Abstract

High-power impulse magnetron sputtering (HiPIMS) was used to deposit titanium nitride (TiN) thin films with high electron density as alternative plasmonic materials. TiN thin films with thicknesses of 20–40 nm were deposited with different average sputtering powers, and exhibited metallic- and dielectric-like optical properties. When the sputtering power was increased from 80 W to 300 W, denser polycrystalline TiN thin films were obtained at room temperature (RT) with a conductivity 25 times that of the low-sputtering-power film. With sufficient average power (≥ 180 W), the films exhibited metallic-like optical properties, and a conductivity of >105 S/m. By using HiPIMS deposition, good-quality metallic-like TiN thin films could be fabricated at RT without heating the substrate.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature stability of thin film refractory plasmonic materials

Matthew P. Wells, Ryan Bower, Rebecca Kilmurray, Bin Zou, Andrei P. Mihai, Gomathi Gobalakrichenane, Neil McN. Alford, Rupert F. M. Oulton, Lesley F. Cohen, Stefan A. Maier, Anatoly V. Zayats, and Peter K. Petrov
Opt. Express 26(12) 15726-15744 (2018)

Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications

Christine M. Zgrabik and Evelyn L. Hu
Opt. Mater. Express 5(12) 2786-2797 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  2. J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37(08), 768–779 (2012).
    [Crossref]
  3. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref] [PubMed]
  4. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
    [Crossref]
  5. V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
    [Crossref] [PubMed]
  6. A. Anders, “A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS),” Surf. Coat. Tech. 257, 308–325 (2014).
    [Crossref]
  7. F. Magnus, A. S. Ingason, O. Sveinsson, S. Olafsson, and J. Gudmundsson, “Morphology of TiN thin films grown on SiO2 by reactive high power impulse magnetron sputtering,” Thin Solid Films 520(5), 1621–1624 (2011).
    [Crossref]
  8. C.-L. Chang, S.-G. Shih, P.-H. Chen, W.-C. Chen, C.-T. Ho, and W.-Y. Wu, “Effect of duty cycles on the deposition and characteristics of high power impulse magnetron sputtering deposited TiN thin films,” Surf. Coat. Tech. 259, 232–237 (2014).
    [Crossref]
  9. Y. Igasaki and H. Mitsuhashi, “The effects of substrate bias on the structural and electrical properties of TiN films prepared by reactive rf sputtering,” Thin Solid Films 70(1), 17–25 (1980).
    [Crossref]
  10. G. Janssen and J.-D. Kamminga, “Stress in hard metal films,” Appl. Phys. Lett. 85(15), 3086–3088 (2004).
    [Crossref]
  11. F. Magnus, A. S. Ingason, S. Olafsson, and J. T. Gudmundsson, “Nucleation and Resistivity of Ultrathin TiN Films Grown by High-Power Impulse Magnetron Sputtering,” IEEE Electron Device Lett. 33(7), 1045–1047 (2012).
    [Crossref]
  12. K. A. Aissa, A. Achour, J. Camus, L. Le Brizoual, P.-Y. Jouan, and M.-A. Djouadi, “Comparison of the structural properties and residual stress of AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering at different working pressures,” Thin Solid Films 550, 264–267 (2014).
    [Crossref]
  13. J. Lin, J. J. Moore, W. D. Sproul, B. Mishra, Z. Wu, and J. Wang, “The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering,” Surf. Coat. Tech. 204(14), 2230–2239 (2010).
    [Crossref]
  14. M. Samuelsson, D. Lundin, J. Jensen, M. A. Raadu, J. T. Gudmundsson, and U. Helmersson, “On the film density using high power impulse magnetron sputtering,” Surf. Coat. Tech. 205(2), 591–596 (2010).
    [Crossref]
  15. U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
    [Crossref]
  16. M. Aiempanakit, A. Aijaz, D. Lundin, U. Helmersson, and T. Kubart, “Understanding the discharge current behavior in reactive high power impulse magnetron sputtering of oxides,” J. Appl. Phys. 113(13), 133302 (2013).
    [Crossref]
  17. S. Konstantinidis, J. Dauchot, and M. Hecq, “Titanium oxide thin films deposited by high-power impulse magnetron sputtering,” Thin Solid Films 515(3), 1182–1186 (2006).
    [Crossref]
  18. J.-H. Huang, F.-Y. Ouyang, and G.-P. Yu, “Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel,” Surf. Coat. Tech. 201(16-17), 7043–7053 (2007).
    [Crossref]
  19. K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art,” Surf. Coat. Tech. 204(11), 1661–1684 (2010).
    [Crossref]
  20. S. Logothetidis, E. Meletis, and G. Kourouklis, “New approach in the monitoring and characterization of titanium nitride thin films,” J. Mater. Res. 14(02), 436–441 (1999).
    [Crossref]
  21. J. H. Kang and K. J. Kim, “Structural, optical, and electronic properties of cubic TiNx compounds,” J. Appl. Phys. 86(1), 346–350 (1999).
    [Crossref]
  22. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express 1(6), 1090–1099 (2011).
    [Crossref]
  23. M. Lattemann, U. Helmersson, and J. Greene, “Fully dense, non-faceted 111-textured high power impulse magnetron sputtering TiN films grown in the absence of substrate heating and bias,” Thin Solid Films 518(21), 5978–5980 (2010).
    [Crossref]
  24. H. T. Kim, J. Y. Park, and C. Park, “Effects of nitrogen flow rate on titanium nitride films deposition by DC facing target sputtering method,” Korean J. Chem. Eng. 29(5), 676–679 (2012).
    [Crossref]
  25. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008).
    [Crossref] [PubMed]
  26. S. Prayakarao, S. Robbins, N. Kinsey, A. Boltasseva, V. Shalaev, U. Wiesner, C. Bonner, R. Hussain, N. Noginova, and M. Noginov, “Gyroidal titanium nitride as nonmetallic metamaterial,” Opt. Mater. Express 5(6), 1316–1322 (2015).
    [Crossref]
  27. R. Bavadi and S. Valedbagi, “Physical properties of titanium nitride thin film prepared by DC magnetron sputtering,” Mater. Phys. Mech. 15, 167–172 (2012).
  28. K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
    [Crossref] [PubMed]
  29. R. Machunze, A. Ehiasarian, F. Tichelaar, and G. Janssen, “Stress and texture in HIPIMS TiN thin films,” Thin Solid Films 518(5), 1561–1565 (2009).
    [Crossref]
  30. M. Benegra, D. Lamas, M. F. De Rapp, N. Mingolo, A. Kunrath, and R. Souza, “Residual stresses in titanium nitride thin films deposited by direct current and pulsed direct current unbalanced magnetron sputtering,” Thin Solid Films 494(1-2), 146–150 (2006).
    [Crossref]

