces 7(31), 16984–16991 (2015).
[Crossref] [PubMed]

2014 (3)

P. Rivolo, S. M. Severino, S. Ricciardi, F. Frascella, and F. Geobaldo, “Protein immobilization on nanoporous silicon functionalized by RF activated plasma polymerization of acrylic acid,” J. Colloid Interface Sci. 416, 73–80 (2014).
[Crossref] [PubMed]

A. Primagi and A. Shevchenko, “Azopolymer-Based Micro- and Nanopatterning for Photonic Applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

N. S. Yadavalli, D. Korolkov, J.-F. Moulin, M. Krutyeva, and S. Santer, “Probing opto-mechanical stresses within azobenzene-containing photosensitive polymer films by a thin metal film placed above,” ACS Appl. Mater. Interfaces 6(14), 11333–11340 (2014).
[Crossref] [PubMed]

2013 (2)

N. S. Yadavalli, F. Linde, A. Kopyshev, and S. Santer, “Soft matter beats hard matter: rupturing of thin metallic films induced by mass transport in photosensitive polymer films,” ACS Appl. Mater. Interfaces 5(16), 7743–7747 (2013).
[Crossref] [PubMed]

A. Goulet-Hanssens and C. J. Barrett, “Photo-control of biological systems with azobenzene polymers,” J. Polym. Sci. A Polym. Chem. 51(14), 3058–3070 (2013).
[Crossref]

2012 (3)

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref] [PubMed]

S. Ricciardi, R. Castagna, S. M. Severino, I. Ferrante, F. Frascella, E. Celasco, P. Mandracci, I. Vallini, G. Mantero, C. F. Pirri, and P. Rivolo, “Surface Functionalization by Poly-Acrylic Acid Plasma-Polymerized films for Microarray DNA Diagnostics,” Surf. Coat. Tech. 207, 389–399 (2012).
[Crossref]

O. Kulikovska, K. Gharagozloo-Hubmann, J. Stumpe, B. D. Huey, and V. N. Bliznyuk, “Formation of surface relief grating in polymers with pendant azobenzene chromophores as studied by AFM/UFM,” Nanotechnology 23(48), 485309 (2012).
[Crossref] [PubMed]

2011 (3)

R. Barillé, R. Janik, S. Kucharski, J. Eyer, and F. Letournel, “Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: an in vitro study for neuron guidance,” Colloids Surf. B Biointerfaces 88(1), 63–71 (2011).
[Crossref] [PubMed]

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

N. Lomadze, A. Kopyshev, J. Ruhe, and S. Santer, “Light-induced chain scission in photosensitive polymer brushes,” Macromolecules 44(18), 7372–7377 (2011).
[Crossref]

2010 (1)

M.-M. Russew and S. Hecht, “Photoswitches: from molecules to materials,” Adv. Mater. 22(31), 3348–3360 (2010).
[Crossref] [PubMed]

2009 (1)

O. Sadovski, A. A. Beharry, F. Zhang, and G. A. Woolley, “Spectral tuning of azobenzene photoswitches for biological applications,” Angew. Chem. Int. Ed. Engl. 48(8), 1484–1486 (2009).
[Crossref] [PubMed]

2007 (2)

O. Kulikovska, L. M. Goldenberg, and J. Stumpe, “Supramolecular azobenzene-based materials for optical generation of microstructures,” Chem. Mater. 19(13), 3343–3348 (2007).
[Crossref]

K. G. Yager and C. J. Barrett, “Confinement of surface patterning in azo-polymer thin films,” J. Chem. Phys. 126(9), 094908 (2007).
[Crossref] [PubMed]

2006 (1)

K. G. Yager and C. J. Barrett, “Novel photo-switching using azobenzene functional materials,” J. Photochem. Photobiol. Chem. 182(3), 250–261 (2006).
[Crossref]

2002 (1)

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[Crossref] [PubMed]

2000 (1)

K. Ichimura, S. K. Oh, and M. Nakagawa, “Light-driven motion of liquids on a photoresponsive surface,” Science 288(5471), 1624–1626 (2000).
[Crossref] [PubMed]

1999 (1)

N. K. Viswanathan, D. Y. Kim, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

1989 (1)

G. S. Kumar and D. C. Neckers, “Photochemistry of azobenzene-containing polymers,” Chem. Rev. 89(8), 1915–1925 (1989).
[Crossref]

1937 (1)

G. S. Hartley, “The cis form of azobenzene,” Nature 140(3537), 281 (1937).
[Crossref]

Barillé, R.

