Abstract

We report on the fabrication of gallium phosphide (GaP) nanowaveguides of controlled dimensions, as small as 0.03 μm and aspect ratio in excess of 20, using focused ion beam (FIB) milling. A known limitation of this fabrication process for photonic applications is the formation of gallium droplets on the surface. We demonstrate a post-fabrication step using a pulsed laser to locally oxidize the excess surface gallium on the FIB milled nanostructures. The process significantly reduces the waveguide losses. The surface optical quality of the fabricated GaP nanowaveguides has been evaluated by second-harmonic generation experiments. Surface and bulk contributions to second-order optical nonlinearities have been identified by polarization measurements. The presented method can potentially be applied to other III-V nanostructures to reduce optical losses.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
a-SiOx<Er> active photonic crystal resonator membrane fabricated by focused Ga+ ion beam

David S. L. Figueira, Luis A. M. Barea, Felipe Vallini, Paulo F. Jarschel, Rossano Lang, and Newton C. Frateschi
Opt. Express 20(17) 18772-18783 (2012)

Diffraction grating couplers milled in Si3N4 rib waveguides with a focused ion beam

Kirill E. Zinoviev, Carlos Dominguez, and Anna Vilà
Opt. Express 13(21) 8618-8624 (2005)

Nonlinear gallium phosphide nanoscale photonics [Invited]

Aude Martin, Sylvain Combrié, Alfredo de Rossi, Grégoire Beaudoin, Isabelle Sagnes, and Fabrice Raineri
Photon. Res. 6(5) B43-B49 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Komuro, “Ion beam exposure apparatus using a liquid metal source,” Thin Solid Films 92(1-2), 155–164 (1982).
    [Crossref]
  2. R. L. Kubena, R. L. Seliger, and E. H. Stevens, “High resolution sputtering using a focused ion beam,” Thin Solid Films 92(1–2), 165–169 (1982).
    [Crossref]
  3. T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, and F.-C. Lo, “Progress in extreme ultraviolet mask repair using a focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 18(6), 3216 (2000).
  4. A. Al-Abboodi, J. Fu, P. M. Doran, and P. P. Y. Chan, “Three-dimensional nanocharacterization of porous hydrogel with ion and electron beams,” Biotechnol. Bioeng. 110(1), 318–326 (2013).
    [Crossref] [PubMed]
  5. K. Narayan, C. M. Danielson, K. Lagarec, B. C. Lowekamp, P. Coffman, A. Laquerre, M. W. Phaneuf, T. J. Hope, and S. Subramaniam, “Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology,” J. Struct. Biol. 185(3), 278–284 (2014).
    [Crossref] [PubMed]
  6. X. Jiang, Q. Gu, F. Wang, J. Lv, Z. Ma, and G. Si, “Fabrication of coaxial plasmonic crystals by focused ion beam milling and electron-beam lithography,” Mater. Lett. 100, 192–194 (2013).
    [Crossref]
  7. M. A. Draganski, E. Finkman, B. C. Gibson, B. A. Fairchild, K. Ganesan, N. Nabatova-Gabain, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Tailoring the optical constants of diamond by ion implantation,” Opt. Mater. Express 2(5), 644 (2012).
    [Crossref]
  8. Y. L. D. Ho, R. Gibson, C. Y. Hu, M. J. Cryan, J. G. Rarity, P. J. Heard, J. A. Timpson, A. M. Fox, M. S. Skolnick, M. Hopkinson, and A. Tahraoui, “Focused ion beam etching for the fabrication of micropillar microcavities made of III-V semiconductor materials,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 25(4), 1197 (2007).
  9. X. Jiang, Q. Gu, L. Yang, R. Zhao, J. Lv, Z. Ma, and G. Si, “Functional plasmonic crystal nanoantennae with ultrasmall gaps and highly tunable profiles,” Opt. Laser Technol. 71, 1–5 (2015).
    [Crossref]
  10. R. W. Tjerkstra, F. B. Segerink, J. J. Kelly, and W. L. Vos, “Fabrication of three-dimensional nanostructures by focused ion beam milling,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 973 (2008).
  11. D. C. Aveline, L. Baumgartel, B. Ahn, and N. Yu, “Focused ion beam engineered whispering gallery mode resonators with open cavity structure,” Opt. Express 20(16), 18091–18096 (2012).
    [Crossref] [PubMed]
  12. D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express 13(8), 3079–3086 (2005).
    [Crossref] [PubMed]
  13. F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. Von Zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP quantum well laser with mirrors milled by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(5), L25 (2009).
  14. L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(6), 2979 (2009).
  15. J. Daniel and D. F. Moore, “A microaccelerometer structure fabricated in silicon-on-insulator using a focused ion beam process,” Sens. Actuators A Phys. 73(3), 201–209 (1999).
    [Crossref]
  16. J. Teng and P. Prewett, “Focused ion beam fabrication of thermally actuated bimorph cantilevers,” Sens. Actuators A Phys. 123–124, 608–613 (2005).
    [Crossref]
  17. B. P. Gila, “Applications of new focused ion beams in nanofabrication and material studies,” Microsc. Anal. (Am. Ed.) 7, 7–10 (2013).
  18. T. Fujii, K. Iwasaki, M. Munekane, T. Takeuchi, M. Hasuda, T. Asahata, M. Kiyohara, T. Kogure, Y. Kijima, and T. Kaito, “A nanofactory by focused ion beam,” J. Micromech. Microeng. 15(10), S286–S291 (2005).
    [Crossref]
  19. J. Gierak, A. Madouri, A. L. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng. 84(5–8), 779–783 (2007).
    [Crossref]
  20. J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009).
    [Crossref]
  21. Transparency Market Research, “Focused Ion Beam Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2015 - 2021,” (2015) http://www.transparencymarketresearch.com/focused-ion-beam-market.html .
  22. M. C. Dolph and C. Santeufemio, “Exploring cryogenic focused ion beam milling as a Group III–V device fabrication tool,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 328, 33–41 (2014).
  23. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
    [Crossref]
  24. Y. A. Goldbery, Handobook Series on Semiconductor Parameters (World Scientific, 1996).
  25. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
    [Crossref]
  26. R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett. 12(2), 820–826 (2012).
    [Crossref] [PubMed]
  27. A. Dobrovolsky, P. O. Å. Persson, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Effects of Polytypism on Optical Properties and Band Structure of Individual Ga(N)P Nanowires from Correlative Spatially Resolved Structural and Optical Studies,” Nano Lett. 15(6), 4052–4058 (2015).
    [Crossref] [PubMed]
  28. Q. Wu, Z. Hu, C. Liu, X. Wang, Y. Chen, and Y. Lu, “Synthesis and optical properties of gallium phosphide nanotubes,” J. Phys. Chem. B 109(42), 19719–19722 (2005).
    [Crossref] [PubMed]
  29. R. Sanatinia, S. Anand, and M. Swillo, “Experimental quantification of surface optical nonlinearity in GaP nanopillar waveguides,” Opt. Express 23(2), 756–764 (2015).
    [Crossref] [PubMed]
  30. R. Sanatinia, S. Anand, and M. Swillo, “Modal Engineering of Second-Harmonic Generation in Single GaP Nanopillars,” Nano Lett. 14(9), 5376–5381 (2014).
    [Crossref] [PubMed]
  31. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vucković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17(25), 22609–22615 (2009).
    [Crossref] [PubMed]
  32. K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett. 98(26), 98–101 (2011).
    [Crossref]
  33. G. Shambat, K. Rivoire, J. Lu, F. Hatami, and J. Vucković, “Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers,” Opt. Express 18(12), 12176–12184 (2010).
    [Crossref] [PubMed]
  34. S.-L. Ou, D.-S. Wuu, Y.-C. Fu, S.-P. Liu, R.-H. Horng, L. Liu, and Z.-C. Feng, “Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition,” Mater. Chem. Phys. 133(2–3), 700–705 (2012).
    [Crossref]
  35. E. Millon, “Advanced functional oxide thin films grown by pulsed-laser deposition,” Appl. Surf. Sci. 278, 2–6 (2013).
    [Crossref]
  36. C. Hebert, A. Petitmangin, J. Perrière, E. Millon, A. Petit, L. Binet, and P. Barboux, “Phase separation in oxygen deficient gallium oxide films grown by pulsed-laser deposition,” Mater. Chem. Phys. 133(1), 135–139 (2012).
    [Crossref]
  37. F.-P. Yu, S.-L. Ou, and D.-S. Wuu, “Pulsed laser deposition of gallium oxide films for high performance solar-blind photodetectors,” Opt. Mater. Express 5(5), 1240–1249 (2015).
    [Crossref]

