Abstract

We propose analytically and demonstrate experimentally that an ensemble of silicon nanoparticles with different sizes can effectively absorb sunlight. Due to the extinction of silicon from UV to near-infrared region, Mie resonances in silicon nanoparticles dramatically enhance the absorption of solar light. In experiment, silicon nanoparticles dispersed in water worked as excellent sunlight-heat transducers that efficiently harvest sunlight to accelerate heating and vaporization of water by nanoscale local heating. Our study opens up the potential of silicon nanoparticles in various solar-thermal applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Perfect grating-Mie-metamaterial based spectrally selective solar absorbers

Yanpei Tian, Xiaojie Liu, Fangqi Chen, and Yi Zheng
OSA Continuum 2(11) 3223-3239 (2019)

Optical nanoheating of resonant silicon nanoparticles

Yongqian Li, Xingyu Yang, Yujie Yang, Binbin Wang, Xiaoying Li, and Rafael Salas-Montiel
Opt. Express 27(21) 30971-30978 (2019)

Efficient and environmental-friendly perovskite solar cells via embedding plasmonic nanoparticles: an optical simulation study on realistic device architectures

George Perrakis, George Kakavelakis, George Kenanakis, Constantinos Petridis, Emmanuel Stratakis, Maria Kafesaki, and Emmanuel Kymakis
Opt. Express 27(22) 31144-31163 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Tyagi, P. Phelan, and R. Prasher, “Predicted efficiency of a nanofluid-based direct absorption solar receiver,” in ASME 2007 Energy Sustainability Conference (American Society of Mechanical Engineers, Long Beach, CA, USA, 2007), pp. 729–736.
    [Crossref]
  2. T. P. Otanicar and J. S. Golden, “Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies,” Environ. Sci. Technol. 43(15), 6082–6087 (2009).
    [Crossref] [PubMed]
  3. R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3(2), 023104 (2011).
    [Crossref]
  4. R. A. Taylor, T. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1(10), e34 (2012).
    [Crossref]
  5. O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, and S. Wongwises, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transfer 57(2), 582–594 (2013).
    [Crossref]
  6. C. Li, Y. Liu, X. Huang, and H. Jiang, “Direct Sun-Driven Artificial Heliotropism for Solar Energy Harvesting Based on a Photo-Thermomechanical Liquid-Crystal Elastomer Nanocomposite,” Adv. Funct. Mater. 22(24), 5166–5174 (2012).
    [Crossref]
  7. D. Han, Z. Meng, D. Wu, C. Zhang, and H. Zhu, “Thermal properties of carbon black aqueous nanofluids for solar absorption,” Nanoscale Res. Lett. 6(1), 457 (2011).
    [Crossref] [PubMed]
  8. L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P. Di Ninni, S. Barison, C. Pagura, F. Agresti, and D. Jafrancesco, “Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers,” Nanoscale Res. Lett. 6(1), 282 (2011).
    [Crossref] [PubMed]
  9. H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5, 4449 (2014).
    [Crossref] [PubMed]
  10. Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, and M. Chen, “Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization,” Adv. Mater. 27(29), 4302–4307 (2015).
    [Crossref] [PubMed]
  11. H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals,” Small 6(20), 2272–2280 (2010).
    [Crossref] [PubMed]
  12. G. Baffou and R. Quidant, “Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
    [Crossref]
  13. C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
    [Crossref] [PubMed]
  14. G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
    [Crossref] [PubMed]
  15. X.-M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. Cheng, C.-H. Ko, Z. Chen, J. Wang, and Y.-X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
    [Crossref] [PubMed]
  16. E. Y. Lukianova-Hleb and D. O. Lapotko, “Influence of transient environmental photothermal effects on optical scattering by gold nanoparticles,” Nano Lett. 9(5), 2160–2166 (2009).
    [Crossref] [PubMed]
  17. R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, “Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser,” Appl. Phys. Lett. 95(16), 161907 (2009).
    [Crossref]
  18. S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. 13(1), 28–54 (2012).
    [Crossref]
  19. A. Siems, S. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New J. Phys. 13(4), 043018 (2011).
    [Crossref]
  20. Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
    [Crossref] [PubMed]
  21. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
    [Crossref] [PubMed]
  22. L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires and Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
    [Crossref] [PubMed]
  23. M. Xiao, R. Jiang, F. Wang, C. Fang, J. Wang, and J. C. Yu, “Plasmon-enhanced chemical reactions,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 5790–5805 (2013).
    [Crossref]
  24. O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
    [Crossref] [PubMed]
  25. O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
    [Crossref] [PubMed]
  26. Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A Bioinspired, Reusable, Paper-Based System for High-Performance Large-Scale Evaporation,” Adv. Mater. 27(17), 2768–2774 (2015).
    [Crossref] [PubMed]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998), Vol. 3.
  28. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
    [Crossref] [PubMed]
  29. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref] [PubMed]
  30. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
    [Crossref] [PubMed]
  31. L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the Color of Silicon Nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
    [Crossref] [PubMed]
  32. S. Regli, J. A. Kelly, A. M. Shukaliak, and J. G. Veinot, “Photothermal response of photoluminescent silicon nanocrystals,” J. Phys. Chem. Lett. 3(13), 1793–1797 (2012).
    [Crossref] [PubMed]
  33. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).
  34. G. M. Hale and M. R. Querry, “Optical Constants of Water in the 200-nm to 200-microm Wavelength Region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  35. K. Nakamura, “Synthesis of nanoparticles by thermal plasma processing and its applications,” Earozoru Kenkyu 29, 98–103 (2014).
  36. M. E. Straumanis and E. Z. Aka, “Lattice Parameters, Coefficients of Thermal Expansion, and Atomic Weights of Purest Silicon and Germanium,” J. Appl. Phys. 23(3), 330–334 (1952).
    [Crossref]