2015 (1)

2014 (3)

A. Anders, “A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS),” Surf. Coat. Tech. 257, 308–325 (2014).
[Crossref]

C.-L. Chang, S.-G. Shih, P.-H. Chen, W.-C. Chen, C.-T. Ho, and W.-Y. Wu, “Effect of duty cycles on the deposition and characteristics of high power impulse magnetron sputtering deposited TiN thin films,” Surf. Coat. Tech. 259, 232–237 (2014).
[Crossref]

K. A. Aissa, A. Achour, J. Camus, L. Le Brizoual, P.-Y. Jouan, and M.-A. Djouadi, “Comparison of the structural properties and residual stress of AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering at different working pressures,” Thin Solid Films 550, 264–267 (2014).
[Crossref]

2013 (2)

M. Aiempanakit, A. Aijaz, D. Lundin, U. Helmersson, and T. Kubart, “Understanding the discharge current behavior in reactive high power impulse magnetron sputtering of oxides,” J. Appl. Phys. 113(13), 133302 (2013).
[Crossref]

V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref] [PubMed]

2012 (6)

H. T. Kim, J. Y. Park, and C. Park, “Effects of nitrogen flow rate on titanium nitride films deposition by DC facing target sputtering method,” Korean J. Chem. Eng. 29(5), 676–679 (2012).
[Crossref]

R. Bavadi and S. Valedbagi, “Physical properties of titanium nitride thin film prepared by DC magnetron sputtering,” Mater. Phys. Mech. 15, 167–172 (2012).

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37(08), 768–779 (2012).
[Crossref]

F. Magnus, A. S. Ingason, S. Olafsson, and J. T. Gudmundsson, “Nucleation and Resistivity of Ultrathin TiN Films Grown by High-Power Impulse Magnetron Sputtering,” IEEE Electron Device Lett. 33(7), 1045–1047 (2012).
[Crossref]

2011 (3)

F. Magnus, A. S. Ingason, O. Sveinsson, S. Olafsson, and J. Gudmundsson, “Morphology of TiN thin films grown on SiO2 by reactive high power impulse magnetron sputtering,” Thin Solid Films 520(5), 1621–1624 (2011).
[Crossref]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

2010 (6)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

M. Lattemann, U. Helmersson, and J. Greene, “Fully dense, non-faceted 111-textured high power impulse magnetron sputtering TiN films grown in the absence of substrate heating and bias,” Thin Solid Films 518(21), 5978–5980 (2010).
[Crossref]

K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art,” Surf. Coat. Tech. 204(11), 1661–1684 (2010).
[Crossref]

J. Lin, J. J. Moore, W. D. Sproul, B. Mishra, Z. Wu, and J. Wang, “The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering,” Surf. Coat. Tech. 204(14), 2230–2239 (2010).
[Crossref]

M. Samuelsson, D. Lundin, J. Jensen, M. A. Raadu, J. T. Gudmundsson, and U. Helmersson, “On the film density using high power impulse magnetron sputtering,” Surf. Coat. Tech. 205(2), 591–596 (2010).
[Crossref]

2009 (1)

R. Machunze, A. Ehiasarian, F. Tichelaar, and G. Janssen, “Stress and texture in HIPIMS TiN thin films,” Thin Solid Films 518(5), 1561–1565 (2009).
[Crossref]

2008 (1)

2007 (1)

J.-H. Huang, F.-Y. Ouyang, and G.-P. Yu, “Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel,” Surf. Coat. Tech. 201(16-17), 7043–7053 (2007).
[Crossref]

2006 (2)

S. Konstantinidis, J. Dauchot, and M. Hecq, “Titanium oxide thin films deposited by high-power impulse magnetron sputtering,” Thin Solid Films 515(3), 1182–1186 (2006).
[Crossref]

M. Benegra, D. Lamas, M. F. De Rapp, N. Mingolo, A. Kunrath, and R. Souza, “Residual stresses in titanium nitride thin films deposited by direct current and pulsed direct current unbalanced magnetron sputtering,” Thin Solid Films 494(1-2), 146–150 (2006).
[Crossref]