2015 (4)

X. Jiang, Q. Gu, L. Yang, R. Zhao, J. Lv, Z. Ma, and G. Si, “Functional plasmonic crystal nanoantennae with ultrasmall gaps and highly tunable profiles,” Opt. Laser Technol. 71, 1–5 (2015).
[Crossref]

A. Dobrovolsky, P. O. Å. Persson, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Effects of Polytypism on Optical Properties and Band Structure of Individual Ga(N)P Nanowires from Correlative Spatially Resolved Structural and Optical Studies,” Nano Lett. 15(6), 4052–4058 (2015).
[Crossref] [PubMed]

R. Sanatinia, S. Anand, and M. Swillo, “Experimental quantification of surface optical nonlinearity in GaP nanopillar waveguides,” Opt. Express 23(2), 756–764 (2015).
[Crossref] [PubMed]

F.-P. Yu, S.-L. Ou, and D.-S. Wuu, “Pulsed laser deposition of gallium oxide films for high performance solar-blind photodetectors,” Opt. Mater. Express 5(5), 1240–1249 (2015).
[Crossref]

2014 (3)

R. Sanatinia, S. Anand, and M. Swillo, “Modal Engineering of Second-Harmonic Generation in Single GaP Nanopillars,” Nano Lett. 14(9), 5376–5381 (2014).
[Crossref] [PubMed]

M. C. Dolph and C. Santeufemio, “Exploring cryogenic focused ion beam milling as a Group III–V device fabrication tool,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 328, 33–41 (2014).

K. Narayan, C. M. Danielson, K. Lagarec, B. C. Lowekamp, P. Coffman, A. Laquerre, M. W. Phaneuf, T. J. Hope, and S. Subramaniam, “Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology,” J. Struct. Biol. 185(3), 278–284 (2014).
[Crossref] [PubMed]

2013 (4)

X. Jiang, Q. Gu, F. Wang, J. Lv, Z. Ma, and G. Si, “Fabrication of coaxial plasmonic crystals by focused ion beam milling and electron-beam lithography,” Mater. Lett. 100, 192–194 (2013).
[Crossref]

A. Al-Abboodi, J. Fu, P. M. Doran, and P. P. Y. Chan, “Three-dimensional nanocharacterization of porous hydrogel with ion and electron beams,” Biotechnol. Bioeng. 110(1), 318–326 (2013).
[Crossref] [PubMed]

B. P. Gila, “Applications of new focused ion beams in nanofabrication and material studies,” Microsc. Anal. (Am. Ed.) 7, 7–10 (2013).

E. Millon, “Advanced functional oxide thin films grown by pulsed-laser deposition,” Appl. Surf. Sci. 278, 2–6 (2013).
[Crossref]

2012 (5)

C. Hebert, A. Petitmangin, J. Perrière, E. Millon, A. Petit, L. Binet, and P. Barboux, “Phase separation in oxygen deficient gallium oxide films grown by pulsed-laser deposition,” Mater. Chem. Phys. 133(1), 135–139 (2012).
[Crossref]

S.-L. Ou, D.-S. Wuu, Y.-C. Fu, S.-P. Liu, R.-H. Horng, L. Liu, and Z.-C. Feng, “Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition,” Mater. Chem. Phys. 133(2–3), 700–705 (2012).
[Crossref]

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett. 12(2), 820–826 (2012).
[Crossref] [PubMed]

D. C. Aveline, L. Baumgartel, B. Ahn, and N. Yu, “Focused ion beam engineered whispering gallery mode resonators with open cavity structure,” Opt. Express 20(16), 18091–18096 (2012).
[Crossref] [PubMed]

M. A. Draganski, E. Finkman, B. C. Gibson, B. A. Fairchild, K. Ganesan, N. Nabatova-Gabain, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Tailoring the optical constants of diamond by ion implantation,” Opt. Mater. Express 2(5), 644 (2012).
[Crossref]

2011 (1)

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett. 98(26), 98–101 (2011).
[Crossref]

2010 (1)

2009 (4)

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vucković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17(25), 22609–22615 (2009).
[Crossref] [PubMed]

J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009).
[Crossref]

F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. Von Zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP quantum well laser with mirrors milled by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(5), L25 (2009).

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(6), 2979 (2009).

2008 (1)

R. W. Tjerkstra, F. B. Segerink, J. J. Kelly, and W. L. Vos, “Fabrication of three-dimensional nanostructures by focused ion beam milling,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 973 (2008).

2007 (2)

Y. L. D. Ho, R. Gibson, C. Y. Hu, M. J. Cryan, J. G. Rarity, P. J. Heard, J. A. Timpson, A. M. Fox, M. S. Skolnick, M. Hopkinson, and A. Tahraoui, “Focused ion beam etching for the fabrication of micropillar microcavities made of III-V semiconductor materials,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 25(4), 1197 (2007).

J. Gierak, A. Madouri, A. L. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng. 84(5–8), 779–783 (2007).
[Crossref]

2005 (4)

J. Teng and P. Prewett, “Focused ion beam fabrication of thermally actuated bimorph cantilevers,” Sens. Actuators A Phys. 123–124, 608–613 (2005).
[Crossref]

Q. Wu, Z. Hu, C. Liu, X. Wang, Y. Chen, and Y. Lu, “Synthesis and optical properties of gallium phosphide nanotubes,” J. Phys. Chem. B 109(42), 19719–19722 (2005).
[Crossref] [PubMed]

D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express 13(8), 3079–3086 (2005).
[Crossref] [PubMed]

T. Fujii, K. Iwasaki, M. Munekane, T. Takeuchi, M. Hasuda, T. Asahata, M. Kiyohara, T. Kogure, Y. Kijima, and T. Kaito, “A nanofactory by focused ion beam,” J. Micromech. Microeng. 15(10), S286–S291 (2005).
[Crossref]

2000 (1)

T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, and F.-C. Lo, “Progress in extreme ultraviolet mask repair using a focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 18(6), 3216 (2000).