R. Barillé, R. Janik, S. Kucharski, J. Eyer, and F. Letournel, “Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: an in vitro study for neuron guidance,” Colloids Surf. B Biointerfaces 88(1), 63–71 (2011).
[Crossref] [PubMed]

Barrett, C. J.

A. Goulet-Hanssens and C. J. Barrett, “Photo-control of biological systems with azobenzene polymers,” J. Polym. Sci. A Polym. Chem. 51(14), 3058–3070 (2013).
[Crossref]

K. G. Yager and C. J. Barrett, “Confinement of surface patterning in azo-polymer thin films,” J. Chem. Phys. 126(9), 094908 (2007).
[Crossref] [PubMed]

K. G. Yager and C. J. Barrett, “Novel photo-switching using azobenzene functional materials,” J. Photochem. Photobiol. Chem. 182(3), 250–261 (2006).
[Crossref]

Beharry, A. A.

O. Sadovski, A. A. Beharry, F. Zhang, and G. A. Woolley, “Spectral tuning of azobenzene photoswitches for biological applications,” Angew. Chem. Int. Ed. Engl. 48(8), 1484–1486 (2009).
[Crossref] [PubMed]

Bliznyuk, V. N.

O. Kulikovska, K. Gharagozloo-Hubmann, J. Stumpe, B. D. Huey, and V. N. Bliznyuk, “Formation of surface relief grating in polymers with pendant azobenzene chromophores as studied by AFM/UFM,” Nanotechnology 23(48), 485309 (2012).
[Crossref] [PubMed]

Bruder, F.-K.

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Calabuig, A.

C. Rianna, A. Calabuig, M. Ventre, S. Cavalli, V. Pagliarulo, S. Grilli, P. Ferraro, and P. A. Netti, “Reversible holographic patterns on azopolymers for guiding cell adhesion and orientation,” ACS Appl. Mater. Interfaces 7(31), 16984–16991 (2015).
[Crossref] [PubMed]

Castagna, R.

S. Ricciardi, R. Castagna, S. M. Severino, I. Ferrante, F. Frascella, E. Celasco, P. Mandracci, I. Vallini, G. Mantero, C. F. Pirri, and P. Rivolo, “Surface Functionalization by Poly-Acrylic Acid Plasma-Polymerized films for Microarray DNA Diagnostics,” Surf. Coat. Tech. 207, 389–399 (2012).
[Crossref]

Cavalli, S.

C. Rianna, A. Calabuig, M. Ventre, S. Cavalli, V. Pagliarulo, S. Grilli, P. Ferraro, and P. A. Netti, “Reversible holographic patterns on azopolymers for guiding cell adhesion and orientation,” ACS Appl. Mater. Interfaces 7(31), 16984–16991 (2015).
[Crossref] [PubMed]

Celasco, E.

S. Ricciardi, R. Castagna, S. M. Severino, I. Ferrante, F. Frascella, E. Celasco, P. Mandracci, I. Vallini, G. Mantero, C. F. Pirri, and P. Rivolo, “Surface Functionalization by Poly-Acrylic Acid Plasma-Polymerized films for Microarray DNA Diagnostics,” Surf. Coat. Tech. 207, 389–399 (2012).
[Crossref]

Eyer, J.

R. Barillé, R. Janik, S. Kucharski, J. Eyer, and F. Letournel, “Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: an in vitro study for neuron guidance,” Colloids Surf. B Biointerfaces 88(1), 63–71 (2011).
[Crossref] [PubMed]

Fäcke, T.

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Ferrante, I.

S. Ricciardi, R. Castagna, S. M. Severino, I. Ferrante, F. Frascella, E. Celasco, P. Mandracci, I. Vallini, G. Mantero, C. F. Pirri, and P. Rivolo, “Surface Functionalization by Poly-Acrylic Acid Plasma-Polymerized films for Microarray DNA Diagnostics,” Surf. Coat. Tech. 207, 389–399 (2012).
[Crossref]

Ferraro, P.