2015 (2)

Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, and M. Chen, “Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization,” Adv. Mater. 27(29), 4302–4307 (2015).
[Crossref] [PubMed]

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A Bioinspired, Reusable, Paper-Based System for High-Performance Large-Scale Evaporation,” Adv. Mater. 27(17), 2768–2774 (2015).
[Crossref] [PubMed]

2014 (3)

K. Nakamura, “Synthesis of nanoparticles by thermal plasma processing and its applications,” Earozoru Kenkyu 29, 98–103 (2014).

X.-M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. Cheng, C.-H. Ko, Z. Chen, J. Wang, and Y.-X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5, 4449 (2014).
[Crossref] [PubMed]

2013 (8)

O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, and S. Wongwises, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transfer 57(2), 582–594 (2013).
[Crossref]

G. Baffou and R. Quidant, “Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

M. Xiao, R. Jiang, F. Wang, C. Fang, J. Wang, and J. C. Yu, “Plasmon-enhanced chemical reactions,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 5790–5805 (2013).
[Crossref]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

2012 (6)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

S. Regli, J. A. Kelly, A. M. Shukaliak, and J. G. Veinot, “Photothermal response of photoluminescent silicon nanocrystals,” J. Phys. Chem. Lett. 3(13), 1793–1797 (2012).
[Crossref] [PubMed]

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. 13(1), 28–54 (2012).
[Crossref]

C. Li, Y. Liu, X. Huang, and H. Jiang, “Direct Sun-Driven Artificial Heliotropism for Solar Energy Harvesting Based on a Photo-Thermomechanical Liquid-Crystal Elastomer Nanocomposite,” Adv. Funct. Mater. 22(24), 5166–5174 (2012).
[Crossref]

R. A. Taylor, T. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1(10), e34 (2012).
[Crossref]

2011 (4)

R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3(2), 023104 (2011).
[Crossref]

D. Han, Z. Meng, D. Wu, C. Zhang, and H. Zhu, “Thermal properties of carbon black aqueous nanofluids for solar absorption,” Nanoscale Res. Lett. 6(1), 457 (2011).
[Crossref] [PubMed]

L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P. Di Ninni, S. Barison, C. Pagura, F. Agresti, and D. Jafrancesco, “Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers,” Nanoscale Res. Lett. 6(1), 282 (2011).
[Crossref] [PubMed]

A. Siems, S. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New J. Phys. 13(4), 043018 (2011).
[Crossref]

2010 (2)

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the Color of Silicon Nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

2009 (3)

E. Y. Lukianova-Hleb and D. O. Lapotko, “Influence of transient environmental photothermal effects on optical scattering by gold nanoparticles,” Nano Lett. 9(5), 2160–2166 (2009).
[Crossref] [PubMed]

R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, “Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser,” Appl. Phys. Lett. 95(16), 161907 (2009).
[Crossref]

T. P. Otanicar and J. S. Golden, “Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies,” Environ. Sci. Technol. 43(15), 6082–6087 (2009).
[Crossref] [PubMed]

2007 (1)

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires and Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[Crossref] [PubMed]

2006 (1)

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
[Crossref] [PubMed]

2004 (1)

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[Crossref] [PubMed]

1973 (1)

1952 (1)

M. E. Straumanis and E. Z. Aka, “Lattice Parameters, Coefficients of Thermal Expansion, and Atomic Weights of Purest Silicon and Germanium,” J. Appl. Phys. 23(3), 330–334 (1952).
[Crossref]

Adrian, R. J.

