Abstract

Electrostrictive and photoinduced charge accumulation in the nanoscale interfaces of air and copper-doped (K0.5Na0.5)0.2(Sr0.75Ba0.25)0.9Nb2O6 crystals and electrostatic modification to the nanolayer interfaces were studied with conventional two beam coupling. This interface modification was confirmed by (1) emerging 2 dimensional diffraction patterns with over 10 high orders and 6 rows; (2) remarkable electroinduced power change of specular reflection on the very first surface; and (3) the energy coupling of the first reflected beam with another coherent laser beam in the subwavelength scale. Distinct responses to perturbation show coexistence of a surface grating and bulk ones in the sample. Theoretical consideration on excitation of surface plasmon polaritons through photorefractive phase grating mediation was given to elucidate all the related observations.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

19 January 2016: A correction was made to the acknowledgments.


OSA Recommended Articles
Recording of second-harmonic index gratings in photorefractive (K0.5Na0.5)0.2(Sr0.75Ba0.25)0.9Nb2O6 crystals

Xiaonong Shen, Jianhua Zhao, Ruibo Wang, Xianmin Yi, Pochi Yeh, and Huanchu Chen
Opt. Lett. 24(5) 312-314 (1999)

Holographic recording with orthogonally polarized beams in a cesium-doped (K0.5Na0.5)0.2(Sr0.75Ba0.25)0.9Nb2O6 crystal

Bao-Lai Liang, Zhao-Qi Wang, C. M. Cartwright, Hui Zhang, Mei-Song Ding, and W. A. Gillespie
Appl. Opt. 40(26) 4667-4671 (2001)

Observation of multireflections from cat self-pumped phase conjugators with Cu-doped (K0.5Na0.5)0.2(Sr0.75Ba0.25)0.9Nb2O6 crystals and conjugation fidelity analysis

Jingwen Zhang, Liangmin Zhang, Zongshu Shao, Xiaodong Mu, Quanzhong Jiang, Huanchu Chen, and Minhua Jiang
Opt. Lett. 20(9) 979-981 (1995)