1999 (1)

J. Daniel and D. F. Moore, “A microaccelerometer structure fabricated in silicon-on-insulator using a focused ion beam process,” Sens. Actuators A Phys. 73(3), 201–209 (1999).
[Crossref]

1997 (1)

1983 (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

1982 (2)

M. Komuro, “Ion beam exposure apparatus using a liquid metal source,” Thin Solid Films 92(1-2), 155–164 (1982).
[Crossref]

R. L. Kubena, R. L. Seliger, and E. H. Stevens, “High resolution sputtering using a focused ion beam,” Thin Solid Films 92(1–2), 165–169 (1982).
[Crossref]

Ahn, B.

Al-Abboodi, A.

A. Al-Abboodi, J. Fu, P. M. Doran, and P. P. Y. Chan, “Three-dimensional nanocharacterization of porous hydrogel with ion and electron beams,” Biotechnol. Bioeng. 110(1), 318–326 (2013).
[Crossref] [PubMed]

Anand, S.

R. Sanatinia, S. Anand, and M. Swillo, “Experimental quantification of surface optical nonlinearity in GaP nanopillar waveguides,” Opt. Express 23(2), 756–764 (2015).
[Crossref] [PubMed]

R. Sanatinia, S. Anand, and M. Swillo, “Modal Engineering of Second-Harmonic Generation in Single GaP Nanopillars,” Nano Lett. 14(9), 5376–5381 (2014).
[Crossref] [PubMed]

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett. 12(2), 820–826 (2012).
[Crossref] [PubMed]

Asahata, T.

T. Fujii, K. Iwasaki, M. Munekane, T. Takeuchi, M. Hasuda, T. Asahata, M. Kiyohara, T. Kogure, Y. Kijima, and T. Kaito, “A nanofactory by focused ion beam,” J. Micromech. Microeng. 15(10), S286–S291 (2005).
[Crossref]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

Auvray, L.

J. Gierak, A. Madouri, A. L. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng. 84(5–8), 779–783 (2007).
[Crossref]

Aveline, D. C.

Barboux, P.

C. Hebert, A. Petitmangin, J. Perrière, E. Millon, A. Petit, L. Binet, and P. Barboux, “Phase separation in oxygen deficient gallium oxide films grown by pulsed-laser deposition,” Mater. Chem. Phys. 133(1), 135–139 (2012).
[Crossref]

Barea, L. A. M.

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(6), 2979 (2009).

F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. Von Zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP quantum well laser with mirrors milled by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(5), L25 (2009).

Baumgartel, L.

Biance, A. L.

J. Gierak, A. Madouri, A. L. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng. 84(5–8), 779–783 (2007).
[Crossref]

Binet, L.

C. Hebert, A. Petitmangin, J. Perrière, E. Millon, A. Petit, L. Binet, and P. Barboux, “Phase separation in oxygen deficient gallium oxide films grown by pulsed-laser deposition,” Mater. Chem. Phys. 133(1), 135–139 (2012).
[Crossref]

Bourhis, E.

J. Gierak, A. Madouri, A. L. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng. 84(5–8), 779–783 (2007).
[Crossref]

Bruchhaus, L.

J. Gierak, A. Madouri, A. L. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng. 84(5–8), 779–783 (2007).
[Crossref]

Buckley, S.

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett. 98(26), 98–101 (2011).
[Crossref]

Buyanova, I. A.

A. Dobrovolsky, P. O. Å. Persson, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Effects of Polytypism on Optical Properties and Band Structure of Individual Ga(N)P Nanowires from Correlative Spatially Resolved Structural and Optical Studies,” Nano Lett. 15(6), 4052–4058 (2015).
[Crossref] [PubMed]

Cardozo, B. L.

J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009).
[Crossref]

J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009).
[Crossref]

Chan, P. P. Y.

A. Al-Abboodi, J. Fu, P. M. Doran, and P. P. Y. Chan, “Three-dimensional nanocharacterization of porous hydrogel with ion and electron beams,” Biotechnol. Bioeng. 110(1), 318–326 (2013).
[Crossref] [PubMed]

Chen, W. M.

A. Dobrovolsky, P. O. Å. Persson, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Effects of Polytypism on Optical Properties and Band Structure of Individual Ga(N)P Nanowires from Correlative Spatially Resolved Structural and Optical Studies,” Nano Lett. 15(6), 4052–4058 (2015).
[Crossref] [PubMed]

Chen, Y.

Q. Wu, Z. Hu, C. Liu, X. Wang, Y. Chen, and Y. Lu, “Synthesis and optical properties of gallium phosphide nanotubes,” J. Phys. Chem. B 109(42), 19719–19722 (2005).
[Crossref] [PubMed]

Coffman, P.

K. Narayan, C. M. Danielson, K. Lagarec, B. C. Lowekamp, P. Coffman, A. Laquerre, M. W. Phaneuf, T. J. Hope, and S. Subramaniam, “Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology,” J. Struct. Biol. 185(3), 278–284 (2014).
[Crossref] [PubMed]

Cryan, M. J.

Y. L. D. Ho, R. Gibson, C. Y. Hu, M. J. Cryan, J. G. Rarity, P. J. Heard, J. A. Timpson, A. M. Fox, M. S. Skolnick, M. Hopkinson, and A. Tahraoui, “Focused ion beam etching for the fabrication of micropillar microcavities made of III-V semiconductor materials,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 25(4), 1197 (2007).

Daniel, J.

J. Daniel and D. F. Moore, “A microaccelerometer structure fabricated in silicon-on-insulator using a focused ion beam process,” Sens. Actuators A Phys. 73(3), 201–209 (1999).
[Crossref]

Danielson, C. M.

K. Narayan, C. M. Danielson, K. Lagarec, B. C. Lowekamp, P. Coffman, A. Laquerre, M. W. Phaneuf, T. J. Hope, and S. Subramaniam, “Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology,” J. Struct. Biol. 185(3), 278–284 (2014).
[Crossref] [PubMed]

Dobrovolsky, A.

A. Dobrovolsky, P. O. Å. Persson, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Effects of Polytypism on Optical Properties and Band Structure of Individual Ga(N)P Nanowires from Correlative Spatially Resolved Structural and Optical Studies,” Nano Lett. 15(6), 4052–4058 (2015).
[Crossref] [PubMed]

Dolph, M. C.

M. C. Dolph and C. Santeufemio, “Exploring cryogenic focused ion beam milling as a Group III–V device fabrication tool,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 328, 33–41 (2014).

Doran, P. M.

A. Al-Abboodi, J. Fu, P. M. Doran, and P. P. Y. Chan, “Three-dimensional nanocharacterization of porous hydrogel with ion and electron beams,” Biotechnol. Bioeng. 110(1), 318–326 (2013).
[Crossref] [PubMed]

Draganski, M. A.

Fairchild, B. A.

Feng, Z.-C.

S.-L. Ou, D.-S. Wuu, Y.-C. Fu, S.-P. Liu, R.-H. Horng, L. Liu, and Z.-C. Feng, “Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition,” Mater. Chem. Phys. 133(2–3), 700–705 (2012).
[Crossref]

Figueira, D. S. L.