C. Rianna, A. Calabuig, M. Ventre, S. Cavalli, V. Pagliarulo, S. Grilli, P. Ferraro, and P. A. Netti, “Reversible holographic patterns on azopolymers for guiding cell adhesion and orientation,” ACS Appl. Mater. Interfaces 7(31), 16984–16991 (2015).
[Crossref] [PubMed]

Frascella, F.

P. Rivolo, S. M. Severino, S. Ricciardi, F. Frascella, and F. Geobaldo, “Protein immobilization on nanoporous silicon functionalized by RF activated plasma polymerization of acrylic acid,” J. Colloid Interface Sci. 416, 73–80 (2014).
[Crossref] [PubMed]

S. Ricciardi, R. Castagna, S. M. Severino, I. Ferrante, F. Frascella, E. Celasco, P. Mandracci, I. Vallini, G. Mantero, C. F. Pirri, and P. Rivolo, “Surface Functionalization by Poly-Acrylic Acid Plasma-Polymerized films for Microarray DNA Diagnostics,” Surf. Coat. Tech. 207, 389–399 (2012).
[Crossref]

Geobaldo, F.

P. Rivolo, S. M. Severino, S. Ricciardi, F. Frascella, and F. Geobaldo, “Protein immobilization on nanoporous silicon functionalized by RF activated plasma polymerization of acrylic acid,” J. Colloid Interface Sci. 416, 73–80 (2014).
[Crossref] [PubMed]

Gharagozloo-Hubmann, K.

O. Kulikovska, K. Gharagozloo-Hubmann, J. Stumpe, B. D. Huey, and V. N. Bliznyuk, “Formation of surface relief grating in polymers with pendant azobenzene chromophores as studied by AFM/UFM,” Nanotechnology 23(48), 485309 (2012).
[Crossref] [PubMed]

Goldenberg, L. M.

O. Kulikovska, L. M. Goldenberg, and J. Stumpe, “Supramolecular azobenzene-based materials for optical generation of microstructures,” Chem. Mater. 19(13), 3343–3348 (2007).
[Crossref]

Goulet-Hanssens, A.

A. Goulet-Hanssens and C. J. Barrett, “Photo-control of biological systems with azobenzene polymers,” J. Polym. Sci. A Polym. Chem. 51(14), 3058–3070 (2013).
[Crossref]

Grilli, S.

C. Rianna, A. Calabuig, M. Ventre, S. Cavalli, V. Pagliarulo, S. Grilli, P. Ferraro, and P. A. Netti, “Reversible holographic patterns on azopolymers for guiding cell adhesion and orientation,” ACS Appl. Mater. Interfaces 7(31), 16984–16991 (2015).
[Crossref] [PubMed]

Hagen, R.

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Hartley, G. S.

G. S. Hartley, “The cis form of azobenzene,” Nature 140(3537), 281 (1937).
[Crossref]

Hecht, S.

M.-M. Russew and S. Hecht, “Photoswitches: from molecules to materials,” Adv. Mater. 22(31), 3348–3360 (2010).
[Crossref] [PubMed]

Huey, B. D.

O. Kulikovska, K. Gharagozloo-Hubmann, J. Stumpe, B. D. Huey, and V. N. Bliznyuk, “Formation of surface relief grating in polymers with pendant azobenzene chromophores as studied by AFM/UFM,” Nanotechnology 23(48), 485309 (2012).
[Crossref] [PubMed]

Ichimura, K.

K. Ichimura, S. K. Oh, and M. Nakagawa, “Light-driven motion of liquids on a photoresponsive surface,” Science 288(5471), 1624–1626 (2000).
[Crossref] [PubMed]

Janik, R.

R. Barillé, R. Janik, S. Kucharski, J. Eyer, and F. Letournel, “Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: an in vitro study for neuron guidance,” Colloids Surf. B Biointerfaces 88(1), 63–71 (2011).
[Crossref] [PubMed]

Kang, H. S.

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref] [PubMed]

Kim, D. Y.

N. K. Viswanathan, D. Y. Kim, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

Kopyshev, A.