References

  • View by:
  • |
  • |
  • |

  1. S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D Appl. Phys. 45(43), 433001 (2012).
    [Crossref]
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [Crossref]
  3. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  4. S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
    [Crossref] [PubMed]
  5. P. Gadenne and J. C. Rivoal, “Surface-Plasmon-Enhanced Nonlinearities in Percolating 2-D Metal—Dielectric Films: Calculation of the Localized Giant Field and Their Observation in SNOM,” Optical Properties of Nanostructured Random Media. Springer Berlin Heidelberg 82, 185–215 (2002).
  6. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
    [Crossref] [PubMed]
  7. K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable Color Filters Based on Metal-Insulator-Metal Resonators,” Nano Lett. 9(7), 2579–2583 (2009).
    [Crossref] [PubMed]
  8. H. Wang, H. Zhao, L. Li, C. Xu, and J. Zhang, “Surface plasmon polariton boosted photorefractive scattering in indium tin oxide coated Fe-doped lithium niobate slabs,” Opt. Commun. 338, 505–510 (2015).
    [Crossref]
  9. H. Wang, H. Zhao, C. Xu, L. Li, G. Hu, and J. Zhang, “Coupling mediated by photorefractive phase grating between visible radiation and surface plasmon polaritons in iron-doped LiNbO3 crystal slabs coated with indium–tin oxide,” Appl. Phys. Express 7(10), 102001 (2014).
    [Crossref]
  10. T. Xue, H. Zhao, C. Meng, J. Fu, and J. Zhang, “Impact of surface plasmon polaritons on photorefractive effect in dye doped liquid crystal cells with ZnSe interlayers,” Opt. Express 22(17), 20964–20972 (2014).
    [Crossref] [PubMed]
  11. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
    [Crossref]
  12. A. P. Vasudev, J.-H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
    [Crossref] [PubMed]
  13. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
    [Crossref] [PubMed]
  14. V. E. Babicheva, S. V. Zhukovsky, and A. V. Lavrinenko, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Opt. Express 22(23), 28890–28897 (2014).
    [Crossref] [PubMed]
  15. D. Maystre, “Diffraction gratings: An amazing phenomenon,” C. R. Phys. 14(4), 381–392 (2013).
    [Crossref]
  16. J. Choi, S. H. Ji, C. S. Choi, J. W. Oh, F. S. Kim, and N. Kim, “Enhanced photorefractive performance of polymeric composites through surface plasmon effects of gold nanoparticles,” Opt. Lett. 39(15), 4571–4574 (2014).
    [Crossref] [PubMed]
  17. A. M. Glass, “Investigation of the electrical properties of Sr1−xBaxNb2O6 with special reference to pyroelectric detection,” J. Appl. Phys. 40(12), 4699–4713 (1969).
    [Crossref]
  18. Y. Xu, H. Chen, and L. E. Cross, “Pyroelectric properties of the ferroelectric single crystal series (KxNa1−x)0.4(SryBa1y)0.8Nb2O6,” Ferroelectrics Lett. 2(6), 189–196 (1984).
    [Crossref]
  19. R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, and E. J. Sharp, “Growth and ferroelectric properties of tungsten bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) single crystals,” J. Cryst. Growth 84(4), 629–637 (1987).
    [Crossref]
  20. S. R. Montgomery, J. Yarrison-Rice, D. O. Peterson, G. L. Salamo, M. J. Miller, W. W. Clark, G. L. Wood, E. J. Sharp, and R. R. Neurgaonkar, “Self-pumped phase conjugation in the red in photorefractive Ba0.5Sr1.5K0.25Na0.75Nb5O15 and Sr0.6Ba0.4Nb2O6 with cerium in 9-fold coordinated sites,” J. Opt. Soc. Am. B 5(8), 1775–1780 (1988).
    [Crossref]
  21. S. Bian, J. Zhang, X. Su, K. Xu, W. Sun, Q. Jiang, H. Chen, and D. Sun, “Self-pumped phase conjugation of 18 degrees -cut Ce-doped KNSBN crystal at 632.8 nm,” Opt. Lett. 18(10), 769–771 (1993).
    [Crossref] [PubMed]
  22. J. Zhang, H. Liu, and W. Jia, “Influence of the internal photoinduced electric field on the formation of self-pumped phase conjugation in doped (K0.5Na0.5)0.2(Sr0.75Ba0.25)0.9Nb2O6 crystals,” Appl. Opt. 35(31), 6241–6248 (1996).
    [Crossref] [PubMed]
  23. J. Zhang, H. Liu, and W. Jia, “Investigation into self-pumped and mutually pumped phase conjugation with beams entering the negative c face of doped (K0.5Na0.5)0.2(Sr0.75Ba0.25)0.9Nb2O6 crystals,” Appl. Opt. 36(16), 3753–3761 (1997).
    [Crossref] [PubMed]
  24. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  25. P. D. C. King, T. D. Veal, D. J. Payne, A. Bourlange, R. G. Egdell, and C. F. McConville, “Surface electron accumulation and the charge neutrality level in In2O3.,” Phys. Rev. Lett. 101(11), 116808 (2008).
    [Crossref] [PubMed]
  26. I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, “Intrinsic electron accumulation at clean InN surfaces,” Phys. Rev. Lett. 92(3), 036804 (2004).
    [Crossref] [PubMed]
  27. H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
    [Crossref]
  28. B. I. Sturman, S. G. Odoulov, and M. Yu. Goulkov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275(4), 197–254 (1996).
    [Crossref]
  29. K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. B 28(8), 1874–1881 (2011).
    [Crossref]

2015 (1)

H. Wang, H. Zhao, L. Li, C. Xu, and J. Zhang, “Surface plasmon polariton boosted photorefractive scattering in indium tin oxide coated Fe-doped lithium niobate slabs,” Opt. Commun. 338, 505–510 (2015).
[Crossref]

2014 (4)

2013 (2)

2012 (1)

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D Appl. Phys. 45(43), 433001 (2012).
[Crossref]

2011 (2)

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. B 28(8), 1874–1881 (2011).
[Crossref]

2010 (2)

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

2009 (1)

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable Color Filters Based on Metal-Insulator-Metal Resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[Crossref] [PubMed]

2008 (2)

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[Crossref] [PubMed]

P. D. C. King, T. D. Veal, D. J. Payne, A. Bourlange, R. G. Egdell, and C. F. McConville, “Surface electron accumulation and the charge neutrality level in In2O3.,” Phys. Rev. Lett. 101(11), 116808 (2008).
[Crossref] [PubMed]