F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. Von Zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP quantum well laser with mirrors milled by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(5), L25 (2009).

Finkman, E.

Fox, A. M.

Y. L. D. Ho, R. Gibson, C. Y. Hu, M. J. Cryan, J. G. Rarity, P. J. Heard, J. A. Timpson, A. M. Fox, M. S. Skolnick, M. Hopkinson, and A. Tahraoui, “Focused ion beam etching for the fabrication of micropillar microcavities made of III-V semiconductor materials,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 25(4), 1197 (2007).

Frateschi, N. C.

F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. Von Zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP quantum well laser with mirrors milled by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(5), L25 (2009).

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(6), 2979 (2009).

Freeman, D.

Fu, J.

A. Al-Abboodi, J. Fu, P. M. Doran, and P. P. Y. Chan, “Three-dimensional nanocharacterization of porous hydrogel with ion and electron beams,” Biotechnol. Bioeng. 110(1), 318–326 (2013).
[Crossref] [PubMed]

Fu, Y.-C.

S.-L. Ou, D.-S. Wuu, Y.-C. Fu, S.-P. Liu, R.-H. Horng, L. Liu, and Z.-C. Feng, “Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition,” Mater. Chem. Phys. 133(2–3), 700–705 (2012).
[Crossref]

Fujii, T.

T. Fujii, K. Iwasaki, M. Munekane, T. Takeuchi, M. Hasuda, T. Asahata, M. Kiyohara, T. Kogure, Y. Kijima, and T. Kaito, “A nanofactory by focused ion beam,” J. Micromech. Microeng. 15(10), S286–S291 (2005).
[Crossref]

Ganesan, K.

Gibson, B. C.

Gibson, R.

Y. L. D. Ho, R. Gibson, C. Y. Hu, M. J. Cryan, J. G. Rarity, P. J. Heard, J. A. Timpson, A. M. Fox, M. S. Skolnick, M. Hopkinson, and A. Tahraoui, “Focused ion beam etching for the fabrication of micropillar microcavities made of III-V semiconductor materials,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 25(4), 1197 (2007).

Gierak, J.

J. Gierak, A. Madouri, A. L. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng. 84(5–8), 779–783 (2007).
[Crossref]

Gila, B. P.

B. P. Gila, “Applications of new focused ion beams in nanofabrication and material studies,” Microsc. Anal. (Am. Ed.) 7, 7–10 (2013).

Goldman, R. S.

J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009).
[Crossref]

Greentree, A. D.

Gu, Q.

X. Jiang, Q. Gu, L. Yang, R. Zhao, J. Lv, Z. Ma, and G. Si, “Functional plasmonic crystal nanoantennae with ultrasmall gaps and highly tunable profiles,” Opt. Laser Technol. 71, 1–5 (2015).
[Crossref]

X. Jiang, Q. Gu, F. Wang, J. Lv, Z. Ma, and G. Si, “Fabrication of coaxial plasmonic crystals by focused ion beam milling and electron-beam lithography,” Mater. Lett. 100, 192–194 (2013).
[Crossref]

Hasuda, M.

T. Fujii, K. Iwasaki, M. Munekane, T. Takeuchi, M. Hasuda, T. Asahata, M. Kiyohara, T. Kogure, Y. Kijima, and T. Kaito, “A nanofactory by focused ion beam,” J. Micromech. Microeng. 15(10), S286–S291 (2005).
[Crossref]

Hatami, F.

Heard, P. J.

Y. L. D. Ho, R. Gibson, C. Y. Hu, M. J. Cryan, J. G. Rarity, P. J. Heard, J. A. Timpson, A. M. Fox, M. S. Skolnick, M. Hopkinson, and A. Tahraoui, “Focused ion beam etching for the fabrication of micropillar microcavities made of III-V semiconductor materials,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 25(4), 1197 (2007).

Hebert, C.

C. Hebert, A. Petitmangin, J. Perrière, E. Millon, A. Petit, L. Binet, and P. Barboux, “Phase separation in oxygen deficient gallium oxide films grown by pulsed-laser deposition,” Mater. Chem. Phys. 133(1), 135–139 (2012).
[Crossref]

Ho, Y. L. D.

Y. L. D. Ho, R. Gibson, C. Y. Hu, M. J. Cryan, J. G. Rarity, P. J. Heard, J. A. Timpson, A. M. Fox, M. S. Skolnick, M. Hopkinson, and A. Tahraoui, “Focused ion beam etching for the fabrication of micropillar microcavities made of III-V semiconductor materials,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 25(4), 1197 (2007).

Hope, T. J.

K. Narayan, C. M. Danielson, K. Lagarec, B. C. Lowekamp, P. Coffman, A. Laquerre, M. W. Phaneuf, T. J. Hope, and S. Subramaniam, “Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology,” J. Struct. Biol. 185(3), 278–284 (2014).
[Crossref] [PubMed]

Hopkinson, M.

Y. L. D. Ho, R. Gibson, C. Y. Hu, M. J. Cryan, J. G. Rarity, P. J. Heard, J. A. Timpson, A. M. Fox, M. S. Skolnick, M. Hopkinson, and A. Tahraoui, “Focused ion beam etching for the fabrication of micropillar microcavities made of III-V semiconductor materials,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 25(4), 1197 (2007).

Horng, R.-H.

S.-L. Ou, D.-S. Wuu, Y.-C. Fu, S.-P. Liu, R.-H. Horng, L. Liu, and Z.-C. Feng, “Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition,” Mater. Chem. Phys. 133(2–3), 700–705 (2012).
[Crossref]

Hu, C. Y.

Y. L. D. Ho, R. Gibson, C. Y. Hu, M. J. Cryan, J. G. Rarity, P. J. Heard, J. A. Timpson, A. M. Fox, M. S. Skolnick, M. Hopkinson, and A. Tahraoui, “Focused ion beam etching for the fabrication of micropillar microcavities made of III-V semiconductor materials,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 25(4), 1197 (2007).

Hu, Z.

Q. Wu, Z. Hu, C. Liu, X. Wang, Y. Chen, and Y. Lu, “Synthesis and optical properties of gallium phosphide nanotubes,” J. Phys. Chem. B 109(42), 19719–19722 (2005).
[Crossref] [PubMed]

Ito, R.

Iwasaki, K.

T. Fujii, K. Iwasaki, M. Munekane, T. Takeuchi, M. Hasuda, T. Asahata, M. Kiyohara, T. Kogure, Y. Kijima, and T. Kaito, “A nanofactory by focused ion beam,” J. Micromech. Microeng. 15(10), S286–S291 (2005).
[Crossref]

Jarschel, P. F.

F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. Von Zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP quantum well laser with mirrors milled by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(5), L25 (2009).

Jede, R.

J. Gierak, A. Madouri, A. L. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng. 84(5–8), 779–783 (2007).
[Crossref]

Jiang, X.

X. Jiang, Q. Gu, L. Yang, R. Zhao, J. Lv, Z. Ma, and G. Si, “Functional plasmonic crystal nanoantennae with ultrasmall gaps and highly tunable profiles,” Opt. Laser Technol. 71, 1–5 (2015).
[Crossref]

X. Jiang, Q. Gu, F. Wang, J. Lv, Z. Ma, and G. Si, “Fabrication of coaxial plasmonic crystals by focused ion beam milling and electron-beam lithography,” Mater. Lett. 100, 192–194 (2013).
[Crossref]

Kaito, T.