N. S. Yadavalli, F. Linde, A. Kopyshev, and S. Santer, “Soft matter beats hard matter: rupturing of thin metallic films induced by mass transport in photosensitive polymer films,” ACS Appl. Mater. Interfaces 5(16), 7743–7747 (2013).
[Crossref] [PubMed]

N. Lomadze, A. Kopyshev, J. Ruhe, and S. Santer, “Light-induced chain scission in photosensitive polymer brushes,” Macromolecules 44(18), 7372–7377 (2011).
[Crossref]

Korolkov, D.

N. S. Yadavalli, D. Korolkov, J.-F. Moulin, M. Krutyeva, and S. Santer, “Probing opto-mechanical stresses within azobenzene-containing photosensitive polymer films by a thin metal film placed above,” ACS Appl. Mater. Interfaces 6(14), 11333–11340 (2014).
[Crossref] [PubMed]

Krutyeva, M.

N. S. Yadavalli, D. Korolkov, J.-F. Moulin, M. Krutyeva, and S. Santer, “Probing opto-mechanical stresses within azobenzene-containing photosensitive polymer films by a thin metal film placed above,” ACS Appl. Mater. Interfaces 6(14), 11333–11340 (2014).
[Crossref] [PubMed]

Kucharski, S.

R. Barillé, R. Janik, S. Kucharski, J. Eyer, and F. Letournel, “Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: an in vitro study for neuron guidance,” Colloids Surf. B Biointerfaces 88(1), 63–71 (2011).
[Crossref] [PubMed]

Kulikovska, O.

O. Kulikovska, K. Gharagozloo-Hubmann, J. Stumpe, B. D. Huey, and V. N. Bliznyuk, “Formation of surface relief grating in polymers with pendant azobenzene chromophores as studied by AFM/UFM,” Nanotechnology 23(48), 485309 (2012).
[Crossref] [PubMed]

O. Kulikovska, L. M. Goldenberg, and J. Stumpe, “Supramolecular azobenzene-based materials for optical generation of microstructures,” Chem. Mater. 19(13), 3343–3348 (2007).
[Crossref]

Kumar, G. S.

G. S. Kumar and D. C. Neckers, “Photochemistry of azobenzene-containing polymers,” Chem. Rev. 89(8), 1915–1925 (1989).
[Crossref]

Lee, S.

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref] [PubMed]

Letournel, F.

R. Barillé, R. Janik, S. Kucharski, J. Eyer, and F. Letournel, “Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: an in vitro study for neuron guidance,” Colloids Surf. B Biointerfaces 88(1), 63–71 (2011).
[Crossref] [PubMed]

Linde, F.

N. S. Yadavalli, F. Linde, A. Kopyshev, and S. Santer, “Soft matter beats hard matter: rupturing of thin metallic films induced by mass transport in photosensitive polymer films,” ACS Appl. Mater. Interfaces 5(16), 7743–7747 (2013).
[Crossref] [PubMed]

Lomadze, N.

N. Lomadze, A. Kopyshev, J. Ruhe, and S. Santer, “Light-induced chain scission in photosensitive polymer brushes,” Macromolecules 44(18), 7372–7377 (2011).
[Crossref]

Mandracci, P.

S. Ricciardi, R. Castagna, S. M. Severino, I. Ferrante, F. Frascella, E. Celasco, P. Mandracci, I. Vallini, G. Mantero, C. F. Pirri, and P. Rivolo, “Surface Functionalization by Poly-Acrylic Acid Plasma-Polymerized films for Microarray DNA Diagnostics,” Surf. Coat. Tech. 207, 389–399 (2012).
[Crossref]

Mantero, G.

S. Ricciardi, R. Castagna, S. M. Severino, I. Ferrante, F. Frascella, E. Celasco, P. Mandracci, I. Vallini, G. Mantero, C. F. Pirri, and P. Rivolo, “Surface Functionalization by Poly-Acrylic Acid Plasma-Polymerized films for Microarray DNA Diagnostics,” Surf. Coat. Tech. 207, 389–399 (2012).
[Crossref]

Moulin, J.-F.