2007 (1)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

2005 (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

2004 (1)

I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, “Intrinsic electron accumulation at clean InN surfaces,” Phys. Rev. Lett. 92(3), 036804 (2004).
[Crossref] [PubMed]

2002 (1)

P. Gadenne and J. C. Rivoal, “Surface-Plasmon-Enhanced Nonlinearities in Percolating 2-D Metal—Dielectric Films: Calculation of the Localized Giant Field and Their Observation in SNOM,” Optical Properties of Nanostructured Random Media. Springer Berlin Heidelberg 82, 185–215 (2002).

1999 (1)

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

1997 (1)

1996 (2)

1993 (1)

1988 (1)

1987 (1)

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, and E. J. Sharp, “Growth and ferroelectric properties of tungsten bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) single crystals,” J. Cryst. Growth 84(4), 629–637 (1987).
[Crossref]

1984 (1)

Y. Xu, H. Chen, and L. E. Cross, “Pyroelectric properties of the ferroelectric single crystal series (KxNa1−x)0.4(SryBa1y)0.8Nb2O6,” Ferroelectrics Lett. 2(6), 189–196 (1984).
[Crossref]

1981 (1)

1969 (1)

A. M. Glass, “Investigation of the electrical properties of Sr1−xBaxNb2O6 with special reference to pyroelectric detection,” J. Appl. Phys. 40(12), 4699–4713 (1969).
[Crossref]

Abbott, S.

Alù, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Atwater, H. A.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable Color Filters Based on Metal-Insulator-Metal Resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[Crossref] [PubMed]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[Crossref] [PubMed]

Babicheva, V. E.

Bhattacharya, K.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[Crossref] [PubMed]

Bian, S.

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Bourlange, A.

P. D. C. King, T. D. Veal, D. J. Payne, A. Bourlange, R. G. Egdell, and C. F. McConville, “Surface electron accumulation and the charge neutrality level in In2O3.,” Phys. Rev. Lett. 101(11), 116808 (2008).
[Crossref] [PubMed]

Brongersma, M. L.

Chang, R. P. H.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

Chen, H.

S. Bian, J. Zhang, X. Su, K. Xu, W. Sun, Q. Jiang, H. Chen, and D. Sun, “Self-pumped phase conjugation of 18 degrees -cut Ce-doped KNSBN crystal at 632.8 nm,” Opt. Lett. 18(10), 769–771 (1993).
[Crossref] [PubMed]

Y. Xu, H. Chen, and L. E. Cross, “Pyroelectric properties of the ferroelectric single crystal series (KxNa1−x)0.4(SryBa1y)0.8Nb2O6,” Ferroelectrics Lett. 2(6), 189–196 (1984).
[Crossref]

Choi, C. S.

Choi, J.

Chrisey, D. B.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Clark, W. W.

S. R. Montgomery, J. Yarrison-Rice, D. O. Peterson, G. L. Salamo, M. J. Miller, W. W. Clark, G. L. Wood, E. J. Sharp, and R. R. Neurgaonkar, “Self-pumped phase conjugation in the red in photorefractive Ba0.5Sr1.5K0.25Na0.75Nb5O15 and Sr0.6Ba0.4Nb2O6 with cerium in 9-fold coordinated sites,” J. Opt. Soc. Am. B 5(8), 1775–1780 (1988).
[Crossref]

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, and E. J. Sharp, “Growth and ferroelectric properties of tungsten bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) single crystals,” J. Cryst. Growth 84(4), 629–637 (1987).
[Crossref]

Cory, W. K.

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, and E. J. Sharp, “Growth and ferroelectric properties of tungsten bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) single crystals,” J. Cryst. Growth 84(4), 629–637 (1987).
[Crossref]

Cross, L. E.

Y. Xu, H. Chen, and L. E. Cross, “Pyroelectric properties of the ferroelectric single crystal series (KxNa1−x)0.4(SryBa1y)0.8Nb2O6,” Ferroelectrics Lett. 2(6), 189–196 (1984).
[Crossref]

D’Alessandro, G.

Daly, K. R.