R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, “Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser,” Appl. Phys. Lett. 95(16), 161907 (2009).
[Crossref]

Agresti, F.

L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P. Di Ninni, S. Barison, C. Pagura, F. Agresti, and D. Jafrancesco, “Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers,” Nanoscale Res. Lett. 6(1), 282 (2011).
[Crossref] [PubMed]

Aka, E. Z.

M. E. Straumanis and E. Z. Aka, “Lattice Parameters, Coefficients of Thermal Expansion, and Atomic Weights of Purest Silicon and Germanium,” J. Appl. Phys. 23(3), 330–334 (1952).
[Crossref]

Baffou, G.

G. Baffou and R. Quidant, “Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Barison, S.

L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P. Di Ninni, S. Barison, C. Pagura, F. Agresti, and D. Jafrancesco, “Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers,” Nanoscale Res. Lett. 6(1), 282 (2011).
[Crossref] [PubMed]

Barnard, E. S.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the Color of Silicon Nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Barsic, D. N.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires and Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[Crossref] [PubMed]

Barton, J.

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[Crossref] [PubMed]

Bernard, A.

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A Bioinspired, Reusable, Paper-Based System for High-Performance Large-Scale Evaporation,” Adv. Mater. 27(17), 2768–2774 (2015).
[Crossref] [PubMed]

Boneberg, J.

A. Siems, S. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New J. Phys. 13(4), 043018 (2011).
[Crossref]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Brongersma, M. L.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the Color of Silicon Nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires and Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[Crossref] [PubMed]

Brown, A. M.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the Color of Silicon Nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Cao, L.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the Color of Silicon Nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires and Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[Crossref] [PubMed]

Chen, G.

H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5, 4449 (2014).
[Crossref] [PubMed]

Chen, H.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Chen, M.

Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, and M. Chen, “Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization,” Adv. Mater. 27(29), 4302–4307 (2015).
[Crossref] [PubMed]

Chen, Z.

X.-M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. Cheng, C.-H. Ko, Z. Chen, J. Wang, and Y.-X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

Cheng, C. H.

X.-M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. Cheng, C.-H. Ko, Z. Chen, J. Wang, and Y.-X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Day, J.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Deng, T.

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A Bioinspired, Reusable, Paper-Based System for High-Performance Large-Scale Evaporation,” Adv. Mater. 27(17), 2768–2774 (2015).
[Crossref] [PubMed]

Di Ninni, P.

L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P. Di Ninni, S. Barison, C. Pagura, F. Agresti, and D. Jafrancesco, “Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers,” Nanoscale Res. Lett. 6(1), 282 (2011).
[Crossref] [PubMed]

Dong, A.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Drezek, R.

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[Crossref] [PubMed]

Duan, H.

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A Bioinspired, Reusable, Paper-Based System for High-Performance Large-Scale Evaporation,” Adv. Mater. 27(17), 2768–2774 (2015).
[Crossref] [PubMed]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Evlyukhin, A. B.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Fan, P.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the Color of Silicon Nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Fang, C.

X.-M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. Cheng, C.-H. Ko, Z. Chen, J. Wang, and Y.-X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

M. Xiao, R. Jiang, F. Wang, C. Fang, J. Wang, and J. C. Yu, “Plasmon-enhanced chemical reactions,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 5790–5805 (2013).
[Crossref]

Fang, Z.

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Feng, R.

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A Bioinspired, Reusable, Paper-Based System for High-Performance Large-Scale Evaporation,” Adv. Mater. 27(17), 2768–2774 (2015).
[Crossref] [PubMed]

Feronti, C.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Fujita, T.

Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, and M. Chen, “Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization,” Adv. Mater. 27(29), 4302–4307 (2015).
[Crossref] [PubMed]

García de Abajo, F. J.