2004 (1)

G. Janssen and J.-D. Kamminga, “Stress in hard metal films,” Appl. Phys. Lett. 85(15), 3086–3088 (2004).
[Crossref]

1999 (2)

S. Logothetidis, E. Meletis, and G. Kourouklis, “New approach in the monitoring and characterization of titanium nitride thin films,” J. Mater. Res. 14(02), 436–441 (1999).
[Crossref]

J. H. Kang and K. J. Kim, “Structural, optical, and electronic properties of cubic TiNx compounds,” J. Appl. Phys. 86(1), 346–350 (1999).
[Crossref]

1980 (1)

Y. Igasaki and H. Mitsuhashi, “The effects of substrate bias on the structural and electrical properties of TiN films prepared by reactive rf sputtering,” Thin Solid Films 70(1), 17–25 (1980).
[Crossref]

Achour, A.

K. A. Aissa, A. Achour, J. Camus, L. Le Brizoual, P.-Y. Jouan, and M.-A. Djouadi, “Comparison of the structural properties and residual stress of AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering at different working pressures,” Thin Solid Films 550, 264–267 (2014).
[Crossref]

Aiempanakit, M.

M. Aiempanakit, A. Aijaz, D. Lundin, U. Helmersson, and T. Kubart, “Understanding the discharge current behavior in reactive high power impulse magnetron sputtering of oxides,” J. Appl. Phys. 113(13), 133302 (2013).
[Crossref]

Aijaz, A.

M. Aiempanakit, A. Aijaz, D. Lundin, U. Helmersson, and T. Kubart, “Understanding the discharge current behavior in reactive high power impulse magnetron sputtering of oxides,” J. Appl. Phys. 113(13), 133302 (2013).
[Crossref]

Aissa, K. A.

K. A. Aissa, A. Achour, J. Camus, L. Le Brizoual, P.-Y. Jouan, and M.-A. Djouadi, “Comparison of the structural properties and residual stress of AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering at different working pressures,” Thin Solid Films 550, 264–267 (2014).
[Crossref]

Alami, J.

K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art,” Surf. Coat. Tech. 204(11), 1661–1684 (2010).
[Crossref]

Anders, A.

A. Anders, “A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS),” Surf. Coat. Tech. 257, 308–325 (2014).
[Crossref]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Babicheva, V. E.

Bavadi, R.

R. Bavadi and S. Valedbagi, “Physical properties of titanium nitride thin film prepared by DC magnetron sputtering,” Mater. Phys. Mech. 15, 167–172 (2012).

Benegra, M.

M. Benegra, D. Lamas, M. F. De Rapp, N. Mingolo, A. Kunrath, and R. Souza, “Residual stresses in titanium nitride thin films deposited by direct current and pulsed direct current unbalanced magnetron sputtering,” Thin Solid Films 494(1-2), 146–150 (2006).
[Crossref]

Boltasseva, A.

S. Prayakarao, S. Robbins, N. Kinsey, A. Boltasseva, V. Shalaev, U. Wiesner, C. Bonner, R. Hussain, N. Noginova, and M. Noginov, “Gyroidal titanium nitride as nonmetallic metamaterial,” Opt. Mater. Express 5(6), 1316–1322 (2015).
[Crossref]

V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37(08), 768–779 (2012).
[Crossref]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Bonner, C.

Borneman, J. D.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Camus, J.

K. A. Aissa, A. Achour, J. Camus, L. Le Brizoual, P.-Y. Jouan, and M.-A. Djouadi, “Comparison of the structural properties and residual stress of AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering at different working pressures,” Thin Solid Films 550, 264–267 (2014).
[Crossref]

Chang, C.-L.

C.-L. Chang, S.-G. Shih, P.-H. Chen, W.-C. Chen, C.-T. Ho, and W.-Y. Wu, “Effect of duty cycles on the deposition and characteristics of high power impulse magnetron sputtering deposited TiN thin films,” Surf. Coat. Tech. 259, 232–237 (2014).
[Crossref]

Chen, K.-P.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Chen, P.-H.

C.-L. Chang, S.-G. Shih, P.-H. Chen, W.-C. Chen, C.-T. Ho, and W.-Y. Wu, “Effect of duty cycles on the deposition and characteristics of high power impulse magnetron sputtering deposited TiN thin films,” Surf. Coat. Tech. 259, 232–237 (2014).
[Crossref]

Chen, W.-C.

C.-L. Chang, S.-G. Shih, P.-H. Chen, W.-C. Chen, C.-T. Ho, and W.-Y. Wu, “Effect of duty cycles on the deposition and characteristics of high power impulse magnetron sputtering deposited TiN thin films,” Surf. Coat. Tech. 259, 232–237 (2014).
[Crossref]

Dauchot, J.

S. Konstantinidis, J. Dauchot, and M. Hecq, “Titanium oxide thin films deposited by high-power impulse magnetron sputtering,” Thin Solid Films 515(3), 1182–1186 (2006).
[Crossref]

De Rapp, M. F.

M. Benegra, D. Lamas, M. F. De Rapp, N. Mingolo, A. Kunrath, and R. Souza, “Residual stresses in titanium nitride thin films deposited by direct current and pulsed direct current unbalanced magnetron sputtering,” Thin Solid Films 494(1-2), 146–150 (2006).
[Crossref]

Djouadi, M.-A.