Dicken, M. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[Crossref] [PubMed]

Diest, K.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable Color Filters Based on Metal-Insulator-Metal Resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[Crossref] [PubMed]

Dionne, J. A.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable Color Filters Based on Metal-Insulator-Metal Resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[Crossref] [PubMed]

Egdell, R. G.

P. D. C. King, T. D. Veal, D. J. Payne, A. Bourlange, R. G. Egdell, and C. F. McConville, “Surface electron accumulation and the charge neutrality level in In2O3.,” Phys. Rev. Lett. 101(11), 116808 (2008).
[Crossref] [PubMed]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Engheta, N.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Fu, J.

Gadenne, P.

P. Gadenne and J. C. Rivoal, “Surface-Plasmon-Enhanced Nonlinearities in Percolating 2-D Metal—Dielectric Films: Calculation of the Localized Giant Field and Their Observation in SNOM,” Optical Properties of Nanostructured Random Media. Springer Berlin Heidelberg 82, 185–215 (2002).

Gaylord, T. K.

Gilmore, C. M.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Glass, A. M.

A. M. Glass, “Investigation of the electrical properties of Sr1−xBaxNb2O6 with special reference to pyroelectric detection,” J. Appl. Phys. 40(12), 4699–4713 (1969).
[Crossref]

Goulkov, M. Yu.

B. I. Sturman, S. G. Odoulov, and M. Yu. Goulkov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275(4), 197–254 (1996).
[Crossref]

Guo, P.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

Hayashi, S.

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D Appl. Phys. 45(43), 433001 (2012).
[Crossref]

Horwitz, J. S.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Hu, G.

H. Wang, H. Zhao, C. Xu, L. Li, G. Hu, and J. Zhang, “Coupling mediated by photorefractive phase grating between visible radiation and surface plasmon polaritons in iron-doped LiNbO3 crystal slabs coated with indium–tin oxide,” Appl. Phys. Express 7(10), 102001 (2014).
[Crossref]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Ji, S. H.

Jia, W.

Jiang, Q.

Kaczmarek, M.

Kafafi, Z. H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Kang, J.-H.

Ketterson, J. B.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

Kim, F. S.

Kim, H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Kim, N.

King, P. D. C.

P. D. C. King, T. D. Veal, D. J. Payne, A. Bourlange, R. G. Egdell, and C. F. McConville, “Surface electron accumulation and the charge neutrality level in In2O3.,” Phys. Rev. Lett. 101(11), 116808 (2008).
[Crossref] [PubMed]

Lavrinenko, A. V.

Lezec, H. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[Crossref] [PubMed]

Li, L.

H. Wang, H. Zhao, L. Li, C. Xu, and J. Zhang, “Surface plasmon polariton boosted photorefractive scattering in indium tin oxide coated Fe-doped lithium niobate slabs,” Opt. Commun. 338, 505–510 (2015).
[Crossref]

H. Wang, H. Zhao, C. Xu, L. Li, G. Hu, and J. Zhang, “Coupling mediated by photorefractive phase grating between visible radiation and surface plasmon polaritons in iron-doped LiNbO3 crystal slabs coated with indium–tin oxide,” Appl. Phys. Express 7(10), 102001 (2014).
[Crossref]

Li, S. Q.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

Liu, H.

Liu, X.

Lu, H.

I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, “Intrinsic electron accumulation at clean InN surfaces,” Phys. Rev. Lett. 92(3), 036804 (2004).
[Crossref] [PubMed]

Mahboob, I.

I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, “Intrinsic electron accumulation at clean InN surfaces,” Phys. Rev. Lett. 92(3), 036804 (2004).
[Crossref] [PubMed]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Mattoussi, H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Maystre, D.

D. Maystre, “Diffraction gratings: An amazing phenomenon,” C. R. Phys. 14(4), 381–392 (2013).
[Crossref]

McConville, C. F.

P. D. C. King, T. D. Veal, D. J. Payne, A. Bourlange, R. G. Egdell, and C. F. McConville, “Surface electron accumulation and the charge neutrality level in In2O3.,” Phys. Rev. Lett. 101(11), 116808 (2008).
[Crossref] [PubMed]

I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, “Intrinsic electron accumulation at clean InN surfaces,” Phys. Rev. Lett. 92(3), 036804 (2004).
[Crossref] [PubMed]

Meng, C.

Miller, M. J.