T. Fujii, K. Iwasaki, M. Munekane, T. Takeuchi, M. Hasuda, T. Asahata, M. Kiyohara, T. Kogure, Y. Kijima, and T. Kaito, “A nanofactory by focused ion beam,” J. Micromech. Microeng. 15(10), S286–S291 (2005).
[Crossref]

Kelly, J. J.

R. W. Tjerkstra, F. B. Segerink, J. J. Kelly, and W. L. Vos, “Fabrication of three-dimensional nanostructures by focused ion beam milling,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 973 (2008).

Kijima, Y.

T. Fujii, K. Iwasaki, M. Munekane, T. Takeuchi, M. Hasuda, T. Asahata, M. Kiyohara, T. Kogure, Y. Kijima, and T. Kaito, “A nanofactory by focused ion beam,” J. Micromech. Microeng. 15(10), S286–S291 (2005).
[Crossref]

Kitamoto, A.

Kiyohara, M.

T. Fujii, K. Iwasaki, M. Munekane, T. Takeuchi, M. Hasuda, T. Asahata, M. Kiyohara, T. Kogure, Y. Kijima, and T. Kaito, “A nanofactory by focused ion beam,” J. Micromech. Microeng. 15(10), S286–S291 (2005).
[Crossref]

Kogure, T.

T. Fujii, K. Iwasaki, M. Munekane, T. Takeuchi, M. Hasuda, T. Asahata, M. Kiyohara, T. Kogure, Y. Kijima, and T. Kaito, “A nanofactory by focused ion beam,” J. Micromech. Microeng. 15(10), S286–S291 (2005).
[Crossref]

Komuro, M.

M. Komuro, “Ion beam exposure apparatus using a liquid metal source,” Thin Solid Films 92(1-2), 155–164 (1982).
[Crossref]

Kondo, T.

Kuang, Y.

A. Dobrovolsky, P. O. Å. Persson, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Effects of Polytypism on Optical Properties and Band Structure of Individual Ga(N)P Nanowires from Correlative Spatially Resolved Structural and Optical Studies,” Nano Lett. 15(6), 4052–4058 (2015).
[Crossref] [PubMed]

Kubena, R. L.

R. L. Kubena, R. L. Seliger, and E. H. Stevens, “High resolution sputtering using a focused ion beam,” Thin Solid Films 92(1–2), 165–169 (1982).
[Crossref]

Lafosse, X.

J. Gierak, A. Madouri, A. L. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng. 84(5–8), 779–783 (2007).
[Crossref]

Lagarec, K.

K. Narayan, C. M. Danielson, K. Lagarec, B. C. Lowekamp, P. Coffman, A. Laquerre, M. W. Phaneuf, T. J. Hope, and S. Subramaniam, “Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology,” J. Struct. Biol. 185(3), 278–284 (2014).
[Crossref] [PubMed]

Laquerre, A.

K. Narayan, C. M. Danielson, K. Lagarec, B. C. Lowekamp, P. Coffman, A. Laquerre, M. W. Phaneuf, T. J. Hope, and S. Subramaniam, “Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology,” J. Struct. Biol. 185(3), 278–284 (2014).
[Crossref] [PubMed]

Liang, T.

T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, and F.-C. Lo, “Progress in extreme ultraviolet mask repair using a focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 18(6), 3216 (2000).

Lin, Z.

Liu, C.

Q. Wu, Z. Hu, C. Liu, X. Wang, Y. Chen, and Y. Lu, “Synthesis and optical properties of gallium phosphide nanotubes,” J. Phys. Chem. B 109(42), 19719–19722 (2005).
[Crossref] [PubMed]

Liu, L.

S.-L. Ou, D.-S. Wuu, Y.-C. Fu, S.-P. Liu, R.-H. Horng, L. Liu, and Z.-C. Feng, “Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition,” Mater. Chem. Phys. 133(2–3), 700–705 (2012).
[Crossref]

Liu, S.-P.

S.-L. Ou, D.-S. Wuu, Y.-C. Fu, S.-P. Liu, R.-H. Horng, L. Liu, and Z.-C. Feng, “Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition,” Mater. Chem. Phys. 133(2–3), 700–705 (2012).
[Crossref]

Livengood, R.

T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, and F.-C. Lo, “Progress in extreme ultraviolet mask repair using a focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 18(6), 3216 (2000).

Lo, F.-C.

T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, and F.-C. Lo, “Progress in extreme ultraviolet mask repair using a focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 18(6), 3216 (2000).

Lowekamp, B. C.

K. Narayan, C. M. Danielson, K. Lagarec, B. C. Lowekamp, P. Coffman, A. Laquerre, M. W. Phaneuf, T. J. Hope, and S. Subramaniam, “Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology,” J. Struct. Biol. 185(3), 278–284 (2014).
[Crossref] [PubMed]

Lu, J.

Lu, Y.

Q. Wu, Z. Hu, C. Liu, X. Wang, Y. Chen, and Y. Lu, “Synthesis and optical properties of gallium phosphide nanotubes,” J. Phys. Chem. B 109(42), 19719–19722 (2005).
[Crossref] [PubMed]

Lucot, D.

J. Gierak, A. Madouri, A. L. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng. 84(5–8), 779–783 (2007).
[Crossref]

Luther-Davies, B.

Lv, J.

X. Jiang, Q. Gu, L. Yang, R. Zhao, J. Lv, Z. Ma, and G. Si, “Functional plasmonic crystal nanoantennae with ultrasmall gaps and highly tunable profiles,” Opt. Laser Technol. 71, 1–5 (2015).
[Crossref]

X. Jiang, Q. Gu, F. Wang, J. Lv, Z. Ma, and G. Si, “Fabrication of coaxial plasmonic crystals by focused ion beam milling and electron-beam lithography,” Mater. Lett. 100, 192–194 (2013).
[Crossref]

Ma, Z.

X. Jiang, Q. Gu, L. Yang, R. Zhao, J. Lv, Z. Ma, and G. Si, “Functional plasmonic crystal nanoantennae with ultrasmall gaps and highly tunable profiles,” Opt. Laser Technol. 71, 1–5 (2015).
[Crossref]

X. Jiang, Q. Gu, F. Wang, J. Lv, Z. Ma, and G. Si, “Fabrication of coaxial plasmonic crystals by focused ion beam milling and electron-beam lithography,” Mater. Lett. 100, 192–194 (2013).
[Crossref]

Madden, S.

Madouri, A.

J. Gierak, A. Madouri, A. L. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng. 84(5–8), 779–783 (2007).
[Crossref]

Mansfield, J. F.

J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009).
[Crossref]

J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009).
[Crossref]

Masselink, W. T.

Mialichi, J. R.

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(6), 2979 (2009).

Millon, E.

E. Millon, “Advanced functional oxide thin films grown by pulsed-laser deposition,” Appl. Surf. Sci. 278, 2–6 (2013).
[Crossref]

C. Hebert, A. Petitmangin, J. Perrière, E. Millon, A. Petit, L. Binet, and P. Barboux, “Phase separation in oxygen deficient gallium oxide films grown by pulsed-laser deposition,” Mater. Chem. Phys. 133(1), 135–139 (2012).
[Crossref]

Moore, D. F.