K. A. Aissa, A. Achour, J. Camus, L. Le Brizoual, P.-Y. Jouan, and M.-A. Djouadi, “Comparison of the structural properties and residual stress of AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering at different working pressures,” Thin Solid Films 550, 264–267 (2014).
[Crossref]

Drachev, V. P.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Ehiasarian, A.

R. Machunze, A. Ehiasarian, F. Tichelaar, and G. Janssen, “Stress and texture in HIPIMS TiN thin films,” Thin Solid Films 518(5), 1561–1565 (2009).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Ferrera, M.

Fu, L.

Giessen, H.

Greene, J.

M. Lattemann, U. Helmersson, and J. Greene, “Fully dense, non-faceted 111-textured high power impulse magnetron sputtering TiN films grown in the absence of substrate heating and bias,” Thin Solid Films 518(21), 5978–5980 (2010).
[Crossref]

Gudmundsson, J.

F. Magnus, A. S. Ingason, O. Sveinsson, S. Olafsson, and J. Gudmundsson, “Morphology of TiN thin films grown on SiO2 by reactive high power impulse magnetron sputtering,” Thin Solid Films 520(5), 1621–1624 (2011).
[Crossref]

Gudmundsson, J. T.

F. Magnus, A. S. Ingason, S. Olafsson, and J. T. Gudmundsson, “Nucleation and Resistivity of Ultrathin TiN Films Grown by High-Power Impulse Magnetron Sputtering,” IEEE Electron Device Lett. 33(7), 1045–1047 (2012).
[Crossref]

M. Samuelsson, D. Lundin, J. Jensen, M. A. Raadu, J. T. Gudmundsson, and U. Helmersson, “On the film density using high power impulse magnetron sputtering,” Surf. Coat. Tech. 205(2), 591–596 (2010).
[Crossref]

Guler, U.

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

Guo, H.

Hecq, M.

S. Konstantinidis, J. Dauchot, and M. Hecq, “Titanium oxide thin films deposited by high-power impulse magnetron sputtering,” Thin Solid Films 515(3), 1182–1186 (2006).
[Crossref]

Helmersson, U.

M. Aiempanakit, A. Aijaz, D. Lundin, U. Helmersson, and T. Kubart, “Understanding the discharge current behavior in reactive high power impulse magnetron sputtering of oxides,” J. Appl. Phys. 113(13), 133302 (2013).
[Crossref]

M. Samuelsson, D. Lundin, J. Jensen, M. A. Raadu, J. T. Gudmundsson, and U. Helmersson, “On the film density using high power impulse magnetron sputtering,” Surf. Coat. Tech. 205(2), 591–596 (2010).
[Crossref]

M. Lattemann, U. Helmersson, and J. Greene, “Fully dense, non-faceted 111-textured high power impulse magnetron sputtering TiN films grown in the absence of substrate heating and bias,” Thin Solid Films 518(21), 5978–5980 (2010).
[Crossref]

Ho, C.-T.

C.-L. Chang, S.-G. Shih, P.-H. Chen, W.-C. Chen, C.-T. Ho, and W.-Y. Wu, “Effect of duty cycles on the deposition and characteristics of high power impulse magnetron sputtering deposited TiN thin films,” Surf. Coat. Tech. 259, 232–237 (2014).
[Crossref]

Huang, J.-H.

J.-H. Huang, F.-Y. Ouyang, and G.-P. Yu, “Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel,” Surf. Coat. Tech. 201(16-17), 7043–7053 (2007).
[Crossref]

Hussain, R.

Igasaki, Y.

Y. Igasaki and H. Mitsuhashi, “The effects of substrate bias on the structural and electrical properties of TiN films prepared by reactive rf sputtering,” Thin Solid Films 70(1), 17–25 (1980).
[Crossref]

Ingason, A. S.

F. Magnus, A. S. Ingason, S. Olafsson, and J. T. Gudmundsson, “Nucleation and Resistivity of Ultrathin TiN Films Grown by High-Power Impulse Magnetron Sputtering,” IEEE Electron Device Lett. 33(7), 1045–1047 (2012).
[Crossref]

F. Magnus, A. S. Ingason, O. Sveinsson, S. Olafsson, and J. Gudmundsson, “Morphology of TiN thin films grown on SiO2 by reactive high power impulse magnetron sputtering,” Thin Solid Films 520(5), 1621–1624 (2011).
[Crossref]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Janssen, G.

R. Machunze, A. Ehiasarian, F. Tichelaar, and G. Janssen, “Stress and texture in HIPIMS TiN thin films,” Thin Solid Films 518(5), 1561–1565 (2009).
[Crossref]

G. Janssen and J.-D. Kamminga, “Stress in hard metal films,” Appl. Phys. Lett. 85(15), 3086–3088 (2004).
[Crossref]

Jensen, J.

M. Samuelsson, D. Lundin, J. Jensen, M. A. Raadu, J. T. Gudmundsson, and U. Helmersson, “On the film density using high power impulse magnetron sputtering,” Surf. Coat. Tech. 205(2), 591–596 (2010).
[Crossref]

Jouan, P.-Y.

K. A. Aissa, A. Achour, J. Camus, L. Le Brizoual, P.-Y. Jouan, and M.-A. Djouadi, “Comparison of the structural properties and residual stress of AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering at different working pressures,” Thin Solid Films 550, 264–267 (2014).
[Crossref]

Kamminga, J.-D.