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Ghasemi, H.

H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5, 4449 (2014).
[Crossref] [PubMed]

Golden, J. S.

T. P. Otanicar and J. S. Golden, “Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies,” Environ. Sci. Technol. 43(15), 6082–6087 (2009).
[Crossref] [PubMed]

Grady, N.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Guichard, A. R.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires and Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[Crossref] [PubMed]

Halas, N.

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[Crossref] [PubMed]

Halas, N. J.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Hale, G. M.

Han, D.

D. Han, Z. Meng, D. Wu, C. Zhang, and H. Zhu, “Thermal properties of carbon black aqueous nanofluids for solar absorption,” Nanoscale Res. Lett. 6(1), 457 (2011).
[Crossref] [PubMed]

Han, J.

Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, and M. Chen, “Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization,” Adv. Mater. 27(29), 4302–4307 (2015).
[Crossref] [PubMed]

Hashimoto, S.

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. 13(1), 28–54 (2012).
[Crossref]

Hirsch, L.

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[Crossref] [PubMed]

Huang, X.

C. Li, Y. Liu, X. Huang, and H. Jiang, “Direct Sun-Driven Artificial Heliotropism for Solar Energy Harvesting Based on a Photo-Thermomechanical Liquid-Crystal Elastomer Nanocomposite,” Adv. Funct. Mater. 22(24), 5166–5174 (2012).
[Crossref]

Huang, Y.

X.-M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. Cheng, C.-H. Ko, Z. Chen, J. Wang, and Y.-X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

Ito, Y.

Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, and M. Chen, “Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization,” Adv. Mater. 27(29), 4302–4307 (2015).
[Crossref] [PubMed]

Jafrancesco, D.

L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P. Di Ninni, S. Barison, C. Pagura, F. Agresti, and D. Jafrancesco, “Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers,” Nanoscale Res. Lett. 6(1), 282 (2011).
[Crossref] [PubMed]

Jain, M.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

Jia, H.

X.-M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. Cheng, C.-H. Ko, Z. Chen, J. Wang, and Y.-X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

Jiang, H.

C. Li, Y. Liu, X. Huang, and H. Jiang, “Direct Sun-Driven Artificial Heliotropism for Solar Energy Harvesting Based on a Photo-Thermomechanical Liquid-Crystal Elastomer Nanocomposite,” Adv. Funct. Mater. 22(24), 5166–5174 (2012).
[Crossref]

Jiang, R.

M. Xiao, R. Jiang, F. Wang, C. Fang, J. Wang, and J. C. Yu, “Plasmon-enhanced chemical reactions,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 5790–5805 (2013).
[Crossref]

Kalogirou, S. A.

O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, and S. Wongwises, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transfer 57(2), 582–594 (2013).
[Crossref]

Kelly, J. A.

S. Regli, J. A. Kelly, A. M. Shukaliak, and J. G. Veinot, “Photothermal response of photoluminescent silicon nanocrystals,” J. Phys. Chem. Lett. 3(13), 1793–1797 (2012).
[Crossref] [PubMed]

Kianifar, A.

O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, and S. Wongwises, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transfer 57(2), 582–594 (2013).
[Crossref]

Kim, E.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Kim, J.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
[Crossref] [PubMed]

Ko, C.-H.

X.-M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. Cheng, C.-H. Ko, Z. Chen, J. Wang, and Y.-X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Lal, S.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Lapin, Z.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

Lapotko, D. O.

E. Y. Lukianova-Hleb and D. O. Lapotko, “Influence of transient environmental photothermal effects on optical scattering by gold nanoparticles,” Nano Lett. 9(5), 2160–2166 (2009).
[Crossref] [PubMed]

Lee, L. P.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
[Crossref] [PubMed]

Lee, M.-H.

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[Crossref] [PubMed]

Li, C.

C. Li, Y. Liu, X. Huang, and H. Jiang, “Direct Sun-Driven Artificial Heliotropism for Solar Energy Harvesting Based on a Photo-Thermomechanical Liquid-Crystal Elastomer Nanocomposite,” Adv. Funct. Mater. 22(24), 5166–5174 (2012).
[Crossref]

Lin, A.