S. R. Montgomery, J. Yarrison-Rice, D. O. Peterson, G. L. Salamo, M. J. Miller, W. W. Clark, G. L. Wood, E. J. Sharp, and R. R. Neurgaonkar, “Self-pumped phase conjugation in the red in photorefractive Ba0.5Sr1.5K0.25Na0.75Nb5O15 and Sr0.6Ba0.4Nb2O6 with cerium in 9-fold coordinated sites,” J. Opt. Soc. Am. B 5(8), 1775–1780 (1988).
[Crossref]

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, and E. J. Sharp, “Growth and ferroelectric properties of tungsten bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) single crystals,” J. Cryst. Growth 84(4), 629–637 (1987).
[Crossref]

Moharam, M. G.

Montgomery, S. R.

Murata, H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Neurgaonkar, R. R.

S. R. Montgomery, J. Yarrison-Rice, D. O. Peterson, G. L. Salamo, M. J. Miller, W. W. Clark, G. L. Wood, E. J. Sharp, and R. R. Neurgaonkar, “Self-pumped phase conjugation in the red in photorefractive Ba0.5Sr1.5K0.25Na0.75Nb5O15 and Sr0.6Ba0.4Nb2O6 with cerium in 9-fold coordinated sites,” J. Opt. Soc. Am. B 5(8), 1775–1780 (1988).
[Crossref]

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, and E. J. Sharp, “Growth and ferroelectric properties of tungsten bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) single crystals,” J. Cryst. Growth 84(4), 629–637 (1987).
[Crossref]

Odom, T. W.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

Odoulov, S. G.

B. I. Sturman, S. G. Odoulov, and M. Yu. Goulkov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275(4), 197–254 (1996).
[Crossref]

Oh, J. W.

Okamoto, T.

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D Appl. Phys. 45(43), 433001 (2012).
[Crossref]

Oliver, J. R.

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, and E. J. Sharp, “Growth and ferroelectric properties of tungsten bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) single crystals,” J. Cryst. Growth 84(4), 629–637 (1987).
[Crossref]

Pacifici, D.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[Crossref] [PubMed]

Park, J.

Payne, D. J.

P. D. C. King, T. D. Veal, D. J. Payne, A. Bourlange, R. G. Egdell, and C. F. McConville, “Surface electron accumulation and the charge neutrality level in In2O3.,” Phys. Rev. Lett. 101(11), 116808 (2008).
[Crossref] [PubMed]

Peterson, D. O.

Piqué, A.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Rivoal, J. C.

P. Gadenne and J. C. Rivoal, “Surface-Plasmon-Enhanced Nonlinearities in Percolating 2-D Metal—Dielectric Films: Calculation of the Localized Giant Field and Their Observation in SNOM,” Optical Properties of Nanostructured Random Media. Springer Berlin Heidelberg 82, 185–215 (2002).

Salamo, G. L.

Salandrino, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Schaff, W. J.

I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, “Intrinsic electron accumulation at clean InN surfaces,” Phys. Rev. Lett. 92(3), 036804 (2004).
[Crossref] [PubMed]

Seideman, T.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Sharp, E. J.

S. R. Montgomery, J. Yarrison-Rice, D. O. Peterson, G. L. Salamo, M. J. Miller, W. W. Clark, G. L. Wood, E. J. Sharp, and R. R. Neurgaonkar, “Self-pumped phase conjugation in the red in photorefractive Ba0.5Sr1.5K0.25Na0.75Nb5O15 and Sr0.6Ba0.4Nb2O6 with cerium in 9-fold coordinated sites,” J. Opt. Soc. Am. B 5(8), 1775–1780 (1988).
[Crossref]

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, and E. J. Sharp, “Growth and ferroelectric properties of tungsten bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) single crystals,” J. Cryst. Growth 84(4), 629–637 (1987).
[Crossref]

Silveirinha, M. G.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Smith, D. C.

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Spain, M.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable Color Filters Based on Metal-Insulator-Metal Resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[Crossref] [PubMed]

Sturman, B. I.

B. I. Sturman, S. G. Odoulov, and M. Yu. Goulkov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275(4), 197–254 (1996).
[Crossref]

Su, X.

Sun, D.

Sun, W.

Sweatlock, L. A.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[Crossref] [PubMed]

Vasudev, A. P.