N. S. Yadavalli, D. Korolkov, J.-F. Moulin, M. Krutyeva, and S. Santer, “Probing opto-mechanical stresses within azobenzene-containing photosensitive polymer films by a thin metal film placed above,” ACS Appl. Mater. Interfaces 6(14), 11333–11340 (2014).
[Crossref] [PubMed]

Nakagawa, M.

K. Ichimura, S. K. Oh, and M. Nakagawa, “Light-driven motion of liquids on a photoresponsive surface,” Science 288(5471), 1624–1626 (2000).
[Crossref] [PubMed]

Natansohn, A.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[Crossref] [PubMed]

Neckers, D. C.

G. S. Kumar and D. C. Neckers, “Photochemistry of azobenzene-containing polymers,” Chem. Rev. 89(8), 1915–1925 (1989).
[Crossref]

Netti, P. A.

C. Rianna, A. Calabuig, M. Ventre, S. Cavalli, V. Pagliarulo, S. Grilli, P. Ferraro, and P. A. Netti, “Reversible holographic patterns on azopolymers for guiding cell adhesion and orientation,” ACS Appl. Mater. Interfaces 7(31), 16984–16991 (2015).
[Crossref] [PubMed]

Oh, S. K.

K. Ichimura, S. K. Oh, and M. Nakagawa, “Light-driven motion of liquids on a photoresponsive surface,” Science 288(5471), 1624–1626 (2000).
[Crossref] [PubMed]

Pagliarulo, V.

C. Rianna, A. Calabuig, M. Ventre, S. Cavalli, V. Pagliarulo, S. Grilli, P. Ferraro, and P. A. Netti, “Reversible holographic patterns on azopolymers for guiding cell adhesion and orientation,” ACS Appl. Mater. Interfaces 7(31), 16984–16991 (2015).
[Crossref] [PubMed]

Park, J.-K.

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref] [PubMed]

Pirri, C. F.

S. Ricciardi, R. Castagna, S. M. Severino, I. Ferrante, F. Frascella, E. Celasco, P. Mandracci, I. Vallini, G. Mantero, C. F. Pirri, and P. Rivolo, “Surface Functionalization by Poly-Acrylic Acid Plasma-Polymerized films for Microarray DNA Diagnostics,” Surf. Coat. Tech. 207, 389–399 (2012).
[Crossref]

Primagi, A.

A. Primagi and A. Shevchenko, “Azopolymer-Based Micro- and Nanopatterning for Photonic Applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

Rianna, C.

C. Rianna, A. Calabuig, M. Ventre, S. Cavalli, V. Pagliarulo, S. Grilli, P. Ferraro, and P. A. Netti, “Reversible holographic patterns on azopolymers for guiding cell adhesion and orientation,” ACS Appl. Mater. Interfaces 7(31), 16984–16991 (2015).
[Crossref] [PubMed]

Ricciardi, S.

P. Rivolo, S. M. Severino, S. Ricciardi, F. Frascella, and F. Geobaldo, “Protein immobilization on nanoporous silicon functionalized by RF activated plasma polymerization of acrylic acid,” J. Colloid Interface Sci. 416, 73–80 (2014).
[Crossref] [PubMed]

S. Ricciardi, R. Castagna, S. M. Severino, I. Ferrante, F. Frascella, E. Celasco, P. Mandracci, I. Vallini, G. Mantero, C. F. Pirri, and P. Rivolo, “Surface Functionalization by Poly-Acrylic Acid Plasma-Polymerized films for Microarray DNA Diagnostics,” Surf. Coat. Tech. 207, 389–399 (2012).
[Crossref]

Rivolo, P.

P. Rivolo, S. M. Severino, S. Ricciardi, F. Frascella, and F. Geobaldo, “Protein immobilization on nanoporous silicon functionalized by RF activated plasma polymerization of acrylic acid,” J. Colloid Interface Sci. 416, 73–80 (2014).
[Crossref] [PubMed]

S. Ricciardi, R. Castagna, S. M. Severino, I. Ferrante, F. Frascella, E. Celasco, P. Mandracci, I. Vallini, G. Mantero, C. F. Pirri, and P. Rivolo, “Surface Functionalization by Poly-Acrylic Acid Plasma-Polymerized films for Microarray DNA Diagnostics,” Surf. Coat. Tech. 207, 389–399 (2012).
[Crossref]

Rochon, P.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[Crossref] [PubMed]

Rölle, T.