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[Crossref] [PubMed]

Liu, G. L.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A Bioinspired, Reusable, Paper-Based System for High-Performance Large-Scale Evaporation,” Adv. Mater. 27(17), 2768–2774 (2015).
[Crossref] [PubMed]

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A Bioinspired, Reusable, Paper-Based System for High-Performance Large-Scale Evaporation,” Adv. Mater. 27(17), 2768–2774 (2015).
[Crossref] [PubMed]

C. Li, Y. Liu, X. Huang, and H. Jiang, “Direct Sun-Driven Artificial Heliotropism for Solar Energy Harvesting Based on a Photo-Thermomechanical Liquid-Crystal Elastomer Nanocomposite,” Adv. Funct. Mater. 22(24), 5166–5174 (2012).
[Crossref]

Loo, C.

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[Crossref] [PubMed]

Loomis, J.

H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5, 4449 (2014).
[Crossref] [PubMed]

Lu, B.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Lu, Y.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
[Crossref] [PubMed]

Luk’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Lukianova-Hleb, E. Y.

E. Y. Lukianova-Hleb and D. O. Lapotko, “Influence of transient environmental photothermal effects on optical scattering by gold nanoparticles,” Nano Lett. 9(5), 2160–2166 (2009).
[Crossref] [PubMed]

Mahian, O.

O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, and S. Wongwises, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transfer 57(2), 582–594 (2013).
[Crossref]

Marconnet, A. M.

H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5, 4449 (2014).
[Crossref] [PubMed]

Martelli, F.

L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P. Di Ninni, S. Barison, C. Pagura, F. Agresti, and D. Jafrancesco, “Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers,” Nanoscale Res. Lett. 6(1), 282 (2011).
[Crossref] [PubMed]

Meng, Z.

D. Han, Z. Meng, D. Wu, C. Zhang, and H. Zhu, “Thermal properties of carbon black aqueous nanofluids for solar absorption,” Nanoscale Res. Lett. 6(1), 457 (2011).
[Crossref] [PubMed]

Mercatelli, L.

L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P. Di Ninni, S. Barison, C. Pagura, F. Agresti, and D. Jafrancesco, “Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers,” Nanoscale Res. Lett. 6(1), 282 (2011).
[Crossref] [PubMed]

Miljkovic, N.

H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5, 4449 (2014).
[Crossref] [PubMed]

Ming, T.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Miroshnichenko, A. E.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Nakamura, K.

K. Nakamura, “Synthesis of nanoparticles by thermal plasma processing and its applications,” Earozoru Kenkyu 29, 98–103 (2014).

Neumann, A. D.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Neumann, O.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Nguyen, M.

R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3(2), 023104 (2011).
[Crossref]

Ni, G.

H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5, 4449 (2014).
[Crossref] [PubMed]

Nordlander, P.

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Novotny, L.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

Oden, M.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Otanicar, T.

R. A. Taylor, T. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1(10), e34 (2012).
[Crossref]

R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, “Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser,” Appl. Phys. Lett. 95(16), 161907 (2009).
[Crossref]

Otanicar, T. P.

R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3(2), 023104 (2011).
[Crossref]

T. P. Otanicar and J. S. Golden, “Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies,” Environ. Sci. Technol. 43(15), 6082–6087 (2009).
[Crossref] [PubMed]

Pagura, C.

L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P. Di Ninni, S. Barison, C. Pagura, F. Agresti, and D. Jafrancesco, “Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers,” Nanoscale Res. Lett. 6(1), 282 (2011).
[Crossref] [PubMed]

Person, S.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

Phelan, P. E.

R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3(2), 023104 (2011).
[Crossref]

R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, “Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser,” Appl. Phys. Lett. 95(16), 161907 (2009).
[Crossref]

Plech, A.

A. Siems, S. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New J. Phys. 13(4), 043018 (2011).
[Crossref]

Polman, A.

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Pop, I.

O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, and S. Wongwises, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transfer 57(2), 582–594 (2013).
[Crossref]

Prasher, R.

R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3(2), 023104 (2011).
[Crossref]

Prasher, R. S.

R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, “Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser,” Appl. Phys. Lett. 95(16), 161907 (2009).
[Crossref]

Querry, M. R.

Quidant, R.

G. Baffou and R. Quidant, “Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Quinn, M.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Regli, S.

S. Regli, J. A. Kelly, A. M. Shukaliak, and J. G. Veinot, “Photothermal response of photoluminescent silicon nanocrystals,” J. Phys. Chem. Lett. 3(13), 1793–1797 (2012).
[Crossref] [PubMed]

Reinhardt, C.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Rosengarten, G.