J. Daniel and D. F. Moore, “A microaccelerometer structure fabricated in silicon-on-insulator using a focused ion beam process,” Sens. Actuators A Phys. 73(3), 201–209 (1999).
[Crossref]

Munekane, M.

T. Fujii, K. Iwasaki, M. Munekane, T. Takeuchi, M. Hasuda, T. Asahata, M. Kiyohara, T. Kogure, Y. Kijima, and T. Kaito, “A nanofactory by focused ion beam,” J. Micromech. Microeng. 15(10), S286–S291 (2005).
[Crossref]

Nabatova-Gabain, N.

Narayan, K.

K. Narayan, C. M. Danielson, K. Lagarec, B. C. Lowekamp, P. Coffman, A. Laquerre, M. W. Phaneuf, T. J. Hope, and S. Subramaniam, “Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology,” J. Struct. Biol. 185(3), 278–284 (2014).
[Crossref] [PubMed]

Ou, S.-L.

F.-P. Yu, S.-L. Ou, and D.-S. Wuu, “Pulsed laser deposition of gallium oxide films for high performance solar-blind photodetectors,” Opt. Mater. Express 5(5), 1240–1249 (2015).
[Crossref]

S.-L. Ou, D.-S. Wuu, Y.-C. Fu, S.-P. Liu, R.-H. Horng, L. Liu, and Z.-C. Feng, “Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition,” Mater. Chem. Phys. 133(2–3), 700–705 (2012).
[Crossref]

Patriarche, G.

J. Gierak, A. Madouri, A. L. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng. 84(5–8), 779–783 (2007).
[Crossref]

Perrière, J.

C. Hebert, A. Petitmangin, J. Perrière, E. Millon, A. Petit, L. Binet, and P. Barboux, “Phase separation in oxygen deficient gallium oxide films grown by pulsed-laser deposition,” Mater. Chem. Phys. 133(1), 135–139 (2012).
[Crossref]

Persson, P. O. Å.

A. Dobrovolsky, P. O. Å. Persson, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Effects of Polytypism on Optical Properties and Band Structure of Individual Ga(N)P Nanowires from Correlative Spatially Resolved Structural and Optical Studies,” Nano Lett. 15(6), 4052–4058 (2015).
[Crossref] [PubMed]

Petit, A.

C. Hebert, A. Petitmangin, J. Perrière, E. Millon, A. Petit, L. Binet, and P. Barboux, “Phase separation in oxygen deficient gallium oxide films grown by pulsed-laser deposition,” Mater. Chem. Phys. 133(1), 135–139 (2012).
[Crossref]

Petitmangin, A.

C. Hebert, A. Petitmangin, J. Perrière, E. Millon, A. Petit, L. Binet, and P. Barboux, “Phase separation in oxygen deficient gallium oxide films grown by pulsed-laser deposition,” Mater. Chem. Phys. 133(1), 135–139 (2012).
[Crossref]

Phaneuf, M. W.

K. Narayan, C. M. Danielson, K. Lagarec, B. C. Lowekamp, P. Coffman, A. Laquerre, M. W. Phaneuf, T. J. Hope, and S. Subramaniam, “Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology,” J. Struct. Biol. 185(3), 278–284 (2014).
[Crossref] [PubMed]

Prawer, S.

Prewett, P.

J. Teng and P. Prewett, “Focused ion beam fabrication of thermally actuated bimorph cantilevers,” Sens. Actuators A Phys. 123–124, 608–613 (2005).
[Crossref]

Rarity, J. G.

Y. L. D. Ho, R. Gibson, C. Y. Hu, M. J. Cryan, J. G. Rarity, P. J. Heard, J. A. Timpson, A. M. Fox, M. S. Skolnick, M. Hopkinson, and A. Tahraoui, “Focused ion beam etching for the fabrication of micropillar microcavities made of III-V semiconductor materials,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 25(4), 1197 (2007).

Rivoire, K.

Saltzman, D.

J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009).
[Crossref]

J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009).
[Crossref]

Sanatinia, R.

R. Sanatinia, S. Anand, and M. Swillo, “Experimental quantification of surface optical nonlinearity in GaP nanopillar waveguides,” Opt. Express 23(2), 756–764 (2015).
[Crossref] [PubMed]

R. Sanatinia, S. Anand, and M. Swillo, “Modal Engineering of Second-Harmonic Generation in Single GaP Nanopillars,” Nano Lett. 14(9), 5376–5381 (2014).
[Crossref] [PubMed]

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett. 12(2), 820–826 (2012).
[Crossref] [PubMed]

Santeufemio, C.

M. C. Dolph and C. Santeufemio, “Exploring cryogenic focused ion beam milling as a Group III–V device fabrication tool,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 328, 33–41 (2014).

Segerink, F. B.

R. W. Tjerkstra, F. B. Segerink, J. J. Kelly, and W. L. Vos, “Fabrication of three-dimensional nanostructures by focused ion beam milling,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 973 (2008).

Seliger, R. L.

R. L. Kubena, R. L. Seliger, and E. H. Stevens, “High resolution sputtering using a focused ion beam,” Thin Solid Films 92(1–2), 165–169 (1982).
[Crossref]

Shambat, G.

Shirane, M.

Shoji, I.

Si, G.

X. Jiang, Q. Gu, L. Yang, R. Zhao, J. Lv, Z. Ma, and G. Si, “Functional plasmonic crystal nanoantennae with ultrasmall gaps and highly tunable profiles,” Opt. Laser Technol. 71, 1–5 (2015).
[Crossref]

X. Jiang, Q. Gu, F. Wang, J. Lv, Z. Ma, and G. Si, “Fabrication of coaxial plasmonic crystals by focused ion beam milling and electron-beam lithography,” Mater. Lett. 100, 192–194 (2013).
[Crossref]

Skolnick, M. S.

Y. L. D. Ho, R. Gibson, C. Y. Hu, M. J. Cryan, J. G. Rarity, P. J. Heard, J. A. Timpson, A. M. Fox, M. S. Skolnick, M. Hopkinson, and A. Tahraoui, “Focused ion beam etching for the fabrication of micropillar microcavities made of III-V semiconductor materials,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 25(4), 1197 (2007).

Stevens, E. H.

R. L. Kubena, R. L. Seliger, and E. H. Stevens, “High resolution sputtering using a focused ion beam,” Thin Solid Films 92(1–2), 165–169 (1982).
[Crossref]

Stivers, A.

T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, and F.-C. Lo, “Progress in extreme ultraviolet mask repair using a focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 18(6), 3216 (2000).

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

Subramaniam, S.

K. Narayan, C. M. Danielson, K. Lagarec, B. C. Lowekamp, P. Coffman, A. Laquerre, M. W. Phaneuf, T. J. Hope, and S. Subramaniam, “Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology,” J. Struct. Biol. 185(3), 278–284 (2014).
[Crossref] [PubMed]

Sukrittanon, S.

A. Dobrovolsky, P. O. Å. Persson, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Effects of Polytypism on Optical Properties and Band Structure of Individual Ga(N)P Nanowires from Correlative Spatially Resolved Structural and Optical Studies,” Nano Lett. 15(6), 4052–4058 (2015).
[Crossref] [PubMed]

Sun, H.