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Ruhe, J.

N. Lomadze, A. Kopyshev, J. Ruhe, and S. Santer, “Light-induced chain scission in photosensitive polymer brushes,” Macromolecules 44(18), 7372–7377 (2011).
[Crossref]

Russew, M.-M.

M.-M. Russew and S. Hecht, “Photoswitches: from molecules to materials,” Adv. Mater. 22(31), 3348–3360 (2010).
[Crossref] [PubMed]

Sadovski, O.

O. Sadovski, A. A. Beharry, F. Zhang, and G. A. Woolley, “Spectral tuning of azobenzene photoswitches for biological applications,” Angew. Chem. Int. Ed. Engl. 48(8), 1484–1486 (2009).
[Crossref] [PubMed]

Santer, S.

N. S. Yadavalli, D. Korolkov, J.-F. Moulin, M. Krutyeva, and S. Santer, “Probing opto-mechanical stresses within azobenzene-containing photosensitive polymer films by a thin metal film placed above,” ACS Appl. Mater. Interfaces 6(14), 11333–11340 (2014).
[Crossref] [PubMed]

N. S. Yadavalli, F. Linde, A. Kopyshev, and S. Santer, “Soft matter beats hard matter: rupturing of thin metallic films induced by mass transport in photosensitive polymer films,” ACS Appl. Mater. Interfaces 5(16), 7743–7747 (2013).
[Crossref] [PubMed]

N. Lomadze, A. Kopyshev, J. Ruhe, and S. Santer, “Light-induced chain scission in photosensitive polymer brushes,” Macromolecules 44(18), 7372–7377 (2011).
[Crossref]

Severino, S. M.

P. Rivolo, S. M. Severino, S. Ricciardi, F. Frascella, and F. Geobaldo, “Protein immobilization on nanoporous silicon functionalized by RF activated plasma polymerization of acrylic acid,” J. Colloid Interface Sci. 416, 73–80 (2014).
[Crossref] [PubMed]

S. Ricciardi, R. Castagna, S. M. Severino, I. Ferrante, F. Frascella, E. Celasco, P. Mandracci, I. Vallini, G. Mantero, C. F. Pirri, and P. Rivolo, “Surface Functionalization by Poly-Acrylic Acid Plasma-Polymerized films for Microarray DNA Diagnostics,” Surf. Coat. Tech. 207, 389–399 (2012).
[Crossref]

Shevchenko, A.

A. Primagi and A. Shevchenko, “Azopolymer-Based Micro- and Nanopatterning for Photonic Applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

Stumpe, J.

O. Kulikovska, K. Gharagozloo-Hubmann, J. Stumpe, B. D. Huey, and V. N. Bliznyuk, “Formation of surface relief grating in polymers with pendant azobenzene chromophores as studied by AFM/UFM,” Nanotechnology 23(48), 485309 (2012).
[Crossref] [PubMed]

O. Kulikovska, L. M. Goldenberg, and J. Stumpe, “Supramolecular azobenzene-based materials for optical generation of microstructures,” Chem. Mater. 19(13), 3343–3348 (2007).
[Crossref]

Tripathy, S. K.

N. K. Viswanathan, D. Y. Kim, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

Vallini, I.

S. Ricciardi, R. Castagna, S. M. Severino, I. Ferrante, F. Frascella, E. Celasco, P. Mandracci, I. Vallini, G. Mantero, C. F. Pirri, and P. Rivolo, “Surface Functionalization by Poly-Acrylic Acid Plasma-Polymerized films for Microarray DNA Diagnostics,” Surf. Coat. Tech. 207, 389–399 (2012).
[Crossref]

Ventre, M.

C. Rianna, A. Calabuig, M. Ventre, S. Cavalli, V. Pagliarulo, S. Grilli, P. Ferraro, and P. A. Netti, “Reversible holographic patterns on azopolymers for guiding cell adhesion and orientation,” ACS Appl. Mater. Interfaces 7(31), 16984–16991 (2015).
[Crossref] [PubMed]

Viswanathan, N. K.