R. A. Taylor, T. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1(10), e34 (2012).
[Crossref]

Sáenz, J. J.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

Sani, E.

L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P. Di Ninni, S. Barison, C. Pagura, F. Agresti, and D. Jafrancesco, “Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers,” Nanoscale Res. Lett. 6(1), 282 (2011).
[Crossref] [PubMed]

Schell, K.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Shang, W.

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A Bioinspired, Reusable, Paper-Based System for High-Performance Large-Scale Evaporation,” Adv. Mater. 27(17), 2768–2774 (2015).
[Crossref] [PubMed]

Shao, L.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Shukaliak, A. M.

S. Regli, J. A. Kelly, A. M. Shukaliak, and J. G. Veinot, “Photothermal response of photoluminescent silicon nanocrystals,” J. Phys. Chem. Lett. 3(13), 1793–1797 (2012).
[Crossref] [PubMed]

Siems, A.

A. Siems, S. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New J. Phys. 13(4), 043018 (2011).
[Crossref]

Song, C.

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A Bioinspired, Reusable, Paper-Based System for High-Performance Large-Scale Evaporation,” Adv. Mater. 27(17), 2768–2774 (2015).
[Crossref] [PubMed]

Straumanis, M. E.

M. E. Straumanis and E. Z. Aka, “Lattice Parameters, Coefficients of Thermal Expansion, and Atomic Weights of Purest Silicon and Germanium,” J. Appl. Phys. 23(3), 330–334 (1952).
[Crossref]

Sun, Z.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Tanabe, Y.

Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, and M. Chen, “Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization,” Adv. Mater. 27(29), 4302–4307 (2015).
[Crossref] [PubMed]

Tanigaki, K.

Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, and M. Chen, “Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization,” Adv. Mater. 27(29), 4302–4307 (2015).
[Crossref] [PubMed]

Tao, P.

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A Bioinspired, Reusable, Paper-Based System for High-Performance Large-Scale Evaporation,” Adv. Mater. 27(17), 2768–2774 (2015).
[Crossref] [PubMed]

Taylor, R. A.

R. A. Taylor, T. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1(10), e34 (2012).
[Crossref]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3(2), 023104 (2011).
[Crossref]

R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, “Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser,” Appl. Phys. Lett. 95(16), 161907 (2009).
[Crossref]

Thompson, S.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Trimble, S.

R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3(2), 023104 (2011).
[Crossref]

Urban, A. S.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Uwada, T.

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. 13(1), 28–54 (2012).
[Crossref]

Veinot, J. G.

S. Regli, J. A. Kelly, A. M. Shukaliak, and J. G. Veinot, “Photothermal response of photoluminescent silicon nanocrystals,” J. Phys. Chem. Lett. 3(13), 1793–1797 (2012).
[Crossref] [PubMed]

Walker, C. A.

R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3(2), 023104 (2011).
[Crossref]

Wang, F.

M. Xiao, R. Jiang, F. Wang, C. Fang, J. Wang, and J. C. Yu, “Plasmon-enhanced chemical reactions,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 5790–5805 (2013).
[Crossref]

Wang, J.

X.-M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. Cheng, C.-H. Ko, Z. Chen, J. Wang, and Y.-X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

M. Xiao, R. Jiang, F. Wang, C. Fang, J. Wang, and J. C. Yu, “Plasmon-enhanced chemical reactions,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 5790–5805 (2013).
[Crossref]

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Wang, Y.-X. J.

X.-M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. Cheng, C.-H. Ko, Z. Chen, J. Wang, and Y.-X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

Weber, S.

A. Siems, S. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New J. Phys. 13(4), 043018 (2011).
[Crossref]

Werner, D.

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. 13(1), 28–54 (2012).
[Crossref]

West, J.

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[Crossref] [PubMed]

Wicks, G.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

Wongwises, S.

O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, and S. Wongwises, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transfer 57(2), 582–594 (2013).
[Crossref]

Wu, D.

D. Han, Z. Meng, D. Wu, C. Zhang, and H. Zhu, “Thermal properties of carbon black aqueous nanofluids for solar absorption,” Nanoscale Res. Lett. 6(1), 457 (2011).
[Crossref] [PubMed]

Xiao, M.