G. Janssen and J.-D. Kamminga, “Stress in hard metal films,” Appl. Phys. Lett. 85(15), 3086–3088 (2004).
[Crossref]

Kang, J. H.

J. H. Kang and K. J. Kim, “Structural, optical, and electronic properties of cubic TiNx compounds,” J. Appl. Phys. 86(1), 346–350 (1999).
[Crossref]

Khurgin, J. B.

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37(08), 768–779 (2012).
[Crossref]

Kildishev, A. V.

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Kim, H. T.

H. T. Kim, J. Y. Park, and C. Park, “Effects of nitrogen flow rate on titanium nitride films deposition by DC facing target sputtering method,” Korean J. Chem. Eng. 29(5), 676–679 (2012).
[Crossref]

Kim, J.

Kim, K. J.

J. H. Kang and K. J. Kim, “Structural, optical, and electronic properties of cubic TiNx compounds,” J. Appl. Phys. 86(1), 346–350 (1999).
[Crossref]

Kinsey, N.

Konstantinidis, S.

K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art,” Surf. Coat. Tech. 204(11), 1661–1684 (2010).
[Crossref]

S. Konstantinidis, J. Dauchot, and M. Hecq, “Titanium oxide thin films deposited by high-power impulse magnetron sputtering,” Thin Solid Films 515(3), 1182–1186 (2006).
[Crossref]

Kourouklis, G.

S. Logothetidis, E. Meletis, and G. Kourouklis, “New approach in the monitoring and characterization of titanium nitride thin films,” J. Mater. Res. 14(02), 436–441 (1999).
[Crossref]

Kubart, T.

M. Aiempanakit, A. Aijaz, D. Lundin, U. Helmersson, and T. Kubart, “Understanding the discharge current behavior in reactive high power impulse magnetron sputtering of oxides,” J. Appl. Phys. 113(13), 133302 (2013).
[Crossref]

Kunrath, A.

M. Benegra, D. Lamas, M. F. De Rapp, N. Mingolo, A. Kunrath, and R. Souza, “Residual stresses in titanium nitride thin films deposited by direct current and pulsed direct current unbalanced magnetron sputtering,” Thin Solid Films 494(1-2), 146–150 (2006).
[Crossref]

Lamas, D.

M. Benegra, D. Lamas, M. F. De Rapp, N. Mingolo, A. Kunrath, and R. Souza, “Residual stresses in titanium nitride thin films deposited by direct current and pulsed direct current unbalanced magnetron sputtering,” Thin Solid Films 494(1-2), 146–150 (2006).
[Crossref]

Lattemann, M.

M. Lattemann, U. Helmersson, and J. Greene, “Fully dense, non-faceted 111-textured high power impulse magnetron sputtering TiN films grown in the absence of substrate heating and bias,” Thin Solid Films 518(21), 5978–5980 (2010).
[Crossref]

Lavrinenko, A. V.

Le Brizoual, L.

K. A. Aissa, A. Achour, J. Camus, L. Le Brizoual, P.-Y. Jouan, and M.-A. Djouadi, “Comparison of the structural properties and residual stress of AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering at different working pressures,” Thin Solid Films 550, 264–267 (2014).
[Crossref]

Lin, J.

J. Lin, J. J. Moore, W. D. Sproul, B. Mishra, Z. Wu, and J. Wang, “The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering,” Surf. Coat. Tech. 204(14), 2230–2239 (2010).
[Crossref]

Liu, N.

Logothetidis, S.

S. Logothetidis, E. Meletis, and G. Kourouklis, “New approach in the monitoring and characterization of titanium nitride thin films,” J. Mater. Res. 14(02), 436–441 (1999).
[Crossref]

Lundin, D.

M. Aiempanakit, A. Aijaz, D. Lundin, U. Helmersson, and T. Kubart, “Understanding the discharge current behavior in reactive high power impulse magnetron sputtering of oxides,” J. Appl. Phys. 113(13), 133302 (2013).
[Crossref]

M. Samuelsson, D. Lundin, J. Jensen, M. A. Raadu, J. T. Gudmundsson, and U. Helmersson, “On the film density using high power impulse magnetron sputtering,” Surf. Coat. Tech. 205(2), 591–596 (2010).
[Crossref]

Machunze, R.

R. Machunze, A. Ehiasarian, F. Tichelaar, and G. Janssen, “Stress and texture in HIPIMS TiN thin films,” Thin Solid Films 518(5), 1561–1565 (2009).
[Crossref]

Magnus, F.

F. Magnus, A. S. Ingason, S. Olafsson, and J. T. Gudmundsson, “Nucleation and Resistivity of Ultrathin TiN Films Grown by High-Power Impulse Magnetron Sputtering,” IEEE Electron Device Lett. 33(7), 1045–1047 (2012).
[Crossref]

F. Magnus, A. S. Ingason, O. Sveinsson, S. Olafsson, and J. Gudmundsson, “Morphology of TiN thin films grown on SiO2 by reactive high power impulse magnetron sputtering,” Thin Solid Films 520(5), 1621–1624 (2011).
[Crossref]

Meletis, E.

S. Logothetidis, E. Meletis, and G. Kourouklis, “New approach in the monitoring and characterization of titanium nitride thin films,” J. Mater. Res. 14(02), 436–441 (1999).
[Crossref]

Meyrath, T. P.

Mingolo, N.