N. K. Viswanathan, D. Y. Kim, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

Weiser, M.-S.

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Woolley, G. A.

O. Sadovski, A. A. Beharry, F. Zhang, and G. A. Woolley, “Spectral tuning of azobenzene photoswitches for biological applications,” Angew. Chem. Int. Ed. Engl. 48(8), 1484–1486 (2009).
[Crossref] [PubMed]

Yadavalli, N. S.

N. S. Yadavalli, D. Korolkov, J.-F. Moulin, M. Krutyeva, and S. Santer, “Probing opto-mechanical stresses within azobenzene-containing photosensitive polymer films by a thin metal film placed above,” ACS Appl. Mater. Interfaces 6(14), 11333–11340 (2014).
[Crossref] [PubMed]

N. S. Yadavalli, F. Linde, A. Kopyshev, and S. Santer, “Soft matter beats hard matter: rupturing of thin metallic films induced by mass transport in photosensitive polymer films,” ACS Appl. Mater. Interfaces 5(16), 7743–7747 (2013).
[Crossref] [PubMed]

Yager, K. G.

K. G. Yager and C. J. Barrett, “Confinement of surface patterning in azo-polymer thin films,” J. Chem. Phys. 126(9), 094908 (2007).
[Crossref] [PubMed]

K. G. Yager and C. J. Barrett, “Novel photo-switching using azobenzene functional materials,” J. Photochem. Photobiol. Chem. 182(3), 250–261 (2006).
[Crossref]

Zhang, F.

O. Sadovski, A. A. Beharry, F. Zhang, and G. A. Woolley, “Spectral tuning of azobenzene photoswitches for biological applications,” Angew. Chem. Int. Ed. Engl. 48(8), 1484–1486 (2009).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (3)

N. S. Yadavalli, F. Linde, A. Kopyshev, and S. Santer, “Soft matter beats hard matter: rupturing of thin metallic films induced by mass transport in photosensitive polymer films,” ACS Appl. Mater. Interfaces 5(16), 7743–7747 (2013).
[Crossref] [PubMed]

N. S. Yadavalli, D. Korolkov, J.-F. Moulin, M. Krutyeva, and S. Santer, “Probing opto-mechanical stresses within azobenzene-containing photosensitive polymer films by a thin metal film placed above,” ACS Appl. Mater. Interfaces 6(14), 11333–11340 (2014).
[Crossref] [PubMed]

C. Rianna, A. Calabuig, M. Ventre, S. Cavalli, V. Pagliarulo, S. Grilli, P. Ferraro, and P. A. Netti, “Reversible holographic patterns on azopolymers for guiding cell adhesion and orientation,” ACS Appl. Mater. Interfaces 7(31), 16984–16991 (2015).
[Crossref] [PubMed]

Adv. Mater. (2)

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref] [PubMed]

M.-M. Russew and S. Hecht, “Photoswitches: from molecules to materials,” Adv. Mater. 22(31), 3348–3360 (2010).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (2)

O. Sadovski, A. A. Beharry, F. Zhang, and G. A. Woolley, “Spectral tuning of azobenzene photoswitches for biological applications,” Angew. Chem. Int. Ed. Engl. 48(8), 1484–1486 (2009).
[Crossref] [PubMed]

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Chem. Mater. (1)

O. Kulikovska, L. M. Goldenberg, and J. Stumpe, “Supramolecular azobenzene-based materials for optical generation of microstructures,” Chem. Mater. 19(13), 3343–3348 (2007).
[Crossref]

Chem. Rev. (2)

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[Crossref] [PubMed]

G. S. Kumar and D. C. Neckers, “Photochemistry of azobenzene-containing polymers,” Chem. Rev. 89(8), 1915–1925 (1989).
[Crossref]

Colloids Surf. B Biointerfaces (1)

R. Barillé, R. Janik, S. Kucharski, J. Eyer, and F. Letournel, “Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: an in vitro study for neuron guidance,” Colloids Surf. B Biointerfaces 88(1), 63–71 (2011).
[Crossref] [PubMed]

J. Chem. Phys. (1)

K. G. Yager and C. J. Barrett, “Confinement of surface patterning in azo-polymer thin films,” J. Chem. Phys. 126(9), 094908 (2007).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