J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009).
[Crossref]

J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009).
[Crossref]

Sun, K.

J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009).
[Crossref]

J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009).
[Crossref]

Swillo, M.

R. Sanatinia, S. Anand, and M. Swillo, “Experimental quantification of surface optical nonlinearity in GaP nanopillar waveguides,” Opt. Express 23(2), 756–764 (2015).
[Crossref] [PubMed]

R. Sanatinia, S. Anand, and M. Swillo, “Modal Engineering of Second-Harmonic Generation in Single GaP Nanopillars,” Nano Lett. 14(9), 5376–5381 (2014).
[Crossref] [PubMed]

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett. 12(2), 820–826 (2012).
[Crossref] [PubMed]

Tahraoui, A.

Y. L. D. Ho, R. Gibson, C. Y. Hu, M. J. Cryan, J. G. Rarity, P. J. Heard, J. A. Timpson, A. M. Fox, M. S. Skolnick, M. Hopkinson, and A. Tahraoui, “Focused ion beam etching for the fabrication of micropillar microcavities made of III-V semiconductor materials,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 25(4), 1197 (2007).

Takeuchi, T.

T. Fujii, K. Iwasaki, M. Munekane, T. Takeuchi, M. Hasuda, T. Asahata, M. Kiyohara, T. Kogure, Y. Kijima, and T. Kaito, “A nanofactory by focused ion beam,” J. Micromech. Microeng. 15(10), S286–S291 (2005).
[Crossref]

Teng, J.

J. Teng and P. Prewett, “Focused ion beam fabrication of thermally actuated bimorph cantilevers,” Sens. Actuators A Phys. 123–124, 608–613 (2005).
[Crossref]

Timpson, J. A.

Y. L. D. Ho, R. Gibson, C. Y. Hu, M. J. Cryan, J. G. Rarity, P. J. Heard, J. A. Timpson, A. M. Fox, M. S. Skolnick, M. Hopkinson, and A. Tahraoui, “Focused ion beam etching for the fabrication of micropillar microcavities made of III-V semiconductor materials,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 25(4), 1197 (2007).

Tjerkstra, R. W.

R. W. Tjerkstra, F. B. Segerink, J. J. Kelly, and W. L. Vos, “Fabrication of three-dimensional nanostructures by focused ion beam milling,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 973 (2008).

Tomljenovic-Hanic, S.

Tu, C. W.

A. Dobrovolsky, P. O. Å. Persson, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Effects of Polytypism on Optical Properties and Band Structure of Individual Ga(N)P Nanowires from Correlative Spatially Resolved Structural and Optical Studies,” Nano Lett. 15(6), 4052–4058 (2015).
[Crossref] [PubMed]

Ulysse, C.

J. Gierak, A. Madouri, A. L. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng. 84(5–8), 779–783 (2007).
[Crossref]

Vallini, F.

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(6), 2979 (2009).

F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. Von Zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP quantum well laser with mirrors milled by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(5), L25 (2009).

Vaz, A. R.

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(6), 2979 (2009).

Von Zuben, A. A. G.

F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. Von Zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP quantum well laser with mirrors milled by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(5), L25 (2009).

Vos, W. L.

R. W. Tjerkstra, F. B. Segerink, J. J. Kelly, and W. L. Vos, “Fabrication of three-dimensional nanostructures by focused ion beam milling,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 973 (2008).

Vuckovic, J.

Wang, F.

X. Jiang, Q. Gu, F. Wang, J. Lv, Z. Ma, and G. Si, “Fabrication of coaxial plasmonic crystals by focused ion beam milling and electron-beam lithography,” Mater. Lett. 100, 192–194 (2013).
[Crossref]

Wang, X.

Q. Wu, Z. Hu, C. Liu, X. Wang, Y. Chen, and Y. Lu, “Synthesis and optical properties of gallium phosphide nanotubes,” J. Phys. Chem. B 109(42), 19719–19722 (2005).
[Crossref] [PubMed]

Wu, J. H.

J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009).
[Crossref]

J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009).
[Crossref]

Wu, Q.

Q. Wu, Z. Hu, C. Liu, X. Wang, Y. Chen, and Y. Lu, “Synthesis and optical properties of gallium phosphide nanotubes,” J. Phys. Chem. B 109(42), 19719–19722 (2005).
[Crossref] [PubMed]

Wuu, D.-S.

F.-P. Yu, S.-L. Ou, and D.-S. Wuu, “Pulsed laser deposition of gallium oxide films for high performance solar-blind photodetectors,” Opt. Mater. Express 5(5), 1240–1249 (2015).
[Crossref]

S.-L. Ou, D.-S. Wuu, Y.-C. Fu, S.-P. Liu, R.-H. Horng, L. Liu, and Z.-C. Feng, “Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition,” Mater. Chem. Phys. 133(2–3), 700–705 (2012).
[Crossref]

Yan, P.-Y.

T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, and F.-C. Lo, “Progress in extreme ultraviolet mask repair using a focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 18(6), 3216 (2000).

Yang, L.

X. Jiang, Q. Gu, L. Yang, R. Zhao, J. Lv, Z. Ma, and G. Si, “Functional plasmonic crystal nanoantennae with ultrasmall gaps and highly tunable profiles,” Opt. Laser Technol. 71, 1–5 (2015).
[Crossref]

Ye, W.

J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009).
[Crossref]

J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009).
[Crossref]

Yu, F.-P.

Yu, N.

Zhang, G.

T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, and F.-C. Lo, “Progress in extreme ultraviolet mask repair using a focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 18(6), 3216 (2000).

Zhao, R.

X. Jiang, Q. Gu, L. Yang, R. Zhao, J. Lv, Z. Ma, and G. Si, “Functional plasmonic crystal nanoantennae with ultrasmall gaps and highly tunable profiles,” Opt. Laser Technol. 71, 1–5 (2015).
[Crossref]

Appl. Phys. Lett. (2)

J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009).
[Crossref]

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett. 98(26), 98–101 (2011).
[Crossref]

Appl. Surf. Sci. (1)

E. Millon, “Advanced functional oxide thin films grown by pulsed-laser deposition,” Appl. Surf. Sci. 278, 2–6 (2013).
[Crossref]

Biotechnol. Bioeng. (1)

A. Al-Abboodi, J. Fu, P. M. Doran, and P. P. Y. Chan, “Three-dimensional nanocharacterization of porous hydrogel with ion and electron beams,” Biotechnol. Bioeng. 110(1), 318–326 (2013).
[Crossref] [PubMed]

J. Micromech. Microeng. (1)

T. Fujii, K. Iwasaki, M. Munekane, T. Takeuchi, M. Hasuda, T. Asahata, M. Kiyohara, T. Kogure, Y. Kijima, and T. Kaito, “A nanofactory by focused ion beam,” J. Micromech. Microeng. 15(10), S286–S291 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

Q. Wu, Z. Hu, C. Liu, X. Wang, Y. Chen, and Y. Lu, “Synthesis and optical properties of gallium phosphide nanotubes,” J. Phys. Chem. B 109(42), 19719–19722 (2005).
[Crossref] [PubMed]

J. Struct. Biol. (1)

K. Narayan, C. M. Danielson, K. Lagarec, B. C. Lowekamp, P. Coffman, A. Laquerre, M. W. Phaneuf, T. J. Hope, and S. Subramaniam, “Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology,” J. Struct. Biol. 185(3), 278–284 (2014).
[Crossref] [PubMed]

J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. (5)

Y. L. D. Ho, R. Gibson, C. Y. Hu, M. J. Cryan, J. G. Rarity, P. J. Heard, J. A. Timpson, A. M. Fox, M. S. Skolnick, M. Hopkinson, and A. Tahraoui, “Focused ion beam etching for the fabrication of micropillar microcavities made of III-V semiconductor materials,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 25(4), 1197 (2007).