Veal, T. D.

P. D. C. King, T. D. Veal, D. J. Payne, A. Bourlange, R. G. Egdell, and C. F. McConville, “Surface electron accumulation and the charge neutrality level in In2O3.,” Phys. Rev. Lett. 101(11), 116808 (2008).
[Crossref] [PubMed]

I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, “Intrinsic electron accumulation at clean InN surfaces,” Phys. Rev. Lett. 92(3), 036804 (2004).
[Crossref] [PubMed]

Wang, H.

H. Wang, H. Zhao, L. Li, C. Xu, and J. Zhang, “Surface plasmon polariton boosted photorefractive scattering in indium tin oxide coated Fe-doped lithium niobate slabs,” Opt. Commun. 338, 505–510 (2015).
[Crossref]

H. Wang, H. Zhao, C. Xu, L. Li, G. Hu, and J. Zhang, “Coupling mediated by photorefractive phase grating between visible radiation and surface plasmon polaritons in iron-doped LiNbO3 crystal slabs coated with indium–tin oxide,” Appl. Phys. Express 7(10), 102001 (2014).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Wood, G. L.

S. R. Montgomery, J. Yarrison-Rice, D. O. Peterson, G. L. Salamo, M. J. Miller, W. W. Clark, G. L. Wood, E. J. Sharp, and R. R. Neurgaonkar, “Self-pumped phase conjugation in the red in photorefractive Ba0.5Sr1.5K0.25Na0.75Nb5O15 and Sr0.6Ba0.4Nb2O6 with cerium in 9-fold coordinated sites,” J. Opt. Soc. Am. B 5(8), 1775–1780 (1988).
[Crossref]

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, and E. J. Sharp, “Growth and ferroelectric properties of tungsten bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) single crystals,” J. Cryst. Growth 84(4), 629–637 (1987).
[Crossref]

Xu, C.

H. Wang, H. Zhao, L. Li, C. Xu, and J. Zhang, “Surface plasmon polariton boosted photorefractive scattering in indium tin oxide coated Fe-doped lithium niobate slabs,” Opt. Commun. 338, 505–510 (2015).
[Crossref]

H. Wang, H. Zhao, C. Xu, L. Li, G. Hu, and J. Zhang, “Coupling mediated by photorefractive phase grating between visible radiation and surface plasmon polaritons in iron-doped LiNbO3 crystal slabs coated with indium–tin oxide,” Appl. Phys. Express 7(10), 102001 (2014).
[Crossref]

Xu, K.

Xu, Y.

Y. Xu, H. Chen, and L. E. Cross, “Pyroelectric properties of the ferroelectric single crystal series (KxNa1−x)0.4(SryBa1y)0.8Nb2O6,” Ferroelectrics Lett. 2(6), 189–196 (1984).
[Crossref]

Xue, T.

Yarrison-Rice, J.

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Zhang, J.

Zhang, L.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

Zhao, H.

H. Wang, H. Zhao, L. Li, C. Xu, and J. Zhang, “Surface plasmon polariton boosted photorefractive scattering in indium tin oxide coated Fe-doped lithium niobate slabs,” Opt. Commun. 338, 505–510 (2015).
[Crossref]

H. Wang, H. Zhao, C. Xu, L. Li, G. Hu, and J. Zhang, “Coupling mediated by photorefractive phase grating between visible radiation and surface plasmon polaritons in iron-doped LiNbO3 crystal slabs coated with indium–tin oxide,” Appl. Phys. Express 7(10), 102001 (2014).
[Crossref]

T. Xue, H. Zhao, C. Meng, J. Fu, and J. Zhang, “Impact of surface plasmon polaritons on photorefractive effect in dye doped liquid crystal cells with ZnSe interlayers,” Opt. Express 22(17), 20964–20972 (2014).
[Crossref] [PubMed]

Zhou, W.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

Zhukovsky, S. V.