P. Rivolo, S. M. Severino, S. Ricciardi, F. Frascella, and F. Geobaldo, “Protein immobilization on nanoporous silicon functionalized by RF activated plasma polymerization of acrylic acid,” J. Colloid Interface Sci. 416, 73–80 (2014).
[Crossref] [PubMed]

J. Mater. Chem. (1)

N. K. Viswanathan, D. Y. Kim, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

J. Photochem. Photobiol. Chem. (1)

K. G. Yager and C. J. Barrett, “Novel photo-switching using azobenzene functional materials,” J. Photochem. Photobiol. Chem. 182(3), 250–261 (2006).
[Crossref]

J. Polym. Sci. A Polym. Chem. (1)

A. Goulet-Hanssens and C. J. Barrett, “Photo-control of biological systems with azobenzene polymers,” J. Polym. Sci. A Polym. Chem. 51(14), 3058–3070 (2013).
[Crossref]

J. Polym. Sci., B, Polym. Phys. (1)

A. Primagi and A. Shevchenko, “Azopolymer-Based Micro- and Nanopatterning for Photonic Applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

Macromolecules (1)

N. Lomadze, A. Kopyshev, J. Ruhe, and S. Santer, “Light-induced chain scission in photosensitive polymer brushes,” Macromolecules 44(18), 7372–7377 (2011).
[Crossref]

Nanotechnology (1)

O. Kulikovska, K. Gharagozloo-Hubmann, J. Stumpe, B. D. Huey, and V. N. Bliznyuk, “Formation of surface relief grating in polymers with pendant azobenzene chromophores as studied by AFM/UFM,” Nanotechnology 23(48), 485309 (2012).
[Crossref] [PubMed]

Nature (1)

G. S. Hartley, “The cis form of azobenzene,” Nature 140(3537), 281 (1937).
[Crossref]

Science (1)

K. Ichimura, S. K. Oh, and M. Nakagawa, “Light-driven motion of liquids on a photoresponsive surface,” Science 288(5471), 1624–1626 (2000).
[Crossref] [PubMed]

Surf. Coat. Tech. (1)

S. Ricciardi, R. Castagna, S. M. Severino, I. Ferrante, F. Frascella, E. Celasco, P. Mandracci, I. Vallini, G. Mantero, C. F. Pirri, and P. Rivolo, “Surface Functionalization by Poly-Acrylic Acid Plasma-Polymerized films for Microarray DNA Diagnostics,” Surf. Coat. Tech. 207, 389–399 (2012).
[Crossref]

Other (3)

R. A. L. Jones and R. W. Richards, Polymer at Surface and Interfaces (Cambridge University Press, 1999).

K. Klismeta, J. Teteris, and J. Aleksejeva, “Photoinduced mass transport in azo compounds,” Functional materials and Nanotechnologies, IOP Conf. Series: Materials Science and Engineering 49, 012036 (2013).

O. G. Gardens, Trend in Optical Materials Research (Nova Science Publisher, 2007), Chap. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Optical setup for azopolymer irradiation and monitoring.
Fig. 2
Fig. 2 (a) picture of a set of bare and PPAA-coated PAZO films after a 24h incubation of a water droplet on the surface; (b-e) absorbance spectra of PAZO released in water after 1h and 24h since sample immersion; (f) PAZO absorbance peak (λ = 360 nm) after 1h and 24h immersion showing the progressive release of PAZO in water.
Fig. 3
Fig. 3 (a) wide-field white light optical image of a SRG formed upon irradiation (duration about 4 minutes) of a partially coated PAZO film. A linear grating is observed across the edge of the PPAA coating; (b) time-resolved diffracted intensity (−1st order) detected during SRG formation on a bare and a PPAA-coated (100 nm) PAZO film.
Fig. 4
Fig. 4 (a) three-dimensional representation of the SRG obtained on a PAZO film partially coated with PPAA 100 nm thick (edge region); (b) cross-sectional topographic profile of SRG across the PPAA edge along the yellow dashed line in the inset; (c) cross-sectional topographic profile of the PPAA edge as considered along either a ridge or a trench of the SRG (blue and red dashed lines in the 2D map on the right, respectively).

Metrics