F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. Von Zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP quantum well laser with mirrors milled by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(5), L25 (2009).

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(6), 2979 (2009).

R. W. Tjerkstra, F. B. Segerink, J. J. Kelly, and W. L. Vos, “Fabrication of three-dimensional nanostructures by focused ion beam milling,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 973 (2008).

T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, and F.-C. Lo, “Progress in extreme ultraviolet mask repair using a focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 18(6), 3216 (2000).

Mater. Chem. Phys. (2)

C. Hebert, A. Petitmangin, J. Perrière, E. Millon, A. Petit, L. Binet, and P. Barboux, “Phase separation in oxygen deficient gallium oxide films grown by pulsed-laser deposition,” Mater. Chem. Phys. 133(1), 135–139 (2012).
[Crossref]

S.-L. Ou, D.-S. Wuu, Y.-C. Fu, S.-P. Liu, R.-H. Horng, L. Liu, and Z.-C. Feng, “Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition,” Mater. Chem. Phys. 133(2–3), 700–705 (2012).
[Crossref]

Mater. Lett. (1)

X. Jiang, Q. Gu, F. Wang, J. Lv, Z. Ma, and G. Si, “Fabrication of coaxial plasmonic crystals by focused ion beam milling and electron-beam lithography,” Mater. Lett. 100, 192–194 (2013).
[Crossref]

Microelectron. Eng. (1)

J. Gierak, A. Madouri, A. L. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng. 84(5–8), 779–783 (2007).
[Crossref]

Microsc. Anal. (Am. Ed.) (1)

B. P. Gila, “Applications of new focused ion beams in nanofabrication and material studies,” Microsc. Anal. (Am. Ed.) 7, 7–10 (2013).

Nano Lett. (3)

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett. 12(2), 820–826 (2012).
[Crossref] [PubMed]

A. Dobrovolsky, P. O. Å. Persson, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Effects of Polytypism on Optical Properties and Band Structure of Individual Ga(N)P Nanowires from Correlative Spatially Resolved Structural and Optical Studies,” Nano Lett. 15(6), 4052–4058 (2015).
[Crossref] [PubMed]

R. Sanatinia, S. Anand, and M. Swillo, “Modal Engineering of Second-Harmonic Generation in Single GaP Nanopillars,” Nano Lett. 14(9), 5376–5381 (2014).
[Crossref] [PubMed]

Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms (1)

M. C. Dolph and C. Santeufemio, “Exploring cryogenic focused ion beam milling as a Group III–V device fabrication tool,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 328, 33–41 (2014).

Opt. Express (5)

Opt. Laser Technol. (1)

X. Jiang, Q. Gu, L. Yang, R. Zhao, J. Lv, Z. Ma, and G. Si, “Functional plasmonic crystal nanoantennae with ultrasmall gaps and highly tunable profiles,” Opt. Laser Technol. 71, 1–5 (2015).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. B (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

Sens. Actuators A Phys. (2)

J. Daniel and D. F. Moore, “A microaccelerometer structure fabricated in silicon-on-insulator using a focused ion beam process,” Sens. Actuators A Phys. 73(3), 201–209 (1999).
[Crossref]

J. Teng and P. Prewett, “Focused ion beam fabrication of thermally actuated bimorph cantilevers,” Sens. Actuators A Phys. 123–124, 608–613 (2005).
[Crossref]

Thin Solid Films (2)

M. Komuro, “Ion beam exposure apparatus using a liquid metal source,” Thin Solid Films 92(1-2), 155–164 (1982).
[Crossref]

R. L. Kubena, R. L. Seliger, and E. H. Stevens, “High resolution sputtering using a focused ion beam,” Thin Solid Films 92(1–2), 165–169 (1982).
[Crossref]

Other (2)

Y. A. Goldbery, Handobook Series on Semiconductor Parameters (World Scientific, 1996).

Transparency Market Research, “Focused Ion Beam Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2015 - 2021,” (2015) http://www.transparencymarketresearch.com/focused-ion-beam-market.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Fabricated GaP multilayer slab waveguides. Indicated scale bars 1 µm. (a) SEM picture of the structure type I (fabricated at 10 pA FIB current). The insets show magnified view of the structure where wn represents the average width of the waveguide. (b) Schematics of type I. (c) SEM picture of the structure type II (fabricated at 10 pA FIB current). (d) Schematics of type II.
Fig. 2
Fig. 2 Optical setup for the polarization measurements of the SHG light.
Fig. 3
Fig. 3 SHG intensity for pulsed-laser exposure with average power Pav = 150mW. (Blue line) bulk contribution to the SHG light, (red line) surface contribution to the SHG light. (a) MSW (I) (fabricated at 10 pA FIB current), waveguide width wn = (450 ± 50) nm. (b) MSW (II) (fabricated at 50pA FIB current), waveguide width wn = (280 ± 10) nm.
Fig. 4
Fig. 4 Polarization plots of SHG light (all in the same scale). In red, parallel configuration, in blue, orthogonal configuration. Laser average power Pav = 50mW. The angle represented in the axis is φSHG. (a) Orientation of the crystallographic axes with respect to the polar plots. (b) Substrate. (c-k) MSW (II) (fabricated at 10 pA FIB current).
Fig. 5
Fig. 5 Polarization plots of SHG light (scale reduced 9 times with respect to Fig. 4) in MSW (II) (fabricated at 50 pA FIB current), wav = (280 ± 10) nm. In red, parallel configuration, in blue, orthogonal configuration. Laser average power Pav = 50mW. The angle represented in the axis is φSHG. (a) before and (b) after the 45 min laser exposure presented in Fig. 3 (b).
Fig. 6
Fig. 6 Compositional analysis of MSW (I). (a) SEM image of the structure. Position A (red) and B (blue) correspond to areas with and without laser exposure, respectively. Scale bar 1µm. (b) Energy dispersive X-Ray (EDS) graph.
Fig. 7
Fig. 7 SEM image of MSW (II) fabricated at 50pA FIB current. Scale bar 1μm. (a) After the fabrication with FIB. (b) After the laser, the oxygen plasma and HF etching.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P x ( 2 ) =2d E y E z =2d E T E z sin φ PUMP
P y ( 2 ) =2d E z E x =2d E T E z cos φ PUMP
P z ( 2 ) =2d E x E y =d  ( E T ) 2 sin2 φ PUMP
d S =[ d 11 s d 12 s d 13 s 0 0 0 0 0 0     d 14 s   0 0 0 d 25 s d 26 s 0 d 35 s d 36 s ]

Metrics