M. Benegra, D. Lamas, M. F. De Rapp, N. Mingolo, A. Kunrath, and R. Souza, “Residual stresses in titanium nitride thin films deposited by direct current and pulsed direct current unbalanced magnetron sputtering,” Thin Solid Films 494(1-2), 146–150 (2006).
[Crossref]

Mishra, B.

J. Lin, J. J. Moore, W. D. Sproul, B. Mishra, Z. Wu, and J. Wang, “The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering,” Surf. Coat. Tech. 204(14), 2230–2239 (2010).
[Crossref]

Mitsuhashi, H.

Y. Igasaki and H. Mitsuhashi, “The effects of substrate bias on the structural and electrical properties of TiN films prepared by reactive rf sputtering,” Thin Solid Films 70(1), 17–25 (1980).
[Crossref]

Moore, J. J.

J. Lin, J. J. Moore, W. D. Sproul, B. Mishra, Z. Wu, and J. Wang, “The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering,” Surf. Coat. Tech. 204(14), 2230–2239 (2010).
[Crossref]

Naik, G. V.

Ni, X.

Noginov, M.

Noginova, N.

Olafsson, S.

F. Magnus, A. S. Ingason, S. Olafsson, and J. T. Gudmundsson, “Nucleation and Resistivity of Ultrathin TiN Films Grown by High-Power Impulse Magnetron Sputtering,” IEEE Electron Device Lett. 33(7), 1045–1047 (2012).
[Crossref]

F. Magnus, A. S. Ingason, O. Sveinsson, S. Olafsson, and J. Gudmundsson, “Morphology of TiN thin films grown on SiO2 by reactive high power impulse magnetron sputtering,” Thin Solid Films 520(5), 1621–1624 (2011).
[Crossref]

Ouyang, F.-Y.

J.-H. Huang, F.-Y. Ouyang, and G.-P. Yu, “Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel,” Surf. Coat. Tech. 201(16-17), 7043–7053 (2007).
[Crossref]

Park, C.

H. T. Kim, J. Y. Park, and C. Park, “Effects of nitrogen flow rate on titanium nitride films deposition by DC facing target sputtering method,” Korean J. Chem. Eng. 29(5), 676–679 (2012).
[Crossref]

Park, J. Y.

H. T. Kim, J. Y. Park, and C. Park, “Effects of nitrogen flow rate on titanium nitride films deposition by DC facing target sputtering method,” Korean J. Chem. Eng. 29(5), 676–679 (2012).
[Crossref]

Prayakarao, S.

Raadu, M. A.

M. Samuelsson, D. Lundin, J. Jensen, M. A. Raadu, J. T. Gudmundsson, and U. Helmersson, “On the film density using high power impulse magnetron sputtering,” Surf. Coat. Tech. 205(2), 591–596 (2010).
[Crossref]

Robbins, S.

Samuelsson, M.

M. Samuelsson, D. Lundin, J. Jensen, M. A. Raadu, J. T. Gudmundsson, and U. Helmersson, “On the film density using high power impulse magnetron sputtering,” Surf. Coat. Tech. 205(2), 591–596 (2010).
[Crossref]

Sands, T. D.

Sarakinos, K.

K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art,” Surf. Coat. Tech. 204(11), 1661–1684 (2010).
[Crossref]

Schroeder, J. L.

Schweizer, H.

Shalaev, V.

Shalaev, V. M.

V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref] [PubMed]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Shih, S.-G.

C.-L. Chang, S.-G. Shih, P.-H. Chen, W.-C. Chen, C.-T. Ho, and W.-Y. Wu, “Effect of duty cycles on the deposition and characteristics of high power impulse magnetron sputtering deposited TiN thin films,” Surf. Coat. Tech. 259, 232–237 (2014).
[Crossref]

Souza, R.

M. Benegra, D. Lamas, M. F. De Rapp, N. Mingolo, A. Kunrath, and R. Souza, “Residual stresses in titanium nitride thin films deposited by direct current and pulsed direct current unbalanced magnetron sputtering,” Thin Solid Films 494(1-2), 146–150 (2006).
[Crossref]

Sproul, W. D.

J. Lin, J. J. Moore, W. D. Sproul, B. Mishra, Z. Wu, and J. Wang, “The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering,” Surf. Coat. Tech. 204(14), 2230–2239 (2010).
[Crossref]

Sveinsson, O.

F. Magnus, A. S. Ingason, O. Sveinsson, S. Olafsson, and J. Gudmundsson, “Morphology of TiN thin films grown on SiO2 by reactive high power impulse magnetron sputtering,” Thin Solid Films 520(5), 1621–1624 (2011).
[Crossref]

Tichelaar, F.

R. Machunze, A. Ehiasarian, F. Tichelaar, and G. Janssen, “Stress and texture in HIPIMS TiN thin films,” Thin Solid Films 518(5), 1561–1565 (2009).
[Crossref]

Valedbagi, S.

R. Bavadi and S. Valedbagi, “Physical properties of titanium nitride thin film prepared by DC magnetron sputtering,” Mater. Phys. Mech. 15, 167–172 (2012).

Wang, J.

J. Lin, J. J. Moore, W. D. Sproul, B. Mishra, Z. Wu, and J. Wang, “The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering,” Surf. Coat. Tech. 204(14), 2230–2239 (2010).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Wiesner, U.

Wu, W.-Y.