ACS Nano (1)

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Express (1)

H. Wang, H. Zhao, C. Xu, L. Li, G. Hu, and J. Zhang, “Coupling mediated by photorefractive phase grating between visible radiation and surface plasmon polaritons in iron-doped LiNbO3 crystal slabs coated with indium–tin oxide,” Appl. Phys. Express 7(10), 102001 (2014).
[Crossref]

C. R. Phys. (1)

D. Maystre, “Diffraction gratings: An amazing phenomenon,” C. R. Phys. 14(4), 381–392 (2013).
[Crossref]

Ferroelectrics Lett. (1)

Y. Xu, H. Chen, and L. E. Cross, “Pyroelectric properties of the ferroelectric single crystal series (KxNa1−x)0.4(SryBa1y)0.8Nb2O6,” Ferroelectrics Lett. 2(6), 189–196 (1984).
[Crossref]

J. Appl. Phys. (2)

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

A. M. Glass, “Investigation of the electrical properties of Sr1−xBaxNb2O6 with special reference to pyroelectric detection,” J. Appl. Phys. 40(12), 4699–4713 (1969).
[Crossref]

J. Cryst. Growth (1)

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, and E. J. Sharp, “Growth and ferroelectric properties of tungsten bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) single crystals,” J. Cryst. Growth 84(4), 629–637 (1987).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (1)

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D Appl. Phys. 45(43), 433001 (2012).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nano Lett. (3)

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[Crossref] [PubMed]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable Color Filters Based on Metal-Insulator-Metal Resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

H. Wang, H. Zhao, L. Li, C. Xu, and J. Zhang, “Surface plasmon polariton boosted photorefractive scattering in indium tin oxide coated Fe-doped lithium niobate slabs,” Opt. Commun. 338, 505–510 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optical Properties of Nanostructured Random Media. Springer Berlin Heidelberg (1)

P. Gadenne and J. C. Rivoal, “Surface-Plasmon-Enhanced Nonlinearities in Percolating 2-D Metal—Dielectric Films: Calculation of the Localized Giant Field and Their Observation in SNOM,” Optical Properties of Nanostructured Random Media. Springer Berlin Heidelberg 82, 185–215 (2002).

Phys. Rep. (2)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

B. I. Sturman, S. G. Odoulov, and M. Yu. Goulkov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275(4), 197–254 (1996).
[Crossref]

Phys. Rev. B (1)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Phys. Rev. Lett. (2)

P. D. C. King, T. D. Veal, D. J. Payne, A. Bourlange, R. G. Egdell, and C. F. McConville, “Surface electron accumulation and the charge neutrality level in In2O3.,” Phys. Rev. Lett. 101(11), 116808 (2008).
[Crossref] [PubMed]

I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, “Intrinsic electron accumulation at clean InN surfaces,” Phys. Rev. Lett. 92(3), 036804 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Schematic of surface grating recording in a bulk KNSBN sample and high diffraction orders casting on a viewing screen; (b) a photograph taken prior to applying voltage; (c) a typical 2D diffraction pattern taken after applying external voltage 5s (left side are the light spots of 561 nm laser beams, right side are the diffraction spots of reading beam at 532 nm).
Fig. 2
Fig. 2 (a) Photoinduced current dynamic curve upon turning on illuminating laser light (the inset is the shutting down current dynamic curve); (b) Photoinduced peak current intensity versus illuminating light power; (c) Electrostrictive current dynamic curve upon turning on voltage source with no light illuminating (the inset is the turning off current dynamic curve); (d) Plasmonic band structure of the air/KNSBN interface with the adjacent curves with order increment ∆m = 3, the red line corresponding to kxin, the green line represents light line in the KNSBN sample (kx), the bold black line is the original SPP dispersion curve.
Fig. 3
Fig. 3 (a) Transmitted diffraction dots when two laser beams were incident onto the KNSBN sample; (b) exhibits a typical diffraction pattern when 5.0 kV voltage was applied on the KNSBN sample after 5 seconds waiting time; (c) schematic diagram shows the reflection beam on the first face of the Cu:KNSBN sample and its beam coupling with another incident laser beam I20 within the subwavelength modified layer.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ω p = 4 π n e e 2 ε 0 ε m e
k s p p = ω c ε ( ω ) ε ( ω ) + 1
ε ( ω ) = ε [ 1 + ω L 2 ω T 2 ω T 2 ω 2 + i Γ ω ]
k S P P = k x i n + Δ k x = k x i n + m 2 π Λ , m = ± 1 , ± 2 , ... ,
k x i n = ( ω c ) ε K N S B N sin ( θ 2 )
k x = ( ω c ) ε K N S B N

Metrics