M. Xiao, R. Jiang, F. Wang, C. Fang, J. Wang, and J. C. Yu, “Plasmon-enhanced chemical reactions,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 5790–5805 (2013).
[Crossref]

Yang, B.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Yerci, S.

H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5, 4449 (2014).
[Crossref] [PubMed]

Yu, J. C.

M. Xiao, R. Jiang, F. Wang, C. Fang, J. Wang, and J. C. Yu, “Plasmon-enhanced chemical reactions,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 5790–5805 (2013).
[Crossref]

Yu, S.

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A Bioinspired, Reusable, Paper-Based System for High-Performance Large-Scale Evaporation,” Adv. Mater. 27(17), 2768–2774 (2015).
[Crossref] [PubMed]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Zaccanti, G.

L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P. Di Ninni, S. Barison, C. Pagura, F. Agresti, and D. Jafrancesco, “Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers,” Nanoscale Res. Lett. 6(1), 282 (2011).
[Crossref] [PubMed]

Zhang, C.

D. Han, Z. Meng, D. Wu, C. Zhang, and H. Zhu, “Thermal properties of carbon black aqueous nanofluids for solar absorption,” Nanoscale Res. Lett. 6(1), 457 (2011).
[Crossref] [PubMed]

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Zhang, Y.

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A Bioinspired, Reusable, Paper-Based System for High-Performance Large-Scale Evaporation,” Adv. Mater. 27(17), 2768–2774 (2015).
[Crossref] [PubMed]

Zhao, C.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Zhen, Y.-R.

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Zhu, H.

D. Han, Z. Meng, D. Wu, C. Zhang, and H. Zhu, “Thermal properties of carbon black aqueous nanofluids for solar absorption,” Nanoscale Res. Lett. 6(1), 457 (2011).
[Crossref] [PubMed]

Zhu, X.-M.

X.-M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. Cheng, C.-H. Ko, Z. Chen, J. Wang, and Y.-X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

ACS Nano (1)

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

C. Li, Y. Liu, X. Huang, and H. Jiang, “Direct Sun-Driven Artificial Heliotropism for Solar Energy Harvesting Based on a Photo-Thermomechanical Liquid-Crystal Elastomer Nanocomposite,” Adv. Funct. Mater. 22(24), 5166–5174 (2012).
[Crossref]

Adv. Mater. (2)

Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, and M. Chen, “Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization,” Adv. Mater. 27(29), 4302–4307 (2015).
[Crossref] [PubMed]

Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, and T. Deng, “A Bioinspired, Reusable, Paper-Based System for High-Performance Large-Scale Evaporation,” Adv. Mater. 27(17), 2768–2774 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, “Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser,” Appl. Phys. Lett. 95(16), 161907 (2009).
[Crossref]

Earozoru Kenkyu (1)

K. Nakamura, “Synthesis of nanoparticles by thermal plasma processing and its applications,” Earozoru Kenkyu 29, 98–103 (2014).

Environ. Sci. Technol. (1)

T. P. Otanicar and J. S. Golden, “Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies,” Environ. Sci. Technol. 43(15), 6082–6087 (2009).
[Crossref] [PubMed]

Int. J. Heat Mass Transfer (1)

O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, and S. Wongwises, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transfer 57(2), 582–594 (2013).
[Crossref]

J. Appl. Phys. (1)

M. E. Straumanis and E. Z. Aka, “Lattice Parameters, Coefficients of Thermal Expansion, and Atomic Weights of Purest Silicon and Germanium,” J. Appl. Phys. 23(3), 330–334 (1952).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

M. Xiao, R. Jiang, F. Wang, C. Fang, J. Wang, and J. C. Yu, “Plasmon-enhanced chemical reactions,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 5790–5805 (2013).
[Crossref]

J. Photochem. Photobiol. (1)

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. 13(1), 28–54 (2012).
[Crossref]

J. Phys. Chem. Lett. (1)

S. Regli, J. A. Kelly, A. M. Shukaliak, and J. G. Veinot, “Photothermal response of photoluminescent silicon nanocrystals,” J. Phys. Chem. Lett. 3(13), 1793–1797 (2012).
[Crossref] [PubMed]

J. Renewable Sustainable Energy (1)

R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3(2), 023104 (2011).
[Crossref]

Laser Photonics Rev. (1)