C.-L. Chang, S.-G. Shih, P.-H. Chen, W.-C. Chen, C.-T. Ho, and W.-Y. Wu, “Effect of duty cycles on the deposition and characteristics of high power impulse magnetron sputtering deposited TiN thin films,” Surf. Coat. Tech. 259, 232–237 (2014).
[Crossref]

Wu, Z.

J. Lin, J. J. Moore, W. D. Sproul, B. Mishra, Z. Wu, and J. Wang, “The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering,” Surf. Coat. Tech. 204(14), 2230–2239 (2010).
[Crossref]

Yu, G.-P.

J.-H. Huang, F.-Y. Ouyang, and G.-P. Yu, “Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel,” Surf. Coat. Tech. 201(16-17), 7043–7053 (2007).
[Crossref]

Zentgraf, T.

Appl. Phys. B (1)

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

Appl. Phys. Lett. (1)

G. Janssen and J.-D. Kamminga, “Stress in hard metal films,” Appl. Phys. Lett. 85(15), 3086–3088 (2004).
[Crossref]

IEEE Electron Device Lett. (1)

F. Magnus, A. S. Ingason, S. Olafsson, and J. T. Gudmundsson, “Nucleation and Resistivity of Ultrathin TiN Films Grown by High-Power Impulse Magnetron Sputtering,” IEEE Electron Device Lett. 33(7), 1045–1047 (2012).
[Crossref]

J. Appl. Phys. (2)

M. Aiempanakit, A. Aijaz, D. Lundin, U. Helmersson, and T. Kubart, “Understanding the discharge current behavior in reactive high power impulse magnetron sputtering of oxides,” J. Appl. Phys. 113(13), 133302 (2013).
[Crossref]

J. H. Kang and K. J. Kim, “Structural, optical, and electronic properties of cubic TiNx compounds,” J. Appl. Phys. 86(1), 346–350 (1999).
[Crossref]

J. Mater. Res. (1)

S. Logothetidis, E. Meletis, and G. Kourouklis, “New approach in the monitoring and characterization of titanium nitride thin films,” J. Mater. Res. 14(02), 436–441 (1999).
[Crossref]

Korean J. Chem. Eng. (1)

H. T. Kim, J. Y. Park, and C. Park, “Effects of nitrogen flow rate on titanium nitride films deposition by DC facing target sputtering method,” Korean J. Chem. Eng. 29(5), 676–679 (2012).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Mater. Phys. Mech. (1)

R. Bavadi and S. Valedbagi, “Physical properties of titanium nitride thin film prepared by DC magnetron sputtering,” Mater. Phys. Mech. 15, 167–172 (2012).

MRS Bull. (1)

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37(08), 768–779 (2012).
[Crossref]

Nano Lett. (1)

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Mater. Express (3)

Science (1)

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Surf. Coat. Tech. (6)

A. Anders, “A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS),” Surf. Coat. Tech. 257, 308–325 (2014).
[Crossref]

C.-L. Chang, S.-G. Shih, P.-H. Chen, W.-C. Chen, C.-T. Ho, and W.-Y. Wu, “Effect of duty cycles on the deposition and characteristics of high power impulse magnetron sputtering deposited TiN thin films,” Surf. Coat. Tech. 259, 232–237 (2014).
[Crossref]

J.-H. Huang, F.-Y. Ouyang, and G.-P. Yu, “Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel,” Surf. Coat. Tech. 201(16-17), 7043–7053 (2007).
[Crossref]

K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art,” Surf. Coat. Tech. 204(11), 1661–1684 (2010).
[Crossref]

J. Lin, J. J. Moore, W. D. Sproul, B. Mishra, Z. Wu, and J. Wang, “The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering,” Surf. Coat. Tech. 204(14), 2230–2239 (2010).
[Crossref]

M. Samuelsson, D. Lundin, J. Jensen, M. A. Raadu, J. T. Gudmundsson, and U. Helmersson, “On the film density using high power impulse magnetron sputtering,” Surf. Coat. Tech. 205(2), 591–596 (2010).
[Crossref]

Thin Solid Films (7)

S. Konstantinidis, J. Dauchot, and M. Hecq, “Titanium oxide thin films deposited by high-power impulse magnetron sputtering,” Thin Solid Films 515(3), 1182–1186 (2006).
[Crossref]

Y. Igasaki and H. Mitsuhashi, “The effects of substrate bias on the structural and electrical properties of TiN films prepared by reactive rf sputtering,” Thin Solid Films 70(1), 17–25 (1980).
[Crossref]

K. A. Aissa, A. Achour, J. Camus, L. Le Brizoual, P.-Y. Jouan, and M.-A. Djouadi, “Comparison of the structural properties and residual stress of AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering at different working pressures,” Thin Solid Films 550, 264–267 (2014).
[Crossref]

F. Magnus, A. S. Ingason, O. Sveinsson, S. Olafsson, and J. Gudmundsson, “Morphology of TiN thin films grown on SiO2 by reactive high power impulse magnetron sputtering,” Thin Solid Films 520(5), 1621–1624 (2011).
[Crossref]

M. Lattemann, U. Helmersson, and J. Greene, “Fully dense, non-faceted 111-textured high power impulse magnetron sputtering TiN films grown in the absence of substrate heating and bias,” Thin Solid Films 518(21), 5978–5980 (2010).
[Crossref]

R. Machunze, A. Ehiasarian, F. Tichelaar, and G. Janssen, “Stress and texture in HIPIMS TiN thin films,” Thin Solid Films 518(5), 1561–1565 (2009).
[Crossref]

M. Benegra, D. Lamas, M. F. De Rapp, N. Mingolo, A. Kunrath, and R. Souza, “Residual stresses in titanium nitride thin films deposited by direct current and pulsed direct current unbalanced magnetron sputtering,” Thin Solid Films 494(1-2), 146–150 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A 45-nm TiN thin film deposited with an average power of 300 W, HiPIMS on/off ratio equal to 45 μs /955 μs, and 400 °C heating process. (a) AFM image (b) Cross-section SEM image.
Fig. 2
Fig. 2 The (a) real part and (b) imaginary part of the dielectric functions of TiN thin films deposited by traditional DC sputtering (black), HiPIMS with an on/off ratio equal to 45 μs /45 μs (green), and HiPIMS with an on/off ratio equals to 45 μs /955 μs (blue). The average power is 300 W with a 400 °C heating process. The 40-nm TiN film deposited by HiPIMS with an on/off ratio of 45 μs /955 μs has a larger negative real and imaginary permittivity than the HiPIMS-45/45, and exhibits more metallic-like behavior. Compared to the DC sample, the HiPIMS-45/955 sample possesses a similar imaginary permittivity but exhibits stronger metallic properties. The TiN thin films deposited at RT using DC magnetron sputtering (brown) and at 400°C using HiPIMS with lower nitrogen flow (N2 = 1sccm, red) were also shown.
Fig. 3
Fig. 3 Derived conductivity of TiN thin films deposited by traditional DC sputtering, HiPIMS using an on/off ratio equal to 45 μs /45 μs, and HiPIMS using an on/off ratio equal to 45 μs /955 μs. In Fig. 3, the HiPIMS-45/955 sample has a slightly higher conductivity compared to that of the DC sample, but with a much smaller measurement deviation. The HiPIMS-45/955 sample exhibits an obvious improvement in conductivity as compared to the HiPIMS-45/45 sample.
Fig. 4
Fig. 4 (a) Real and (b) imaginary part of the dielectric function for TiN thin films under the different deposition parameters illustrated in Table 1. Group 1 (deposition at 400 °C with a thickness of 45 nm) is indicated by the black line with solid symbol, with three different average powers: 300 W, 180 W, and 80 W for S1, S2, and S3. Group 2 (deposition at room temperature with a thickness of 48 nm) is indicated by the green line with solid symbol. Group 3 (room temperature process with a thickness of 23 nm) is indicated by the blue line with hollow symbol. When the average power is greater than 180 W, the TiN samples exhibit metallic-like dielectric functions regardless of the thin-film thickness and deposition temperature.
Fig. 5
Fig. 5 (a) Reflectance and (b) transmittance spectra for TiN thin films for Group 1 samples deposition at 400 °C with a thickness of 45 nm). The average power is 300 W for S1 (black), 180 W for S2 (green), and 80 W for S3 (blue). The experimental reflectance and transmittance spectra are indicated by a solid line; the modeling reflectance and transmittance spectra are indicated by a dashed line.
Fig. 6
Fig. 6 (a) Derived conductivity (σ) for TiN thin films with the deposition parameters from Table 1. Group 1 (400 °C heating process with a thickness of 45 nm for S1, S2, and S3) is indicated by the black line. Group 2 (room temperature process with a thickness of 48 nm for S4, S5, and S6) is indicated by the green line. Group 3 (room temperature process with a thickness of 23 nm, for S7, S8, and S9) is indicated by the blue line. In addition, 400 °C heating process with a thickness of 22 nm for (S10, S11, and S12) is indicated by the brown line. (b) Conductivity shows thickness-dependent properties (< 50 nm) due to the variation of the stress during the growth of the films. The solid square represents the experimental results.
Fig. 7
Fig. 7 XRD measurement for Group 1 samples (deposition at 400 °C with a thickness of 45 nm). Samples S1 (300 W), S2 (180 W) and S3 (80 W) show difference in diffraction peaks. There are three peak orientations visible: (111), (200) and (220). S1 shows the largest diffraction signals comparing to S2 and S3.
Fig. 8
Fig. 8 Reflectance and transmittance spectra for metallic-like (S2) and dielectric-like (S3) TiN thin films deposited on B270 glass substrates in the wavelength region ranging from 380 nm to 680 nm. The reflectance spectra are indicated by the solid symbol and the transmittance spectra are indicated by the hollow symbol. For metallic-like samples (black), the reflectance dip and transmittance peak are close to each other. For the dielectric-like samples (red), there is a significant shift between the reflectance dip and transmittance peak.

Tables (4)

Tables Icon

Table 1 Magnetron sputtering with HiPIMS technique process parameters for TiN thin-film deposition.

Tables Icon

Table 2 Plasma frequencies of metallic-like TiN thin films.

Tables Icon

Table 3 Drude model fitting of theoretical resistivity of TiN thin films with an average sputtering power of 300 W

Tables Icon

Table 4 XRR measurements of TiN thin films deposited by DC magnetron sputtering and HiPIMS with different sputtering powers.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε= ε 1 +i ε 2 = ε b ω P 2 ω 2 +i γ D ω + f ω 0 2 ω 2 i γ L ω
ω P 2 = σ 0 ε 0 τ = σ 0 γ D ε 0 = n e 2 ε 0 m , where σ 0 = n e 2 τ m
ρ 0 = 1 σ 0 = γ D ε 0 ω p 2
d= 0.9λ βcosθ

Metrics