G. Baffou and R. Quidant, “Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Light Sci. Appl. (1)

R. A. Taylor, T. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1(10), e34 (2012).
[Crossref]

Nano Lett. (6)

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the Color of Silicon Nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

E. Y. Lukianova-Hleb and D. O. Lapotko, “Influence of transient environmental photothermal effects on optical scattering by gold nanoparticles,” Nano Lett. 9(5), 2160–2166 (2009).
[Crossref] [PubMed]

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires and Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[Crossref] [PubMed]

Nanoscale (1)

X.-M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. Cheng, C.-H. Ko, Z. Chen, J. Wang, and Y.-X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

Nanoscale Res. Lett. (2)

D. Han, Z. Meng, D. Wu, C. Zhang, and H. Zhu, “Thermal properties of carbon black aqueous nanofluids for solar absorption,” Nanoscale Res. Lett. 6(1), 457 (2011).
[Crossref] [PubMed]

L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P. Di Ninni, S. Barison, C. Pagura, F. Agresti, and D. Jafrancesco, “Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers,” Nanoscale Res. Lett. 6(1), 282 (2011).
[Crossref] [PubMed]

Nat. Commun. (2)

H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5, 4449 (2014).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006).
[Crossref] [PubMed]

New J. Phys. (1)

A. Siems, S. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New J. Phys. 13(4), 043018 (2011).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Small (1)

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Technol. Cancer Res. Treat. (1)

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[Crossref] [PubMed]

Other (3)

H. Tyagi, P. Phelan, and R. Prasher, “Predicted efficiency of a nanofluid-based direct absorption solar receiver,” in ASME 2007 Energy Sustainability Conference (American Society of Mechanical Engineers, Long Beach, CA, USA, 2007), pp. 729–736.
[Crossref]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998), Vol. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Absorption efficiencies of silicon nanospheres in water having different radii. (b-e) Cross sections of the simulated normalized absorption (b, c) and normalized electric field amplitude (d, e) in false color map for a 50-nm radius silicon nanosphere in water. Panels (b, d) and (c, e) are at 402 nm (second resonance) and 472 nm (first resonance), respectively. In the simulations, the incident light propagates from the bottom to the top and the electric field is polarized in horizontal direction.
Fig. 2
Fig. 2 (a) Bright field TEM image of the silicon nanoparticles. Inset shows the high-resolution TEM image. (b) Power XRD pattern of the silicon nanoparticles. (c) Extinction spectrum of the 0.001 vol% silicon nanoparticles in water in a 1-cm thick cell. The spectrum is normalized to pure water. (d) Photograph of silicon nanofluid at 0.001 vol%. The thickness of the plastic cell perpendicular direction to the photo is 1 cm.
Fig. 3
Fig. 3 Weight changes (a) and temperature changes (b) of the silicon nanofluids upon irradiation by a solar simulator. The legends for panel (a) is identical to panel (b). In panel (a), the measured data are represented by symbols and the solid lines are the fitted lines. The inset figure in panel (a) is a schematic of the setup and identical legends are used for panels (a) and (b). (c) Schematic of the setup with a focusing lens (left) and the photo of 0.1 vol% silicon nanofluid at the irradiation of ~800 mW/cm2 from the solar simulator (right).
Fig. 4
Fig. 4 Complex refractive index of silicon [27].
Fig. 5
Fig. 5 Scattering efficiencies (Qscat) of silicon nanospheres in water having different radii. The refractive index of silicon is taken from ref [27].
Fig. 6
Fig. 6 (a) Size distribution of the silicon nanoparticles measured from the TEM images showing 300 particles in total. (b) Histogram of the silicon nanoparticle diameter in water by DLS measurement.
Fig. 7
Fig. 7 (a) Dark field microscope image of the silicon nanoparticles on a cover glass. Different colors correspond to different sizes of the silicon nanoparticles. (b) Selected spectra of the backward scattering from the silicon nanoparticles on a cover glass. Each spectrum is normalized to its maximum.
Fig. 8
Fig. 8 Photograph of the measurement setup when the solar simulator is on.
Fig. 9
Fig. 9 (a) Photo of the experimental setup and (b) schematic drawing of the cross section of the setup. The thermos-coupler was removed when taking the photo. The beam size of the solar simulator was larger than the cross section of the white foam. Since the surface of the white foam is rough, scattered light can illuminate the nanofluid from the side. (c) Efficiencies of the silicon nanofluids.

Metrics